Topics in Information-Theoretic
Cryptography

Course Introduction

Yanina Shkel, September 30, 2021
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At EPFL.: since December 2019
BS: mathematics & computer science, UW-Madison
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Postdoc: Princeton University, UIUC

Research Interests: theory of data compression,
mathematical models for privacy and secrecy, (
fundamental limits of privacy-aware information - )
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Course Logistics

Time and Location: Thursdays 8:15-10am, BCO3 and on Zoom
Course Webpage: Moodle
Course Format: Based on paper reading and presentation during lecture

Grading: The final grade will be based 20% on course participation and 80% on
the final project

Enrolment: Current enrolment on ISAcademia is low :(

We will decide on Monday/Tuesday, October 4/5 wether to go on with the
course



Format
Paper Reading

* There will be 1-2 papers assigned each lecture
* We will discuss the papers during lecture

* You will get more from the course if you read the
papers

* You are not expected to read papers labeled as
“Further Reading”

* Final project assignments includes extension of
existing results, implementation tasks, critical
summary of a paper, etc.

* You may use a paper from the provided reading
list or suggest their own paper.

* You should communicate your final project topic
to the instructor a month before the final due date

Tentative Course Schedule:

Lecture 1 — September 30 — Course Introductions
Reading Assignment
e The Princeton Companion to Applied Mathematics. Princeton University
Press, 2015, ch. IV.36 Information Theory by Sergio Verdu

Further Readin
e (. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal,, vol. 27, pp. 379-423 and 623—656, July/October 1948.

Lecture 2 — October 7 — Réniy Entropy and Axiomatic Definitions of Entropy
Reading Assignment
e Rényi, “On measures of entropy and information,” in Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics. University of California
Press, 1961, pp. 547-561.

Further Readin
e L. Campbell, “A coding theorem and Rényi’s entropy,” Information and

Control, vol. 8, no. 4, pp. 423 — 429, 1965.

e S. Verdu, “Error exponents and alpha-mutual information,” Entropy, vol. 23,
no. 2, 2021.

e Y. Shkel and S. Verdu, “A coding theorem for f-separable distortion
measures,” Entropy, vol. 20, no. 2, 2018.

Lecture 3 — October 14 — TBD

Reading Assignment
Further Reading

Lecture 7 — November 11 — TBD
Reading Assignment
Further Reading

November 18 — Final Project Proposal Due

Lecture 8 — November 18 — TBD

Reading Assignment
Further Reading

Lecture 12 — December 14 — TBD
Reading Assignment
Further Reading

December 21 — Final Project Due



Format
Paper Reading

« As you read each paper, consider:

 What is the “broad strokes” problem to be
addressed?

 Why is it important?

 How does the paper advance the state-of-the-art?
 What is the history and the previous state-of-the-art?
e What is the main result?

 What are the main technical tools/ideas/insights?

 What is the impact (for older papers)? What is
possible future work (for newer papers)?

|t is OK to not understand everything in the paper

 These are deep and technical works
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ABOUT THE COURSE



Overview
Fall 2020

Computational security: relies on computational infeasibility of breaking the
system.

Unconditional (information-theoretic) security: relies on theoretical
impossibility of breaking the system (even given a computationally unbounded

adversary).

This course: compare and contrast the two notions of security, look at methods
that have information-theoretic guarantees.



Topics
Fall 2020

Secret Communication Problem: Perfect Secrecy vs Computational approach
(one-way functions, secret key agreement, semantic security)

Secret Key Generation Problem: Randomness extraction, privacy
amplification, secret key capacity

Differential Privacy: Definition, motivation, properties, information-theoretic
perspective

Emerging Trends: Other measures of leakage, Maximal leakage, Perfect
privacy/secrecy by design



Overview
Fall 2021

Information Measures: How do we model information mathematically? How do
we measure information?

Example: Communication Information measures arise as answers to specific
engineering questions.

Example: Privacy Information measures are postulated from first principles and
used to measure privacy loss.

Course Takeaway: The ‘best’ way to measure information often depends on
application.



Topics
Fall 2021

Information theory: entropy, mutual information, and relative entropy; their
extensions to Renyi entropy, Renyi divergence, alpha-mutual information;
various notions of common information;

Differential Privacy: definition, motivation, extensions, properties, information-
theoretic perspective

Maximal Leakage: definition, motivation, extensions, properties

Other Topics: secrecy by design, location privacy, fairness, etc.



COURSE CONTENT



Single Information Source
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Single Information Source

How much information is there?
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Single Information Source

How much information is there?

* Use tools from probability theory and statistics to model information

e A ‘source of information’ is a random variable

 The ‘amount’ of information measured depends...
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Single Information Source

Example: Lossless Data Compression

e Q: What is the smallest number
of bits we need to represent the
source?

* A: There is a fundamental lower
bound called “entropy” (or
Shannon entropy)

 Many practical algorithms exist
that come very close to
achieving this lower bound

“To be or not
to be?”
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Single Information Source

Example: Randomness Extraction

* Q: What is the largest number of
uniform bits we could get out of
this information source?

 A: There is a fundamental upper
bound called “min-entropy”

 Note: Min-entropy Is a special
case of Réniy entropy
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Two Information Sources

How much relevant information is there in a related observation?
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Two Information Sources

How much relevant information is there in a related observation?
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Two Information Sources

How much relevant information is there in a related observation?

' o
eB." »1s L

i

Medical Data Data Statistics




Two Information Sources

Example: Data Transmission

* Q: What is the largest number of
messages we could reliably
transmit through this ¥
communication channel

. . . Communication P

* A: The rate of transmission is the Yix
maximal mutual information
across the channel Y

\4

* Practical error correcting codes
(e.g. LDPC, Polar codes) that

achieve this O — r%ax[(X; Y)



Two Information Sources

Example: Side-Channel Leakage

e Q: How do we measure how
much information is leaked by a
side channel?

e A: Measure how much better the
adversary can compute
functions of data

* This is the approach taken by
maximal leakage
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Two Information Sources

Example: Database Privacy

e Q: How do we measure how
much privacy iIs compromised
(e.g. private information leaked)
in a database query?

* A: Measure how much individual
record changes the result of the

query

* This is the approach taken by
differential privacy
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Two Information Sources

Common Information

* There are many other perfectly
reasonable ways to define the notion

of ‘relevant’ information between two
sources

« Example: Gacs-Korner-Witsenhausen
common information

 Example: Wyner common information

K(X;Y)

/ W: W=g1(X)=g2(Y)

= sup H(W)



Information Sources

Reéniy Entropy, alpha-Mutual Information

* There are also many perfectly
reasonable ways to generalise
Shannon entropy and Mutual
Information

* Réniy entropy is one well-known one

* |t has nice properties and axiomatic
justifications (stay tuned for next
lecture)

ON MEASURES OF ENTROPY AND
INFORMATION

ALFRED RENYI
MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

1. Characterization of Shannon’s measure of entropy

Let ® = (p1, p2, - -+, Px) be a finite discrete probability distribution, that
is, suppose pr =0k =1,2,---,n) and 2 t-1p:x = 1. The amount of un-
certainty of the distribution @, that is, the amount of uncertainty concerning
the outcome of an experiment, the possible results of which have the probabili-

ties p1, P2, - - -, Pn, 1S called the entropy of the distribution ® and is usually
measured by the quantity H[®] = H(py, p2, - - - , P»), introduced by Shannon [1]
and defined by
z 1
(L.1) H(py, 2, =+, Pa) = 2 piloga —
k=1 Pk

Different sets of postulates have been given, which characterize the quantity
(1.1). The simplest such set of postulates is that given by Fadeev [2] (see also
Feinstein [3]). Fadeev’s postulates are as follows.

(a) H(py, p2, **+ , Pxu) 18 a symmetric function of its variables forn = 2,3, +-- .

(b) H(p, 1 — p) is a continuous functron of p for 0 < p =< 1.

(¢) H1/2,1/2) = 1.

(d) H[tply (1 - t)ply D2y =y pn] = H(ply P2y, =, pn) + le(t’ 1 — t)
for any distribution ® = (p1, P2, -+, Pa) and for 0 < t £ 1.

The proof that the postulates (a), (b), (¢), and (d) characterize the quantity
(1.1) uniquely is easy except for the following lemma, whose proofs up to now
are rather intricate.

LemMA. Let f(n) be an additive number-theoretical function, that is, let f(n) be
defined for n = 1, 2, - - - and suppose

(1.2) f(nm) = f(n) + f(m), nym=1,2 -
Let us suppose further that
(1.3) Tim_[f(n + 1) = f(m)] = 0.

Then we have

(1.4) f(n) = clogn,
where ¢ 1s a constant.
547



