ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Software-Defined Radio: Midterm
A Hands-On Course October 30, 2013

Problem 1. (8 p.)

% define the parameters
£1=100; £2=300;
Fs=1000;

NFFT=1024;

T=10; Yseconds

t=0:1/Fs:T; % time vector
vf=-Fs/2:Fs/NFFT:Fs/2-Fs/NFFT; Jfrequency vector

s=sin(2*pixf1xt)+sin(2*pi*f2*t);

hplot the frequency spectrum
figure, plot(vf,abs(fftshift(fft(s,NFFT)))), xlabel(’f[Hz]’), ylabel(’|s_F(f)|’)

Problem 2. (8 p.)

(a) The signal s(t) is obtained by multiplying the sum of sinusoids by a rectangular win-
dow. The Fourier transform of a sinusoid is given by two symmetric Dirac functions.
The Fourier transform of a rectangular pulse is a sinc. So, the Fourier transform of
s(t) will be the convolution between four Dirac functions and a sinc.

(b) The spectrum is represented from —f;/2 to f/2, so f; = 1000Hz. The main lobes
have width 2IW = 40Hz and the secondary lobes have width W = 20Hz. From
W =1/T, we obtain T' = 50ms.

(c) The lobes are narrower for the second figure. As their width is inverse proportional
to T, we conclude that T" has increased.

(d) Because the frequencies f; and f, did not change, but the location of the peaks
changed, we conclude that the sampling frequency changed. The new value is f, =
500Hz. In this case W = 10Hz, so T' = 100ms.

Problem 3. (3 p.)

% xcorr;
ipl=xcorr(a,b);
ipl=ip1(length(a));

% conv
ip2=conv(a,fliplr(conj(b)));
ip2=ip2(length(a));

% vector multiplication
ip3=ax*b’;

The third method is the most efficient: there are no unnecessary computations. For xcorr
and conv, we only need the middle value, and discard all the others.

Problem 4. (3 p.) Let s be the given sequence:
0000-10-10-222-2-301.

(a) The zeroes are at the beginning of the sequence, so s1 is longer.
(b) length(sl)+length(s2)=1length(s) - number of initial zeroes +1= 15-4+1=12;

(c) Because s1 is the longest, length(s) will be 2¥1ength(s1)-1. Therefore, length(s1)=8
and length(s2)=4.

Problem 5. (12 p.)

% SDR 2013 midterm - Problem 5
clear all;close all;clc;

Jthe number of transmitted symbols (not including the training sequence)
nSymbols=1000;

% load the training sequence, named traninig
load training;

%load the received signal containing the delay, the training symbols and
/ithe modulation symbols
load received

%% (a) estimate the start of the QAM symbol sequence in the received data and the
Y%rotation

corrResult=xcorr(received, training);
corrResult(1l:length(received)-1)=[];
%start position of the training sequence
[M, pos]=max(abs(corrResult));

%hstart position of the QAM symbols
startPos=pos+length(training) ;

hestimate the rotation angle
rTraining=received(pos:pos+length(training)-1);
estimRotation=mean(rTraining./training) ;

%% (b) pull out the noisy symbol sequence and correct for the phase rotation
rSymbols=received(startPos:startPos+nSymbols-1);

rSymbolsCorrected=rSymbols*estimRotation’;

%% (c) plot the complex plane noisy symbols
scatterplot (rSymbols), title (’before rotation correction’)
scatterplot (rSymbolsCorrected), title (’after rotation correction’)

%% (d) decode the bit sequence
bitsREstimated=sign(real (rSymbolsCorrected));
bitsIEstimated=sign(imag(rSymbolsCorrected)) ;

% you can compare the result with the bit sequences stored in bitsR.mat

% and bitsI.mat

load bitsR
load bitslI

errR=nnz(bitsR-bitsREstimated)
errI=nnz(bitsI-bitsIEstimated)

Problem 6. (3 p.)

y_up = upsample(y, USF);

i the noise is complex
noise = sigma/sqrt(2) * (randn(size(z))+1lj*randn(size(z)));

% the receiver matched filter is the time-inversed conjugate transmitter filter
y_rec = conv(r, fliplr(conj(h)));

Problem 7. (3 p.)

(a) %% determining the square of each element of vector X
xX2=x."2;
(b) %% finding the position of the maximum element of vector X

[7,pos]=max(x);

(c¢) %% mapping a vector of integers between O and 3, denoted X,
% to QAM constellation points
% you know that qammap=[-1+1i, -1-1i, 1+1i, 1-1i]

x_qam=gammap (x+1) ;

