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Let L(t) = t - 1  log D (~piDt~'~), where p~ is the probability of the ith 
input symbol to a noiseless channel, and nl is the length of the code 
sequence for the ith symbol in some uniquely decipherable code. 
Limiting values of L(t) are ~ nipi for t = 0 and max (hi) for t = oo. 
It is shown that L(i) has some desirable properties as a measure of 
typical code length. A coding theorem for a noiseless channel is 
proved. The theorem states roughly that it is possible to encode so 
that L(t) is close to Ha, where H, is lt6nyi's entropy of order a and 
c~ = (1 + t) -1.  

INTltODUCTION 
In the usual discussion of the coding theorem for a noiseless channel 

(Feinstein, 1958) one chooses code lengths to minimize the average code 
length. The minimization is done subject to the constraint that  the code 
be uniquely decipherable. The solution of this minimization problem is 
that  the best code length for an input symbol of probability p is - l o g  p. 
This solution has the disadvantage that  the code length is very great if 
the probability of the symbol is very small. 

Implicit in the use of average code length as a criterion of performance 
is the assumption that  cost varies linearly with code length. This is not 
always the case. In the present paper another measure of code length is 
introduced which implies that  the cost is an exponential function of code 
length. Linear dependence is a limiting case of this measure. 

A coding theorem analogous to the ordinary coding theorem for a 
noiseless channel will be proved. The theorem states that  it is possible 
to encode so that  the measure of length is arbit.rarily close to the R6nyi 
entropy of the input. The code lengths produced by this theorem are 
less than those produced by the ordinary theorem for improbable input 
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symbols. In  compensation, longer codes are required for the most  prob- 
able symbols° 

The R~nyi entropy was introduced by R6nyi (1961, 1962) as ~ gen- 
eralization of the usual notion of entropy. Since this generalized entropy 
has many  properties in common with the ordinary Shannon entropy and 
includes it  as a special case, it is not surprising tha t  there should be a 
coding theorem associated with R~nyi 's entropy. 

A MEASURE OF LENGTH 
Let  p l ,  p 2 , . - - ,  p~ be the probabilities of N input symbols 

x~, x2, • • • , xN which we wish to encode. We assume tha t  Pi > 0 for 
i = 1, 2, • • • , N and tha t  ~ p~ -- 1. Suppose there is an alphabet of D 
symbols into which the input symbols are to be encoded. Let x, be repre- 
sented by a sequence of n~ characters from the alphabet. I t  can be shown 
(Feinstein, 1958) tha t  there is a uniquely decipherable code with lengths 
n l ,  • • • , nN if and only if 

N 

~-'~ D - ~  < 1. (1) 
i = l  

There are m a n y  different codes whose lengths satisfy the eonstraint 
(1). To compare different codes and pick out an op t imum code it is 
cus tomary to examine the mean length, ~ n~p~, and to minimize this 
quanti ty.  This is a good procedure if the cost of using a sequence of 
length n~ is directly proportional to n~. However, there may  be occa- 
sions when the cost is nmre nearly an exponential funetion of n~. This 
could be the case, for example, if the cost of encoding and decoding 
eqmpment  were an impor tant  factor. Thus,  in some circumstances, it 
might  be more appropriate  to ehoose a code which minimizes the 
quant i ty  

N 
Dtni C =  ~ p ~  

i ~ l  

where t is some parameter  related to the cost. For reasons which will 
become evident later  we prefer to minimize a monotonic function of C. 
Clearly this will also minimize C. 

In  order to make the result of this paper more directly comparable 
with the usual coding theorem we introduce a quant i ty  which resembles 
the mean length. Let  a code length of order t be defined by 

L(t) ~-lOgD k PiN tn~ (0 < t < o0 ). (2) 
i = 1  
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An application of l 'Hospi ta l ' s  rule shows tha t  
N 

L(0)  = l i m L ( t )  = ~ n@i .  

For large t, 

(3) 

defined by  

1 log. ( ~  p . )  (a # 1). (~) 
\ / 

L 'Hospi ta l ' s  rule shows tha t  

H1 = l i m H ~  = - ~ p i l o g .  p i .  (6) 
a ~ l  i = 1  

Thus  H~ is the ordinary Shannon entropy. The entropy of order a be- 
haves  in much the same way as H1.  For example, H~ is a continuous 
and symmetr ic  function of p~, . . .  , p~ .  If p~ = N -1 for each i, H~ = 
logo N. In  addition, if X and Y are two independent sources, 

H ~ ( X ,  Y )  = H ~ ( X )  + H ~ ( Y ) .  

Properties of this sort can be used to give an axiomatic characteriza- 
tion of H~ in a fashion similar to the well known axiomatic charac- 

N 
y]. p ~ n ,  _ p ~ D ' q  
i = 1  

where nj is the largest of the numbers  n l ,  • • - , n ~ .  Thus,  

L ( ~ )  = l i m L ( t )  = max  n i .  (4) 
t o ~  l < _ i < _ N  

Moreover  (Beckenbach and Bellman, 1961, see p. 16), L ( t )  is a mono- 
tonic nondecreasing function of t. Thus L(0)  is the conventional measure 
of mean length and L(  ~ ) is the measure which would be used if the 
max imum length were of prime importance. In termedia te  values of t 
provide a measure of length which lies between these limits. The  larger 
the value of t, the more is the weight which is given to the larger values 
of he. 

Note  also tha t  if all n~ are the same, say n~ = n, then L ( t )  = n. This 
is a reasonable proper ty  for any measure of length to possess. 

A C O D I N G  T H E O R E M  

Before proceeding to the coding theorem we need a definition and a 
lemma. R6nyi (1961, 1962) has introduced the entropy of order a, 
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terizations of H1. Axiomatic characterizations of Ha have been studied 
by R6nyi (1961, 1962), Acz61 and Dardczy (1963a, 1963b), and Dardezy 
(1963). The theorem of this paper  can be regarded as giving an alterna- 
t ive characterization of Ha  in the same way tha t  the noiseless coding 
theorem provides an alternative characterization of H1.  

An inequality relating H ,  and L(I )  is provided by  the 
LEM~L~. L e t  n l  , " .  , n ~  s a t i s f y  ( 1 ) .  T h e n  

L(t)  > (7) 
where  c~ = 1 / ( t  + 1). 

P r o o f :  I f  t = 0 and a = 1 the result is given by Feinstein (1958) in 
his proof of the noiseless coding theorem. 

I f t  = ~ a n d a  = 0 w e h a v e L ( ~ )  = m a x n i a n d H 0  = l o g . N .  I f  
the n~ satisfy (1) we must  have 

D - ~  _< N -1 

for at  least one value of i and hence for the max imum n~. I t  follows 
easily tha t  max n~ > logv N. 

Now let 0 < t < ~ .  By H61der's inequality, 

=< (8) 
i = 1  i = 1  

where p-~ -t- q-~ = 1 and p < 1. Note  that  the direction of HSlder 's  
inequality is the reverse of the usual one for p < 1 (Beckenbach and 

- - l l  t r ~ - - n i  Bellman, 1961, see p. 19). In  (8), let p = - t ,  q = 1 - a, xi = p i  ~ , 
1/~ -~ (t + I)  -~. andy~ = p~ . T h e e q u a t i o n p - ~  + q = l i m p l i e s t h a t a  = 

With these substitutions (8) becomes 

(E'Pi'- Dtni~-l/t/X-') kZ... Pi°~) 1/0 '~) = < E D-hi"  

Therefore 

-~ E D - ~ i  --  

where the last inequality follows from the assumption tha t  (1) is satis- 
fied. If  we take logarithms of the first and third inembers of (9) we have 
the s ta tement  of the Lemma.  

An easy calculation shows tha t  we have equality in (7) and (9) and 
(1) is satisfied if 
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o r  

p i a 

D - "  = --~1-.,x-'~=1 Pi ~ ' 

h i =  - - a l o g D p i +  1ogD { L  p T ] .  (10) 
\ ] f = l  

Thus, if we ignore the additional constraint tha t  each n~ should be an 
integer, it is seen that  the minimum possible value of L( t )  is H e ,  where 
a = (t + 1) -1. Moreover, as p~ ---> 0, the optimum value of ni is asylnp- 
totie to ( - l o g ,  p~) / ( t  + 1) so that  the optimum length is less than 
- l o g o  pi for t > 0 and sufficiently small p~. 

We can now proceed t~ prove a coding theorem for a noiseless channel 
with independent input symbols. Let a sequence of input symbols be 
generated independently, where each symbol is governed by the proba- 
bility distribution @1, " '"  , pN). Consider a typical input sequence of 
length M, say s = (a l ,  a2, • - • , a~) .  The probability of s is 

P ( s )  = PhP~2 " ' 'P~M (11) 

if a l  = X l l  , • • " , a M  = X i M ,  Let n(s )  be the length of the code sequence, 
for s in some uniquely decipherable code. Then the length of order t 
for the M-sequences is 

1 P s D t ~ )  L (t) =i-log.  ( )  ( 0 < t <  (12) 

where the summation extends over the N 'u sequences s. The entropy of 
order a of this product  space is 

1 
- l o g .  Q, (13}  H e ( M )  1 -- a 

where 
Q = 

I t  follows directly from (11) that  

and hence that  

(14) 

H . ( M )  = M H ~ .  (15) 
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Now let n(s) be the integer which satisfies 

- - a l o g D P ( s )  + logDQ < n(s) < 1 - a l o g ~ P ( s )  + log~Q. (16) 

As we remarked earlier in connection with (10), if every n(s) equals 
the left member of (16) then L~( t )  = H~(M) .  If  n(s) satisfies (16) 
for each sequence s, the numbers n(s) satisfy 

D -"(") _-< 1, 

so that  there is a uniquely decipherable code with lengths n(s) .  I t  also 
:follows from ( i6)  that  

[P(s)]-~*q ~ <=- D ~(~ < Dt[P(s)]-~Q ~. (17) 

If we multiply each member of (17) by P(s ) ,  sum over all s, and use 
the fact that  at = 1 - a, we get 

Ql+t _~ ~_, p(s)Dt.(~) < D~QI+t. 

Now take logarithms, divide by t, and use the relations 1 -t- t = a -~ and 
at = 1 - a. From (12) and (13) we have 

H~(M) <= L~( t )  < H~(M) + 1. (18) 

Finally, if we divide by  M and use (15), we have 

H~ <= L , (  t) 1 --M- < H~ + ~ .  (10) 

The quant i ty  L ~ ( t ) / M  might be called the average code length of order 
t per input symbol. By choosing M sufticiently large the average length 
can be made as close to H ,  as desired. Thus we have proved most of the 

TttEOREM. Let a -= (1 + t) -~. By encoding su~ciently long sequences 
of input symbols it is possible to make the average code length of order t per 
input symbol as close to H~ as desired. I t  is not possible to find a uniquely 
decipherable code whose average length of order t is less than H , .  

The second half of the theorem follows directly from (7) and (15). 
If t = 0 this is just the ordinary coding theorem. If t -- ~ the above 
proof is not quite correct but  the theorem is still true. In this case we 
choose e~ch n(s) to satisfy 

logD N ~ <= n(s) < 1 -Jr logD N M. 
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Then since Ho = logD X and L~(  ~ ) = max n(s ) ,  we have 

H0 < LM(~) < Ho + 1 = - N - -  ~ 

Thus  the theorem follows as before. 

RECEIVED: August 12, 1964 
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