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A Coding Theorem and Rényi's Entropy™
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Let L() = t1log, (ZpiDmi), where p; is the probability of the <th
input symbol to a noiseless channel, and »n; is the length of the code
sequence for the 4th symbol in some uniquely decipherable code.
Limiting values of L () are Z nip; for ¢ = 0 and max (n,) for ¢ = e,
It is shown that (1) has some desirable properties as a measure of
typical code length. A coding theorem for a noiseless channel is
proved. The theorem states roughly that it is possible to encode so
that L{t) is elose to H, , where H, is Rényi’s entropy of order « and
a= (14 )L

INTRODUCTION

In the usual discussion of the coding theorem for a noiseless channel
(Feinstein, 1958) one chooses code lengths to minimize the average code
length. The minimization is done subject to the constraint that the code
be uniquely decipherable. The solution of this minimization problem is
that the best code length for an input symbol of probability pis —log p.
This solution has the disadvantage that the code length is very great if
the probability of the symbol is very small.

Implicit in the use of average code length as a criterion of performance
is the assumption that cost varies linearly with code length. This is not
always the case. In the present paper another measure of code length is
introduced which implies that the cost is an exponential function of code
length. Linear dependence is a limiting case of this measure.

A coding theorem analogous to the ordinary coding theorem for a
neiseless channel will be proved. The theorem states that it is possible
to encode so that the measure of length is arbitrarily close to the Rényi
entropy of the input. The code lengths produced by this theorem are
less than those produced by the ordinary theorem for improbable input
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symbols. In compensation, longer codes are required for the most prob-
able symbols.

The Rényi entropy was introduced by Rényi (1961, 1962) as a gen-
eralization of the usual notion of entropy. Since this generalized entropy
has many properties in comumon with the ordinary Shannon entropy and
includes it as a special case, it is not surprising that there should be a
coding theorem associated with Rényi’s entropy.

A MEASURE OF LENGTH

Let py,p2, -+, px be the probabilities of N input symbols
%1, T2, -+, £y which we wish to encode. We assume that p; > 0 for
i=1,2, -, Nand that >_ p; = 1. Suppose there is an alphabet of D

symbols into which the input symbols are to be encoded. Let x, be repre-
sented by a sequence of n; characters from the alphabet. It can be shown
(Feinstein, 1958) that there is a uniquely decipherable code with lengths
71, -+, ny if and only if

YD1 (1)

There are many different codes whose lengths satisfy the constraint
(1). To compare different codes and pick out an optimum code it is
customary to examine the mean length, > n.p,;, and to minimize this
quantity. This is a good procedure if the cost of using a sequence of
length n; is directly proportional to n;. However, there may be occa-
sions when the cost is more nearly an exponential function of n;. This
could be the case, for example, if the cost of encoding and decoding
equipment were an important factor. Thus, in some circumstances, it
might be more appropriate to choose a code which minimizes the
quantity

N
C= ZpiDtm:
=1

where ¢ 1s some parameter related to the cost. For reasons which will
become evident later we prefer to minimize a monotonic function of C.
Clearly this will also minimize C.

In order to make the result of this paper more directly comparable
with the usual coding theorem we introduce a quantity which resembles
the mean length. Let a code length of order ¢ be defined by

mw=$%{émwﬂ 0<t< =) (2)
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An application of 'Hospital’s rule shows that

N
L(0) = Wm L() = 2 nip; . (3)
i—=0 z==1
For large ¢,
N .
;piDtni i ijt'n.J’
where n; is the largest of the numbers ny, - -+, ny . Thus,
L{®«) = lim L({) = max n,. (4)
00 1Si<H

Moreover (Beckenbach and Bellman, 1961, see p. 16), L(t) is a mono-
tonic nondecreasing function of £, Thus L(0) is the conventional measure
of mean length and L{« ) is the measure which would be used if the
maximum length were of prime importance. Intermediate values of ¢
provide a measure of length which lies between these limits. The larger
the value of ¢, the more is the weight which is given to the larger values
Of ;.

Note also that if all n,; are the same, say n; = n, then L(¢) = n. This
is a reasonable property for any measure of length to possess.

A CODING THEOREM

Before proceeding to the coding theorem we need a definition and a
lemma. Rényi (1961, 1962) has introduced the entropy of order o,
defined by

=1

Ho= o (Se7) @D ®)

L’Hospital’s rule shows that

N

Hy =lmH, = — 2 p:logs p; . (6)
a—>1 =1

Thus H; is the ordinary Shannon entropy. The entropy of order « be-

haves in much the same way as H, . For example, H, is a continuous

and symmetric function of py, -+, px. If p; = N 'for each i, H, =

logp N. In addition, if X and Y are two independent sources,

Ho(X, Y) = Ho(X) + Ho(Y).

Properties of this sort can be used to give an axiomatic characteriza-
tion. of H, in a fashion similar to the well known axiomatiec charac-



426 CAMPBELL

terizations of H; . Axiomatic characterizations of H, have been studied
by Rényi (1961, 1962), Aczél and Dardezy (1963a, 1963b), and Dardezy
(1963). The theorem of this paper can be regarded as giving an alterna-
tive characterization of H, in the same way that the noiseless coding
theorem provides an alternative characterization of Hy .

An inequality relating H ., and L({) is provided by the

LEMMA. Let ny , -+, ny satisfy (1). Then

L(t) z Ha, (7)

where @« = 1/(¢ -+ 1).

Proof: If ¢ = 0 and a = 1 the result is given by Feinstein (1958) in
his proof of the noiseless coding theorem:.

Ifi= o and @ = 0 we have L( %) = maxn; and H, = log, N. If
the n, satisly (1) we must have

D—n,; g N-l

for at least one value of 4 and hence for the maximum n,. It follows
easily that maxn; = logp N.
Now let 0 < ¢t < e, By Holder’s inequality,

N 1/p N 1/a N
(Z; xz‘p> (Zl yiq) = ; i Yi (8)

where ' 4+ ¢ = 1 and p < 1. Note that the direction of Hélder’s
inequality is the reverse of the usual one for p < 1 (Beckenbach and
Bellman, 1961, see p. 18). In (8),letp = —t,g =1 — o, z; = pi D™,
and y; = pi'". The equation p~* + ¢~ = 1 implies that « = (¢ + 1)~

With these substitutions (8) becomes
( Z piDtn@')HI/t( Z pia)l,/(lfa) é Z D_ni.

Therefore

a1/ (1—a)
<sz Dtm‘)l/t ; (’Zz?zj))__n;__ ; (leia)l/(l—a), (9)

where the last inequality follows from the assumption that (1) is satis-
fied. If we take logarithms of the first and third members of (9) we have
the statement of the Lemma.

An easy calculation shows that we have equality in (7) and (9) and
(1) 1s satisfied if
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-~

D™ = NN as
=1 Pj
or
AT
n; = —a logp pi -+ logp (z:l :pja) . (10)
jon

Thus, if we ignore the additional constraint that each n; should be an
integer, it is seen that the minimum possible value of L(1) is H,, , where
a = (¢t + 1)\ Moreover, as p; — 0, the optimum value of #; is agymp-
totic to (—logp p:)/(f + 1) so that the optimum length is less than
—logn ps for t > 0 and sufliciently small p, .

We can now proceed to prove a coding theorem for a noiseless channel
with independent input symbels. Let a sequence of input symbols be
generated independently, where each symbol is governed by the proba-
bility distribution (p:, - -, px). Consider a typical input sequence of
length M, say s = (a,, a2, -+ -, ay). The probability of s is

P(s) = PisPiy '~ Diyg (11)

ifag = a4, -, 0 = iy . Let n(s) be the length of the code sequence
for s in some uniquely decipherable code. Then the length of order ¢
for the M-sequences 1s

me=§m@2}me“ 0<t< o), (12)

where the summation extends over the N* sequences s. The entropy of
order a of this product space is

H. (M) = logs 0, (13)

1l —
where
Q = 2 [P(s)]" (14)
It follows directly from (11) that

o= (&)

H(M) = MH, . (15)

and hence that
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Now let n(s) be the integer which satigfies
—alogy P(s) +logp Q@ £ n(s) <1 — alogp P(s) + logp Q. (16)

As we remarked earlier in connection with (10), if every n(s) equals
the left member of (16) then L, (i) = H.(M). If n(s) satisfies (16)
for each sequence s, the numbers n(s) satisfy

ZD—n(s) é 1,

so that there is a uniquely decipherable code with lengths #n(s). It also
follows from (16) that

[P()]Q" = D™ < D'[P()] Q" (17)

If we multiply each member of (17) by P(s), sum over all s, and use
the fact that of = 1 — «, we get

Qi“H §_ ZP(S)DHL(S) < D§Q1+t‘

Now take logarithms, divide by ¢, and use the relations 1 + ¢ = o and
at = 1 — a. From (12) and (13) we have

H.(M) £ Lu(t) < Ho(M) + 1. (18)

Finally, if we divide by M and use (15), we have

Lu(t) 1
H, = W <Ha+M. (19)
The quantity L, (t)/M might be called the average code length of order
{ per input symbol. By choosing M sufficiently large the average length
can be made as close to H, as desired. Thus we have proved most of the

TueoreM. Let a = (1 + {)7". By encoding sufficienily long sequences
of tnput symbols it is possible to make the average code length of order ¢ per
input symbol as close to H, as desired. 11 is nol possible to find a uniquely
decipherable code whose average length of order t is less than H., .

The second half of the theorem follows directly from (7) and (15).
If ¢ = 0 this is just the ordinary coding theorem. If { = o« the above
proof is not quite correct but the theorem is still true. In this case we
choose each n(s) to satisfy

logo N < n(s) < 1+ log, N™.
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Then since Hy = logy, N and L, () = maxn(s), we have

LM( ::) 1
< T 7 +__.
Hg = M < Ho J M.

Thus the theorem follows as before.
Recmrvep: August 12, 1964
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