Modern Digital Communications: A Hands-On Approach

GPS: Ephemerides and Pseudoranges

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Nov. 2, 2021

Goal

This week's goals are:

- 1. Go from bits to pages
- 2. Extract the ephemeris from the pages
- 3. Measure the pseudoranges

The Data Structure

C/A code made of 1023 chips: 1ms total

1	2	3	4	5	6	• • •	1018	1019	1020	1021	1022	1023
---	---	---	---	---	---	-------	------	------	------	------	------	------

Bit made of 20 C/A codes: 20ms total

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10^{-1}		6	5	4	3	2	1	
---	-----------	--	---	---	---	---	---	---	--

Word made of 30 bits: 600ms total

		.		,	· · · · · ·							
1	2	3	4	5	6	• • •	25	26	27	28	29	30

Subframe made of 10 words: 6s total

1	2	3	4	5	6	7	8	9	10			

Page made of 5 subframes: 30s total

1	2	3	4	5									

Step-By-Step Towards A Page

Your assignment consists in writing or completing the following functions.

```
function [s, ind] = my_removeExcessBits(bits)
%REMOVEEXCESSBITS Extracts the complete subframes in the bit sequence
%obtained from a satellite
    [S, IDX] = REMOVEEXCESSBITS(BITS) detects the start of the first
    subframe in the row vector BITS (values in {-1,+1}) by correlating
    with the GPS preamble (stored in gpsc.preamble as a sequence of
    1s and 0s). If the negative of the preamble is found all bits
    are inverted. IDX is the index into BITS where the first subframe
    starts; incomplete subframes at the beginning and at the end of
    BITS are removed and the sequence of bits is converted into a
    sequence of \{0,1\} values (\{1,-1\} \leftarrow \{0,1\}) and returned into
    vector S.
% Hints:
```

- % The preamble is stored in gpsc.preamble as a sequence of 0s and 1s.
- % It is not enough to just find one preamble: the preamble is 8 bits
- % long and it is not unlikely that this 8-bit sequence is also
- % present somewhere in the middle of the data sequence. You should
- % use the fact that there is one preamble in every subframe (every
- % 300 bits).
- % The result of the correlation operation are real numbers and it can
- % have multiple maxima. If you want to compare two values returned by
- % the correlation, you should first round them.

function s = my_establishParity(ws)

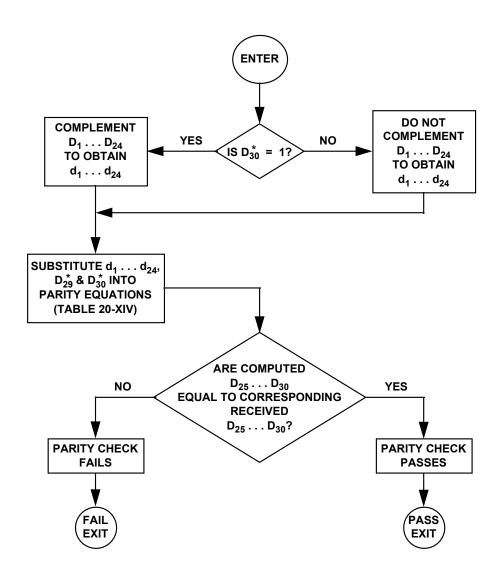
%ESTABLISHPARITY Checks the parity of the GPS words

- % S = ESTABLISHPARITY(WS) checks the parity of each word in the
- % sequence of subframes WS and returns a possibly modified copy S of
- % WS. The modification consists in flipping the first 24 bits of words
- % for which the last bit of the previous word is 1.
- % The last two bits of each subframe are 0 by convention. If the parity
- % check fails, a warning is issued; otherwise a message indicating
- % success is displayed. Both the input WS and the output S are

% binary (0 and 1) row vectors containing full subframes.

There are two things you need to know about parity.

The first thing to know is that the first 24 bits that form a word may have been flipped (in purpose) by an encoder. The encoder may do so to make the signal as DC-free as possible. They have been flipped if and only if the last bit of the preceding word is a 1. If it is the case, we have to flip them back.


The other relevant information is that bits 25 through 30 are parity bits.

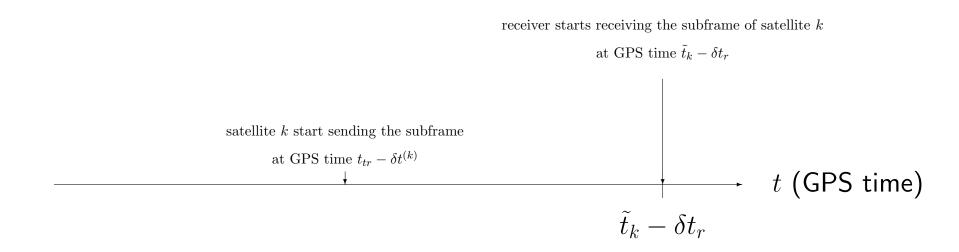
The following table shows how the 30 binary symbols transmitted in a word are obtained from 25 information bits.

```
Table 20-XIV. Parity Encoding Equations
                                                  d_1 \oplus D_{30}^{\star}
                                                  d_2 \oplus D_{30}^{\star}
                                                  d_3 \oplus D_{30}^{\star}
                                                  d_{24} \oplus D_{30}^{\star}
                                                  D_{29}^{\star} \oplus d_1 \oplus d_2 \oplus d_3 \oplus d_5 \oplus d_6 \oplus d_{10} \oplus d_{11} \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{17} \oplus d_{18} \oplus d_{20} \oplus d_{23}
                                                  D_{30}^{\star} \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 \oplus d_{11} \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{18} \oplus d_{19} \oplus d_{21} \oplus d_{24}
                                                 D_{29}^{\star} \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_5 \oplus d_7 \oplus d_8 \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{19} \oplus d_{20} \oplus d_{22}
                                                 D_{30}^{\star} \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_6 \oplus d_8 \oplus d_9 \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{17} \oplus d_{20} \oplus d_{21} \oplus d_{23}
                                                 D_{30}^{\star} \oplus d_1 \oplus d_3 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_9 \oplus d_{10} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{17} \oplus d_{18} \oplus d_{21} \oplus d_{22} \oplus d_{24}
                                                  D_{29}^{\star} \oplus d_3 \oplus d_5 \oplus d_6 \oplus d_8 \oplus d_9 \oplus d_{10} \oplus d_{11} \oplus d_{13} \oplus d_{15} \oplus d_{19} \oplus d_{22} \oplus d_{23} \oplus d_{24}
D_{30}
Where
                                  d_1, d_2, ..., d_{24} are the source data bits;
                                  the symbol ★ is used to identify the last 2 bits of the previous word of the subframe;
                                  D_{25}, D_{26}, ..., D_{30} are the computed parity bits;
                                  D_1, D_2, ..., D_{29}, D_{30} are the bits transmitted by the SV;
                                  \oplus is the "modulo-2" or "exclusive-or" operation.
```

Table 20-XIV mentioned next slide. (Courtesy of Tsui)

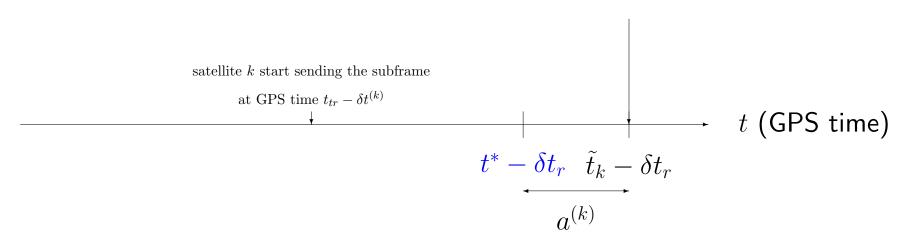
Here is a flowchart of what establish_parity does for each word.

(Courtesy of Tsui)


The next function creates a matrix that has, in its columns, the subframes. To do this you need to know that the subframe number is encoded in bit 50 (MSB), 51, and 52 (LSB).

```
function [subframes, subframesIDs] = my_bits2subframes(bits)
%BITS2SUBFRAMES Returns a matrix containing the subframes
    in the desired order
    [SUBFRAMES, SUBFRAMESIDS] = BITS2SUBFRAMES(BITS) returns the matrix
   SUBFRAMES having as its columns the subframes extracted from BITS.
   The IDs of the subframes are returned in SUBFRAMESIDS. BITS must
   be a row vector containing a concatenation of subframes (0 and 1
    elements) that have already been checked for parity. Provided that
   BITS is sufficiently long, SUBFRAMES contains the subframes with
    id 1,2,3, in that order. (It might contain additional subframes
    and the first column is not necessarily subframe 1.)
   These are the subframes that we use to obtain the ephemerides.
```

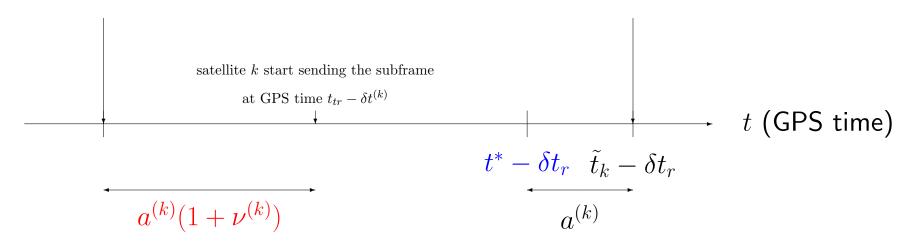
Measuring Pseudoranges


For each subframe, say subframe i, the satellite has a clear instruction on when to start sending it. This time, which is the same fore all satellites and is denoted by t_{tr} , is contained in the transmitted data.

However, due to the satellite's clock-error, the satellite starts the frame at GPS time $t_{tr} - \delta t^{(k)}$.

Fix the time t^* as the receiver time at which we want to know the position. Choose it so that $t^* \leq \tilde{t}_k$ for all k.

receiver starts receiving the subframe of satellite k



Let $a^{(k)} \ge 0$ be the time elapsed between t^* and \tilde{t}_k (see figure).

The electromagnetic wave that arrived at time t^* left the kth satellite at GPS time $t_{tr} - \delta t^{(k)} - a^{(k)}(1 + \nu^{(k)})$.

EMW received at t^* leaves satellite k at GPS time $t_{tr} - \delta t^{(k)} - a^{(k)} (1 + \nu^{(k)})$

receiver starts receiving the subframe of satellite k

Let $\tau_f^{(k)}(t^*)$ be the time of flight of the electromagnetic wave sent by satellite k and received at time t^* (receiver clock reading). Hence

$$\tau_f^{(k)}(t^*) = t^* - \delta t_r - t_{tr} + \delta t^{(k)} + a^{(k)}(1 + \nu^{(k)}).$$

If we remove the terms that do not depend on k, we obtain valid corrected pseudorange

$$\rho_c^{(k)} = c(\delta t^{(k)} + a^{(k)}(1 + \nu^{(k)})).$$

If we remove also the satellite clock error we obtain the pseudorange

$$\rho^{(k)} = c(a^{(k)}(1 + \nu^{(k)})).$$

Notice that even if not shown explicitly, both pseudoranges depend on t^* (in fact both $a^{(k)}$ and $\nu^{(k)}$ depend on t^*).

We may choose t^* to be the smallest \tilde{t}_k among all visible satellites.

Notice that to obtain $a^{(k)}(1+\nu^{(k)})$ we may count the fraction of bits between t^* and \tilde{t}_k and multiply the result by T_b . This will indeed give us the amount of time it took the satellite to send that chunk of signal.

Hence, to be able to determine the pseudorange, it is sufficient that we keep track of the index to the first sample of each bit.

From Page To Ephemeris

Extracting the ephemeris (and other information) from a page is now only a matter of knowing where to look.

We'll give you a function, readEphemeris, that extracts all the information contained in a page. GPS uses four formats for data description. readEphemeris uses four subfunctions, one for each of the formats. They are:

- read_unsigned to read unsigned integers
- read_signed to read integers
- read_2part_unsigned to read unsigned integers that occupy two chunks of bits
- read_2part_signed to read integers that occupy two chunks of bits

Good Luck!