
Modern Digital Communications:
A Hands-On Approach

GPS: Ephemerides and Pseudoranges

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Nov. 2, 2021

1

Goal

This week’s goals are:

1. Go from bits to pages

2. Extract the ephemeris from the pages

3. Measure the pseudoranges

2

The Data Structure

C/A code made of 1023 chips: 1ms total
1 2 3 4 5 6 . . . 1018 1019 1020 1021 1022 1023

Bit made of 20 C/A codes: 20ms total
1 2 3 4 5 6 . . . 15 16 17 18 19 20

Word made of 30 bits: 600ms total
1 2 3 4 5 6 . . . 25 26 27 28 29 30

Subframe made of 10 words: 6s total
1 2 3 4 5 6 7 8 9 10

Page made of 5 subframes: 30s total
1 2 3 4 5

3

Step-By-Step Towards A Page

Your assignment consists in writing or completing the following functions.

function [s, ind] = my_removeExcessBits(bits)

%REMOVEEXCESSBITS Extracts the complete subframes in the bit sequence

%obtained from a satellite

% [S, IDX] = REMOVEEXCESSBITS(BITS) detects the start of the first

% subframe in the row vector BITS (values in {-1,+1}) by correlating

% with the GPS preamble (stored in gpsc.preamble as a sequence of

% 1s and 0s). If the negative of the preamble is found all bits

% are inverted. IDX is the index into BITS where the first subframe

% starts; incomplete subframes at the beginning and at the end of

% BITS are removed and the sequence of bits is converted into a

% sequence of {0,1} values ({1,-1} <-> {0,1}) and returned into

% vector S.

%

% Hints:

4

% - The preamble is stored in gpsc.preamble as a sequence of 0s and 1s.

% - It is not enough to just find one preamble: the preamble is 8 bits

% long and it is not unlikely that this 8-bit sequence is also

% present somewhere in the middle of the data sequence. You should

% use the fact that there is one preamble in every subframe (every

% 300 bits).

% - The result of the correlation operation are real numbers and it can

% have multiple maxima. If you want to compare two values returned by

% the correlation, you should first round them.

function s = my_establishParity(ws)

%ESTABLISHPARITY Checks the parity of the GPS words

% S = ESTABLISHPARITY(WS) checks the parity of each word in the

% sequence of subframes WS and returns a possibly modified copy S of

% WS. The modification consists in flipping the first 24 bits of words

% for which the last bit of the previous word is 1.

% The last two bits of each subframe are 0 by convention. If the parity

% check fails, a warning is issued; otherwise a message indicating

% success is displayed. Both the input WS and the output S are

5

% binary (0 and 1) row vectors containing full subframes.

There are two things you need to know about parity.

The first thing to know is that the first 24 bits that form a word may have

been flipped (in purpose) by an encoder. The encoder may do so to make the

signal as DC-free as possible. They have been flipped if and only if the last

bit of the preceding word is a 1. If it is the case, we have to flip them back.

The other relevant information is that bits 25 through 30 are parity bits.

The following table shows how the 30 binary symbols transmitted in a word

are obtained from 25 information bits.

6

!

!

"#$%&#$'(()!

*!)+,!'((-!

!"#$

!

"#$%&!'()*+,-!.#/012!34567048!39:#1064;!

!

<=! ! >! 7=!!!<?(
!!

<'! ! >! 7'!!!<?(
!!

<?! ! >! 7?!!!<?(
!!

"! "!

"! "!

"! "!

"! "!

<'@! ! >! 7'@!!!<?(
!!

<'A! ! >! <'B
!!!!7=!!!7'!!!7?!!!7A!!!7C!!!7=(!!!7==!!!7='!!!7=?!!!7=@!!!7=D!!!7=E!!!7'(!!!7'?!

<'C! ! >! <?(
!!!!7'!!!7?!!!7@!!!7C!!!7D!!!7==!!!7='!!!7=?!!!7=@!!!7=A!!!7=E!!!7=B!!!7'=!!!7'@!

<'D! ! >! <'B
!!!!7=!!!7?!!!7@!!!7A!!!7D!!!7E!!!7='!!!7=?!!!7=@!!!7=A!!!7=C!!7=B!!!7'(!!!7''!

<'E! ! >! <?(
!!!!7'!!!7@!!!7A!!!7C!!!7E!!!7B!!!7=?!!!7=@!!!7=A!!!7=C!!!7=D!!!7'(!!!7'=!!!7'?!

<'B! ! >! <?(
!!!!7=!!7?!!7A!!7C!!7D!!7B!!!7=(!!!7=@!!!7=A!!!7=C!!!7=D!!!7=E!!!7'=!!!7''!!7'@!

<?(! ! >! <'B
!!!!7?!!!7A!!!7C!!!7E!!!7B!!!7=(!!!7==!!!7=?!!!7=A!!!7=B!!!7''!!!7'?!!!7'@!

!

FG&/&!

7=H!7'H!---H!7'@!#/&!1G&!;6:/5&!7#1#!$01;I!

!

1G&!;2J$6%!!!0;!:;&7!16!07&410K2!1G&!%#;1!'!$01;!6K!1G&!L/&M06:;!N6/7!6K!1G&!;:$K/#J&I!

!

<'AH!<'CH!---H!<?(!#/&!1G&!56JL:1&7!L#/012!$01;I!

!

<=H!<'H!---H!<'BH!<?(!#/&!1G&!$01;!1/#4;J011&7!$2!1G&!O,I!

!

!!0;!1G&!PJ67:%6)'P!6/!P&Q5%:;0M&)6/P!6L&/#1064-!

!

Table 20-XIV mentioned next slide. (Courtesy of Tsui)

7

Here is a flowchart of what establish_parity does for each word.

!

!
"#$%&#$'(()!
*!)+,!'((-!

!"#$

./0.1

"#!)2(!!3!!45
6

789&:.9./0

)4!;!;!;!)'-
08!8<0="/

>4!;!;!;!>'-

)8!/80

789&:.9./0

)4!;!;!;!)'-
08!8<0="/

>4!;!;!;!>'-

#?<#0"0?0.!>4!;!;!;!>'-@

)'A!B!)2(!"/08

&=1"0C!.D?=0"8/#

E0=<:.!'($F"GH

6 6

=1.!789&?0.)

)'I!;!;!;!)2(
.D?=:!08!7811.#&8/)"/%

1.7."G.)

)'I!;!;!;!)2(5

&=1"0C!7J.7K

L=":#

&=1"0C!7J.7K

&=##.#

L=":

.F"0

&=##

.F"0

C.# /8

C.#/8

!
"#$%&'!()*+,! -./012'!"234!56/&7!83&!9:'&!;012'0'<7/7#3<!38!=/>!?2$3˸!

(Courtesy of Tsui)

8

The next function creates a matrix that has, in its columns, the subframes.

To do this you need to know that the subframe number is encoded in bit 50

(MSB), 51, and 52 (LSB).

function [subframes, subframesIDs] = my_bits2subframes(bits)

%BITS2SUBFRAMES Returns a matrix containing the subframes

% in the desired order

% [SUBFRAMES, SUBFRAMESIDS] = BITS2SUBFRAMES(BITS) returns the matrix

% SUBFRAMES having as its columns the subframes extracted from BITS.

% The IDs of the subframes are returned in SUBFRAMESIDS. BITS must

% be a row vector containing a concatenation of subframes (0 and 1

% elements) that have already been checked for parity. Provided that

% BITS is sufficiently long, SUBFRAMES contains the subframes with

% id 1,2,3, in that order. (It might contain additional subframes

% and the first column is not necessarily subframe 1.)

% These are the subframes that we use to obtain the ephemerides.

9

Measuring Pseudoranges

For each subframe, say subframe i, the satellite has a clear instruction on

when to start sending it. This time, which is the same fore all satellites and

is denoted by ttr, is contained in the transmitted data.

However, due to the satellite’s clock-error, the satellite starts the frame at

GPS time ttr − δt(k).

- t (GPS time)?

satellite k start sending the subframe

at GPS time ttr − δt(k)

?

receiver starts receiving the subframe of satellite k

at GPS time t̃k − δtr

t̃k − δtr

10

Fix the time t∗ as the receiver time at which we want to know the position.

Choose it so that t∗ ≤ t̃k for all k.

- t (GPS time)?

satellite k start sending the subframe

at GPS time ttr − δt(k)

?

receiver starts receiving the subframe of satellite k

t̃k − δtrt∗ − δtr
� -

a(k)

Let a(k) ≥ 0 be the time elapsed between t∗ and t̃k (see figure).

The electromagnetic wave that arrived at time t∗ left the kth satellite at GPS

time ttr − δt(k) − a(k)(1 + ν(k)).

11

- t (GPS time)? ?

satellite k start sending the subframe

at GPS time ttr − δt(k)

?

receiver starts receiving the subframe of satellite k

EMW received at t∗ leaves satellite k

at GPS time ttr − δt(k) − a(k)(1 + ν(k))

t̃k − δtrt∗ − δtr
� -

a(k)(1 + ν(k))

� -

a(k)

Let τ
(k)
f (t∗) be the time of flight of the electromagnetic wave sent by satellite

k and received at time t∗ (receiver clock reading). Hence

τ
(k)
f (t∗) = t∗ − δtr − ttr + δt(k) + a(k)(1 + ν(k)).

If we remove the terms that do not depend on k, we obtain valid corrected

pseudorange

ρ(k)c = c(δt(k) + a(k)(1 + ν(k))).

If we remove also the satellite clock error we obtain the pseudorange

ρ(k) = c(a(k)(1 + ν(k))).

12

Notice that even if not shown explicitly, both pseudoranges depend on t∗ (in

fact both a(k) and ν(k) depend on t∗).

We may choose t∗ to be the smallest t̃k among all visible satellites.

Notice that to obtain a(k)(1 + ν(k)) we may count the fraction of bits

between t∗ and t̃k and multiply the result by Tb. This will indeed give us the

amount of time it took the satellite to send that chunk of signal.

Hence, to be able to determine the pseudorange, it is sufficient that we keep

track of the index to the first sample of each bit.

13

From Page To Ephemeris

Extracting the ephemeris (and other information) from a page is now only a

matter of knowing where to look.

We’ll give you a function, readEphemeris, that extracts all the information

contained in a page. GPS uses four formats for data description.

readEphemeris uses four subfunctions, one for each of the formats. They

are:

• read_unsigned to read unsigned integers

• read_signed to read integers

• read_2part_unsigned to read unsigned integers that occupy two

chunks of bits

• read_2part_signed to read integers that occupy two chunks of bits

14

Good Luck!

15

