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Abstract

Recent research in quantitative theories for information-hiding topics, such as Anonymity and Secure In-
formation Flow, tend to converge towards the idea of modeling the system as a noisy channel in the
information-theoretic sense. The notion of information leakage, or vulnerability of the system, has been
related in some approaches to the concept of mutual information of the channel. A recent work of Smith has
shown, however, that if the attack consists in one single try, then the mutual information and other concepts
based on Shannon entropy are not suitable, and he has proposed to use Rényi’s min-entropy instead. In
this paper, we consider and compare two different possibilities of defining the leakage, based on the Bayes
risk, a concept related to Rényi min-entropy.

Keywords: Information-hiding, hypothesis testing, probability of error, Rényi min-entropy.

1 Introduction

Information-hiding refers to a large class of problems including Secure Information
Flow and Anonymity. There has been a growing interest in developing quantitative
theories for this class of problems, because it has been recognized that non quanti-
tative (i.e. possibilistic) approaches are in general too coarse, in the sense that they
tend to consider as equivalent systems that have very different degrees of protection.

Concepts from Information Theory have revealed quite convenient in this do-
main. In particular, the notion of noisy channel has been used to model protocols
for information-hiding, and the flow of information in programs. The idea is that
the input of the channel represents the information to be kept secret, and the output
represents the observable. The noise of the channel is generated by the efforts of
the protocol to hide the link between the secrets and the observable, often achieved
by using randomized mechanisms.

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2009.07.085


http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

76 C. Braun et al. / Electronic Notes in Theoretical Computer Science 249 (2009) 75-91

Correspondingly, there have been various attempts to define the degree of leak-
age by using concepts based on Shannon entropy, notably the mutual information
[14,4,7,8] and the related notion of capacity [10,9,2].

In a recent work, however, Smith has shown that the concept of mutual infor-
mation is not very suitable for modeling the information leakage in the situation in
which the adversary attempts to guess the value of the secret in one single try [12].
He shows an example of two programs in which the mutual information is about
the same, but the probability of making the right guess, after having observed the
output, is much higher in one program than in the other. In a subsequent paper
[13], Smith proposes to use a notion based on Rényi min-entropy.

We look at the problem from the point of view of the probability of error: the
probability that an adversary makes the wrong guess. We propose to formalize
the notion of leakage as the “difference” between the probability of error a priori
(before observing the output) and a posteriori (using the output to infer the input
via the so-called MAP rule). We argue that there are at least two natural ways
of defining this difference: one, that we call multiplicative, corresponds to Smith’s
proposal. The other, which we call additive, is new. In both cases, we show that it
is relatively easy to find the suprema, which is nice in that it allows us to consider
the worst case of leakage. The worst case is also interesting because it abstracts
from the input distribution, which is usually unknown, or (in the case of anonymity)
may depend on the set of users.

2 Preliminaries

2.1 Noisy channels and Hypothesis Testing

In this section we briefly review some basic notions about noisy channels and hy-
pothesis testing that will be used throughout the paper. We refer to [5] for more
details.

A channel is a tuple (X, Y, p(+]-)) where X, Y are random variables representing,

respectively, the input with possible values X = {z1,z2,...,2,} (the secrets or
hypotheses) and the output with possible values Y = {y1,vy2,...,ym} (the observ-
ables). The distribution on X, ¥ = (71,...,m,) is called a priori input distribution.

We will also use the notation p(x;) and p(y;) to indicate the probabilities of the in-
put x; (i.e. p(z;) = m;) and the output y;, respectively. We will denote by p(y;|z;)
the conditional probability of observing the output y; when the input is z;. These
conditional probabilities constitute what is called the channel matriz, where p(y;|x;)
is the element at the intersection of the i-th row and j-th column.

The a posteriori probability p(x;|y;) is the probability that the input is z;, given
that we observe the output y;. The a priori and the a posteriori probabilities of x;
are related by Bayes theorem:

p(yjlwi) p(w;)



C. Braun et al. / Electronic Notes in Theoretical Computer Science 249 (2009) 75-91 77

In hypothesis testing we try to infer the true hypothesis (i.e. the value that
was really given in input) from the observed output value. In general, it is not
possible to determine the right hypothesis with certainty. We are interested, then,
in minimizing the probability of error, i.e. the probability of making the wrong guess.

We assume that the process of guessing the hypothesis is represented by a de-
cision function f:Y — X, i.e. the function which gives, for every output y;, the
guessed input x;.

The (average) probability of error associated to f is given by the sum of the
probabilities of guessing a wrong hypothesis for each given output, averaged by the
probabilities of the outputs. Since the probability of making the wrong guess, when
the output is y;, is given by 1 — p(f(y;)|y;), the average probability of error is:

PEp =3 p(y;)(1 = p(f(y;)y)))
1= p(y;)p(f (y5)ly;)

It is easy to see that a decision function fp minimizes the probability of error
if and only if it satisfies the MAP (Mazimum A Posteriori probability) criterion,
namely, for each output y; it chooses an input x; for which p(z;|y;) is maximum.
Formally:

fBly;) =z = Vk p(zily;) > p(zly;)

It is easy to see that the probability of error associated to fp is then given by

PEp = 1— Y, p(y;) max; p(xi|y;)

By using Bayes theorem, we can rewrite PEg as:

PEp = 1—%; max;(p(y;|zi) m)

PEpg is also called the Bayes risk. Note that it is a function of 7, so we will also
write PEg(7) when we need to emphasize its dependency on 7.

2.2  Rényi entropies, Shannon entropy, and mutual information

Rényi entropies [11] are a family of functions representing the uncertainty associated
to a random variable. The Rényi entropy of order o, with @ > 0 and « # 1, is defined
as

Ha(X) = - i ~log (Zp(wi)“)

In the case of a uniform distribution all the Rényi entropies of are equal to logn.
Otherwise the entropies are weakly decreasing as a function of a. The following are
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some particular cases:

a=0 Hy(X) =log|X| =logn Hartley entropy
H,

)
a—1 (X)=—>;p(x;)logp(xz;) Shannon entropy
o — 00 Hyo(X) = —logmax; p(z;) min-entropy
Shannon conditional entropy of X given Y represents the average residual en-
tropy of X once the value of Y is known, and it is defined as

Hy(X|Y) == py)Hi(X]Y =y) = Zp(mz—,yj) log p(wily;) = Hi(X,Y)—Hi(Y)

where Hy(X,Y) represents the entropy of the conjunction of X and Y.
The mutual information of X and Y represents the correlation of information
between X and Y. It is defined as

I(X;Y) = Hi(X) - Hi(X]Y) = Hi(X) + Hi(Y) — Hi(X,Y)

It is possible to show that I(X;Y) > 0, with I(X;Y) = 0 iff X and Y are indepen-
dent.

2.8 Convexity and corner points

We recall here some basic notions of convexity. Let R be the set of real numbers.

The elements A1, Ag, ..., A\x € R constitute a set of convex coefficients if, for every
ie{l,...,k}, \; > 0and ), \p, = 1. Given a vector space V', a convex combination
of U1, 0s,...,0; € V is any vector of the form ), \; U; where A1, Ag,..., A\ € R are

a set of convex coefficients.

Definition 2.1 (Convex set) A subset S of a vector space is convex if every
convex combination of vectors in S is in S.

In the following we will denote by D(™ the domain of probability distributions
of dimension n. It is easy to see that, for every n, D™ is convex.
We give now the definition of convex function.

Definition 2.2 (Convex function) Given a convex subset S of a vector space V,
and a function f :.S — R, we say that f is convex if for any ¢}, s, ..., 0, € S and
any set of convex coefficients A1, Ag,..., Ay € R, we have f(3°, \iv;) < >, Mif (¥h).
A function f is concave if its opposite —f is convex.

We now introduce (with a slight abuse of terminology) the concept of convex
base.

Given a subset S of V, the convex hull of S, which we will denote by ch(S), is
the smallest convex set containing S. Since the intersection of convex sets is convex,
it is clear that ch(S) always exists.
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Definition 2.3 Given two vector sets S and U, we say that U is a convex base for

Sif UCSandSC ch(U).

In the following, for a given vector ¥ = (v1,v3,...,v,), we will use the notation
(¥, f(¥)) to denote the vector (with one additional dimension) (vy,va, ..., vy, f(7)).
Similarly, given a vector set S in a n-dimensional space, we will use the notation
(S, f(S)) to represent the set of vectors {(7, f(¥)) | ¥ € S} in a (n + 1)-dimensional
space. The notation f(S) represents the image of S under f, i.e. f(S5) = {f(?) |
v e S}

Definition 2.4 Given a vector set S, a convex base U of S, and a function f :
S — R, we say that U is a set of corner points of f if (U, f(U)) is a convex base for
(S, £(S)). We also say that f is convexly generated by f(U).

In other words, if U is a set of corner points of f, then for every ¢ € D™ there
are elements iy, U, ..., U, in U and Ai, A, ..., \; in R such that ¢ = ), \ji; and

(@) =22 Mif (@)

3 Mutual Information and Capacity

In [12] Smith proved that the notion of mutual information (based on Shannon
entropy) is not suitable to express the information leakage when the adversary tries
to guess the value of the input in one single try. In fact, he showed an example of
systems with the same mutual information, the same a priori uncertainty, and for
which the probabilities of guessing the right input a posteriori (i.e. after observing
the output) are very different.

The systems in Smith’s example are deterministic, i.e. have the property that
the input determines univocally the output. For such systems, it turns out that
the discrepancy observed for the mutual information does not arise in the case of
the capacity. Surprisingly, indeed, Smith showed in [13] that, under a uniform
input distribution, the capacity is equal to the logarithm of the ratio between the a
posteriori and the a priori probability of making a right guess, which coincides with
his proposal for the notion of leakage. We will come back on this point in the next
section.

Unfortunately, this coincidence does not carry out to the more general case of
probabilistic channels, and, worse yet, the notion of capacity suffers (in the general
case) from the same problem as the mutual information. The following example
illustrates the situation.

Example 3.1 Consider the following channels:

It is easy to see that the Shannon capacity of C'is 1/3, while the one of D is 2/3.
However, under the uniform input distribution, the ratio between the a posteriori
and the a priori probability of making the right guess is the same (2).
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1 Y2 Y3

x| 2/3]1/6 | 1/6
x| 1/6 | 2/3 | 1/6
z3 || 1/6 | 1/6 | 2/3

Fig. 1. Channel matrix C

Y1 Y2 Y3
z1 | 2/311/3] 0
x| 0 |2/3]1/3
z3 || 1/3] 0 |2/3

Fig. 2. Channel matrix D
4 'Towards a more suitable notion of leakage

In the following, we are interested in quantifying the leakage of a security protocol,
i.e. the amount of information about the input that an adversary can learn by
running the protocol and observing the resulting output.

4.1 Probabilities of a right guess

Before running the protocol, the probability that a given input x; occurs depends
only on the a priori distribution 7', and a rational adversary will therefore assume
that the most probable input, called the a priori probability of a right guess PR;(7),
will be the input having the maximum a priori probability, i.e.:

Definition 4.1 The a priori probability of a right guess is defined as

PR;(7) = max; 7;

After running the protocol and seeing the output, the adversary may revise his
guess. An adversary applying the MAP rule, when observing output y;, will choose
as most probable input z; the one for which the a posteriori probability p(z;|y;) is
the highest. The average of this value on all possible outputs gives the a posteriori
probability of a right guess PR, (), which is the complement of the Bayes risk.

Definition 4.2 The a posteriori probability of a right guess is defined as

PR, () = Y maxi(p(yj|i)m)

In the rest of this paper, we will consider only adversaries applying the MAP
rule since this is the rule that gives the best result (from the point of view of the
adversary).
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4.2  Leakage and uncertainty

Intuitively, the leakage is the amount of information learnt by the adversary by
observing the output of the protocol. Following [13], it seems natural to define it as
the difference between the uncertainty about the input before observing the output,
and the remaining uncertainty afterwards:

Information Leaked = Initial Uncertainty — Remaining Uncertainty (1)

Now, the question is how to measure information, and (correspondingly) what
do we actually mean by uncertainty. We consider here two possibilities. The first
leads to a multiplicative notion of leakage, and it follows the proposal of Smith [13].
The second leads to an additive notion, and it is new.

4.8  Multiplicative leakage

In relation to Equation (1), Smith [13] measures the information in bits, and pro-
poses to define the initial uncertainty as the min-entropy of X, Hoo(X), the instance
of Rényi entropy [11] obtained for a« = co. As for the remaining uncertainty, it would
be natural to use the conditional min-entropy of X given Y. Unfortunately there
is no agreement on what Rényi’s generalization of Shannon’s conditional entropy
should be, even though there seem to be a consensus towards }, p(y)Ha(X|Y = y)
[1]. Smith however proposes to use the definition of Hy(X]Y) equivalent to the
one given in [6], which is

Hoo(X|Y) = — log PR,(7)

In this way, Smith obtains a definition of leakage similar to the definition of

mutual information, except that Shannon entropy is replaced by Hqo:
LXY) = Hoo(X) — Hao(X]Y) = log ielT)
’ PR;(7)

We consider a similar definition for leakage, namely the ratio between PR, (7)
and PR;(7), which coincides with Smith’s notion apart from the absence of the log-
arithm. Furthermore, in general we want to abstract from the a priori distribution,
and consider the worst case, hence we are particularly interested in the supremum
of such ratio.

Definition 4.3 We define the multiplicative leakage as
PR, (7
E)( (7?) — 70( )
We will also use the notation MLy to represent the supremum of this quantity:

MLy = mgx(ﬁx(fr’))

Note that PR;(7) > 0 for every 7, hence L4 (7) is always defined.
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4.4 Additive leakage

Another possible interpretation for Equation (1) is to consider the uncertainty as the
probability of guessing the wrong input. The leakage then expresses how much the
knowledge of the observable helps decreasing such probability. This leads to define
the leakage as the difference between the probabilities of error before and after
observing the output. As usual, we are particularly interested in the supremum of
this difference.

Definition 4.4 We define the additive leakage as
Li(7) = PR,(T) — PR(7)
We will also use the notation ML, to represent the supremum of this quantity:

ML = max(L. (7))

5 Properties of the mutiplicative leakage

In this section we consider the multiplicative leakage and we study its supremum. It
turns out that the supremum is very easy to compute. In fact, it coincides with the
value of the leakage in the point of uniform distribution, and it is equal to the sum
of the maxima of the columns. This property was also discovered independently by
Geoffrey Smith and Ziyuan Meng (personal communication).

Proposition 5.1
MLy = Ly(my) = Zmzaxp(yﬂxi)
J
where T, is the uniform distribution.

Proof

Ly(myy.eym) = ma;i — >, max; (p(y;le:)mi)

< e 2 max; p(yjle) (max; ;)
= 2 max; p(y;vi)

= 137 max;(p(y;|zi) )

=Ly (%,..., 1

n’ 75)

6 Properties of the additive leakage

We turn now our attention to the additive leakage. We will see that the supremum
is not always in the point of uniform distribution. However, we prove that it is in
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one of the corner points of PR;. Since PR; has a finite set of corner points, and
their form is known, also the additive leakage is relatively easy to compute.

First we prove a general property concerning the relation between suprema,
convexity, and corner points:

Proposition 6.1 Consider two functions f,g : D' — R where f has a set of
corner points U, and g is convex. Define h : D™ — R as h(?) = f(¥) + g(¥).
Let & € D™ be a point in which h has a mazimum, i.e. for every ¢ € DM,
h(¥) < h(w). Then there exists i € U such that h(W) = h(@). Namely, the
maximum value of h is in a corner point of f.

Proof
By contradiction. Suppose that for every @ € U, h(@) < h(w). Since @ € D™,
there are elements ¢, s, ..., 7 in U and ¢, ¢a,..., ¢ in R such that @ = ), ¢;0;

and f(&) =), ¢;if(¥;). Then

h(W) = h(}",; ¢;;
= f(O2; ati) +9(32; citi)
=Y icf(U) + g3 citi)
< > cif () + >, cig(v;) since g is convex
= 22 cih(
< X cih(w
= h(w) since > ¢; =1

sl

since v; € U

vi)
Ui)
)
)
)
o)

An example of Proposition 6.1 is illustrated in Figure 3.
We now show that —PR; and PR, satisfy the hypotheses of Proposition 6.1.
The necessary property for —PR; comes from a result in [3].

Proposition 6.2 ([3], Proposition 3.9) The function PR; on D™ is convexly
generated by (U, f(U)) with U = U; WUz U...UU, where, for each r, U, is the set
of all vectors that have value 1/r in exactly r components, and 0 everywhere else.

Remark 6.3 The function — PR, has the same corner points as PR;.
We now prove that PR, satisfy the necessary property.

Proposition 6.4 PR, is convex.

Proof
Let Z be the convex combination ) A; Z; where the dimension of 2, 21, ..., 2, cor-
responds to the number of input variables and 7, ..., 2, is a set of corner points.

The j* component 2k; of any corner point z; corresponds to the input variable Tk;
chosen according to the MAP rule when the output variable y; is obtained.
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0 max 1
f+g

Fig. 3. An illustration of Proposition 6.1

PRo(3_; Xi %) = Zj maxy {p(y;lve) (D2, i i)k}
= 22 p(Wlwr; ) (2 Ai i),
= 22 p(jlzn; ) D2 Ai i)
= 225 2 \ip (2w ) zik;
= 22 Ni 2 Pyl ) Zik,
< DAy maxg p(yj|Tn) zik
= > i MiPR, (%)

Corollary 6.5 ML, is reached on one of the corner points of PR;.

Proof

Since Ly = PR, — PR; and PR, is convex, Proposition 6.1 shows that if ML,
exists, it must be reached on a corner point of —PR;, which correspond to the
corner points of PR;. O

Remark 6.6 In general ML, is not reached on the point of uniform distribution.

Example 6.7 Consider the channel whose matrix is given in Figure 4.
The calculation of £, on the distributions corresponding to the corner points
gives:
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Y1 Y2 Y3

z1 || 1 0 0

zo || O 1—e e

xz3 || 0 | 1—2e | 2e

Fig. 4. Channel matrix (e € [0,1/2])

Corner points PR, |PR;| L4
(1,0,0), (0,1,0), (0,0,1) 1 1 0
(1/2,1/2,0),(1/2,0,1/2) 1 1/2 1/2
(0,1/2,1/2) (e+1)/2|1/2| e/2
(1/3,1/3,1/3) (e+2)/3| 1/3 | (e+1)/3

We have for every e € [0,1/2],
0= £+(1707 0) < £+(O71/27 1/2) < £+(1/371/371/3> < £+(1/271/270) = 1/2

and £4(1/3,1/3,1/3) = £4(1/2,1/2,0) = 1/2 for e = 1/2. Therefore if e <
1/2, ML4 = 1/2, reached on distributions that are different from the uniform
distribution (1/3,1/3,1/3).

Moreover, this remark holds also for symmetric matrices:

Remark 6.8 Even in case of symmetric matrices, in general ML, is not reached
on the point of uniform distribution.

Example 6.9 Consider the channel whose matrix is given in Figure 5.

Y1 Y2 Y3 -+ | Y10 Y11
1 0 1/10 | 1/10 | ... | 1/10 | 1/10
x2 || 1/10 ] O 1/10 | ... | 1/10 | 1/10
xi || 1/10 | 1/10 | 1/10 | ... | 0 |1/10
xyp || 1/10 | 1/10 | 1/10 | ... | 1/10 | ©
Fig. 5.

Let # = (1/r,1/r,...,1/r,0,...,0) be the a priori distribution with an equal
probability of 1/r for the r first inputs. This distribution is a corner point of the
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matrix, and since the matrix is symmetric, any other corner point corresponding to
a distribution containing r non-null probabilities of 1/r will give the same results
for PR;, PR, and L.

PRy(7) = 1/r

PR,(

2

= Zl,...,ll(l/r)(l/lo)
= 11/(10r)

L () = PR,(7) — PRi(T)
= 1/(107)

Therefore ML is reached when r has the smallest value, i.e. when r = 2. This
corresponds to the distribution (1/2,1/2,0,...,0) and gives MLy = 1/20, while
£.(1/11,...,1/11) = 1/110.

7 Comparison

In this section, we compare the two notions of leakage. We first compare them
with respect to a specific distribution, and then we consider the comparison of their
worst cases.

If we consider a specific distribution, it comes out that the two notions are
equivalent, in the sense that a program is better with respect to the additive notion
if and only if it is better with respect to the multiplicative notion.

Proposition 7.1 Consider two programs P and P', and let Ly and L.’ be the
additive measures of leakage for P and P', respectively. Analogously, let L« and
Ly be the multiplicative measures of leakage for P and P’', respectively. We have
that, for every @

Proof
Let PR, and PR,’ be the a posteriori probability of a right guess for P and P/,
respectively. Analogously, let PR; and PR;’ be the a priori probability of a right
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guess for P and P’, respectively. Observe that PR;(7) = max; m; = PR;(7). Hence

PR,(7) — PRi(7) < PR,(7)— PR{(7)

PR,(7) — PRy(7) PR, (7) — PR/ (%)

max 7; < max m;
PRy(#) — PR(7) _ PR,(7)— PR/(7)
PR;(7) - PR (T)
PRo(T) | _ PR, (®) 1

PR;(7) ~ PR/(7)

Li(7) < L (®)

O

Another criterion of comparison is the worst case. We consider the two notions

on some examples.

Example 7.2 Let us consider a 2¥ x 2F channel with the 2% first natural numbers

as inputs and outputs, i.e. X =Y = {0,...,2F¥ — 1}. Consider a random input
variable X with values ranging in {0,2% — 1}.

Consider the following program:

PrROGRAM P(X)

1 > Input X

2 if X=0o0orX=1
3 then Output X

4 else Output one of the values {2,...,2F — 1} chosen randomly
according to the uniform distribution

This program corresponds to a channel whose matrix is given in Figure 6.

0| 1] 2 2k 1

of 1071 0/... 0
11010 ]... 0

2 0 0 D P
2611 010 | p|... P

Fig. 6. Channel matrix (p = 1/(2* — 2) = 1/2F~1)
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Let us consider first ML,. Because of Corollary 6.5, we know that ML, is
reached on a corner point, i.e. a distribution of the form (g, ..., gy ) where each g;
is either 0 or 1/r, and there are r elements with value 1/r in the distribution.

For every corner point © we have PR;(7) = 1/r, thus maximizing £ for a given
r is equivalent to maximizing PR,. From the channel matrix, one can see that
the maximum value of PR, is reached on an input distribution where the two first
elements are as high as possible.

Therefore, we can restrict our study to distributions of the form
(1/r,...,1/r,0...,0), i.e. distributions where the elements with value 1/r are the
r first elements.

For r = 1, we have:

Thus:

For r = 2, we have:
PR;(1/2,1/2,0...,0) = 1/2

PR,(1/2,1/2,0,...,0) =1
Thus:

£:(1/2,1/2,0...,0) = 1/2

L£,(1/2,1/2,0,...,0) = 2

For r» > 3, we have:
PR;(1/r,1/r,1/7,0,...,0) = 1/r

PR,(1/r,1/r,1/r,0,...,0) = 1/r 4+ 1/r+ (28 = 2) % (1/r) xp
=3/r
Thus:
Ly(1/r,1/r,1/r,0,...,0) =3

Ly(1/r,1/r,1/r,0,...,0) = 2/r
We observe that for » > 3, the value of £, decreases when r increases. Since
£,(1/3,1/3,1/3,0,...,0) = 2/3 > £,(1/2,1/2,0,...,0) = 1/2 > £(1,0,...,0) =
0, we have MLy = 2/3 reached for r = 3.
In particular, ML, > £, (1/2% ... 1/2%) =1/2k! for all k > 1.
Concerning Ly, we have that, for r > 3, L.(1/r,1/r,1/r,0,...,0) = 3 >
L£,(1/2,1/2,0,...,0) = 2 > L,(1,0,...,0) = 1, thus MLy = 3, reached on any
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distribution (1/r,1/r,1/r,0,...,0) with » > 3, and in particular on the uniform
distribution, which confirms Proposition 5.1.

Example 7.3 Let us consider the following program:

PrOGRAM P/(X)

1 > Input X

2 with probability 3/2% Output X

3 with probability 1 — 3/2% Output a value in {0,2¥ — 1}\{X} chosen randomly
according to the uniform distribution

This program corresponds to a channel whose matrix is given in Figure 7.

0 | 1|2 |.../2¢=-1
O pr | p2]| p2|--- D2
1| p2 | p1|p2|... D2
2 p2 | p2| D1 |- D2
2k —11 p2 | p2 | D2 |- D1

Fig. 7. Channel matrix (p1 = 3/2* and p2 = (1 — (3/2%))/(2% — 1))

The symmetry of the matrix implies that we can restrict the study to the a
priori distribution 7@ = (1/r,1/r,...,1/r,0,...,0), where the r elements with value
1/r are the first elements in the distribution.

In this case, for r > 1:

PRZ' (7'_[") = 1/7‘

PRo(7) = r(p1/r) + (25 = r)(p2/7)
= p1+[(2°/r) — 1p2
Finally:
Lo(T) =p1—p2— ;5i
Thus £, increases when r increases, and ML, = 1/2"~1 is reached for r = 2* (on
the uniform distribution).

Ly (7) = rp1 + (28 —7)ps

= 7(p1 — p2) + 2°p2
Since p1 > po, Ly increases when r increases, and thus ML, = 3 is obtained
for 7 = 2¥ (on the uniform distribution, which confirms Proposition 5.1).
The programs P and P’ have therefore the same worst-case multiplicative mea-
sures of leakage MLy = 3, but the worst case of the additive measure of leakage
ML, is equal to 2/3 for P and equal to 1/2%~1 for P’.
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8 Conclusion

We have considered two notions of leakage related to the Bayes risk. One of them,
which we call multiplicative, corresponds to the notion recently proposed by Smith
based on Renyi min-entropy. The other, which we call additive, is new. We have
shown that the two notions are equivalent in all distributions. If we consider the
distributions that give the worst case for the leakage, however, then the two notions
are different. In particular, the multiplicative one has the worst case always in
correspondence of the uniform distribution, while this is not the case for the additive
one. So we can consider the new notion as a criterion, in addition to the one of
Smith, to help assessing the degree of protection offered by a protocol or a program.
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