Name:

Note:

e You have 2 h 45 min to work at the exam.
e There are six problems that can be solved in any order.

e The exam is closed book (no notes allowed). You are only allowed to use the work-
stations in the laboratory (not your own laptops). Resources from the internet as
well as code written outside this exam are not allowed.

e The code will be evaluated according to the usual criteria, namely correctness, speed,
form, and readability. Short comments that allow us to follow what you are doing
will improve readability.

e Several problems require writing Matlab code that you will upload on Moodle (as a
single archive).

e The Matlab files referenced below are available on Moodle.

Start by downloading from Moodle and unzipping the file with all the data required for
the different problems.



Problem 1. 15 p. (LDPC) (This is a “paper and pencil” problem) Consider a binary
linear code described by a parity check matrix H with entries in {0, 1}. This means that
x = (11,...,2,) € {0,1}" is a codeword iff HzT = 0, where operations are mod 2.

(a) 2 p. Give a parity check matrix H for this code, knowing that the factor graph used
by a message passing decoder to compute the a posteriori probability is as in the
figure.
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(b) 13 p. For a binary code, the messages V,,_,,,,(x,,) send by variable nodes as well as the
messages F,,_,,(x,) sent by factor nodes can be represented by a pair of real numbers,
one number for each of the two possible values of x,,. In class we have claimed (but
not proved) that one can pass the ratio of those two numbers. The purpose of this
exercise is to verify this claim by means of an example.

Fori=1,...,4, let
_ PYilxi (yz,o)

PYi|Xi (y1|1)
be the message sent by factor node 7. Your task is to determine the messages needed
to decode x3. (Hence no need to compute all messages.) Each message from a variable
node shall be in the form

Viesm (0
Virsm = ;U where Vn_>m($n) = H Fm’—>n($n)

VT'L*)TI’L(]‘) ’ m/ev(n)\m
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and each message from a check node shall be in the form

F,_..(0
E, = ;U, where Fy, ., (z,) = Z fm() Vi —m ().
Fsm ( 1) ~Tn n’€F(m)\n

Your answer should be an explicit MAP decoding rule for z3 that depends only on
by, ..., by



Solution 1

(a)

1110
H‘(0011

)

(b) To simplify the notation, we write V;; instead of V;_,; and similarly for F;;.

Vis = Wi = Rl = b
Proceeding similarly,
Vas = by

Vie = by.

Next,

Fiy = 1228 = Vig = by
and

Fyy = Vis(0)Vos5(0)+Vis(1)Vas (1) _ VisVos+1 _ bibotl

Vi5(0)Vas(1)+Vi5(1)Vas(0) ~ Vis+Vas

bi+b2 °

We decide that .@3 =1if F33(0)F53<0)F63(O) < F33<1)F53(1)F63(1)
Equivalently, we decide that T3 = 1 if F33F53F53 < 1.

After substituting, we obtain the desired final result:

3 = 1if bybtably, < 1.



Problem 2. 8 p. (Miscellaneous Questions) (“paper and pencil”)

(a)

(d)

2 p. Let s =[s1,...,sy] be a sequence of symbols that we send over a discrete-time
AWGN channel of impulse response hg,...,h;_1. So the output is y1,ys,... where
Yi = ZIL:_OI Si_th; + z;, where the z; are samples from independent and identically
distributed Gaussian random variables. You use y = [y1,...,yn] to estimate the
channel as follows. Your channel estimate is the IFFT of I;I;?(()S')), where the division
is componentwise. In order for this to work, is there any restriction on the sequence

s? Explain.

2 p. In OFDM, what is the purpose of the cyclic prefix?

2 p. If we know the position of three satellites and the distances from the receiver
to each of them, we can determine the receiver position. Why does the GPS system
require four satellites?

2 p. Consider the parity check matrix
1 1 00
= ( 1 011 ) '

Which of the following vectors are valid codewords?

O =

z =1 1 1 1 1]
w;=[0 1 1 0 1]



Solution 2

(a) We have considered as correct any of the following answers: (i) it has to contain the
cyclic prefix; (ii) F'FT(s) cannot contain zeros; (iii) the length N must be at least as
large as the impulse response.

(b) To make the linear convolution of the channel become a cyclic convolution or, equiv-
alently, to make the channel matrix a circularly symmetric.

(c) Because we need to estimate the 3 real numbers that describe the receiver position
as well as the clock offset.

(d) 3, because it is the only one that passes the parity check Hx? =0 .



Problem 3. 9 p. The figure below shows the factor graph for the binary linear code over
{0,1} described by the parity check matrix
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The edges of the above factor graph have been labeled in the natural order dictated by
the check nodes. (In the solution to the LDPC decoder, we implicitly labeled the edges
in the natural order dictated by the variable nodes.) Notice that we are allowed to label
the socket in any order we desire. While the performance of the code is not affected by
the labeling order, the socket matrix as well as M, and M, generally do depend on the
order in which we label the edges.

(a) 2 p. Write (by hand) the socket matrix for the above graph. (Recall that the kth
row of the socket matrix is 4, 7 if the kth edge (socket) has variable node i on the left
and check node j on the right.)

(b) 2 p. Write (by hand) the matrix M,. (Recall that Mv is the n x (# of sockets) used
to determine the messages that go from the variable nodes to the check nodes.)

(c) 5 p. Complete the MATLAB function p3 that takes H as the input and produces
the socket matrix and the sparse matrix M,. (Use the command sparse to produce
M,.)



Solution 3

(a) The socket matrix is

U = W N =
DN DN = = =

100100
010000
M,=1001000
000010
00 0O0O01

(c) function [socket,Mv] = p3(H)
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[z, k]
socket

nedges

T

function [SOCKET] = p3(H)

This function computes the matrix SOCKET

starting from the parity check matrix H according to the following
description:

Input matrix H has dimensions M x N, where M is the number of check
nodes and N is the number of variable nodes

SOCKET: matrix of dimensions NEDGES x 2. NEDGES is the total

number of ones in matrix H. For each edge there is a row in SOCKET:
the first column is the index of the corresponding variable node,

and the second one containes the index of the corresponding check node
MV: sparse matrix of dimensions N x NEDGES, needed to sum all incoming
edges at variable nodes. It will have value 1 in position (i,j) if

the j’th socket is connected to variable node i

Number of variable nodes and check nodes
, nvars] = size(H);

Compute socket (it specifies the edges between variable and check nodes)
find(H’);
(z,k];

length(z); % total number of edges between variable and check nodes

compute Mv

Mv = sparse(socket(:,1), l:nedges, ones(l,nedges), nvars, nedges);



Problem 4. 8 p. By running the MATLAB function p4 you load innerProducts.mat
which produces a vector ip of complex numbers. Process ip to obtain a sequence b of
bits according to the following rule.

Set b(1)=0.

For 1< i <= length(ip), do the following:

Set b(i)=b(i-1) if the phase of ip(i) is essentially the same as that of ip(i-1).

Set b(i)=1-b(i-1) if the phase of ip(i) is essentially the same as that of ip(i-1)+m.

Code efficiency will be taken into consideration.



Solution 4

clear all; close all; clc;

% load the inner products
load innerProducts

% determine phase transitions of pi
diff = ip(2:end) .* conj(ip(l:end - 1));
% bit change if diff < 0

diff_b = (real(diff) < 0);

%consider first bit
diff_b=[0, diff_b];

% Integrate to have bits value
b = cumsum(diff_b);
decodedBits = mod(b, 2);



Problem 5. 15 p. (A Simple Radar) To determine the position and the (radial) speed
of an object, we proceed as follows: at time t = 0, we send a pseudorandom (PRN)
codesequence, and at time ¢ = 1 seconds we send it again. These signals hit the target
and come back to the receiver, allowing to estimate the receiver-target distance at two
time instants. From the two distances and the corresponding times, we determine the
speed, assumed to be constant.

Complete the MATLAB script p5 as follows. Start by loading the file signals.m. This
file contains the PRN sequence, the transmitted and the received signals.

(a) 5 p. Determine the travel times (receiver-target-receiver) for the two PRN sequences.
If you cannot solve this part, you can use in the following the values of the vector
tof, expressed in seconds, saved in signals.mat.

(b) 2.5 p. Determine the corresponding receiver-target distances.
(c¢) 2.5 p. The distances you have found correspond to two precise times. What are they.

(d) 2.5 p. Print the target’s (radial) speed, with positive sign if the target moves away
from the receiver.

(e) 2.5 p. Print the distance at t = 0.
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Solution 5

clear all; close all; clc;

% load the data (code, signalTx, signalRx)
load signals

% sampling period (s)
Ts=1e-6;

% speed of light (m/s)
c=3*1e8;

% time interval between the two pulses (s)
tInt=1; % s

% determine the travel times
c2=abs(xcorr(signalRx,code));

c2=c2(length(signalRx): end);

th=numel (code) /2;
v2=find (c2>th) ;

% indexing in MATLAB starts from 1!!
tt=Ts*(v2-[1, 1+round(tInt/Ts)])

% determine the distances
distances=c*tt/2;

%» determine the times corresponding to these distances
times=[tt(1)/2, tInt+tt(2)/2];

i determine the speed
vEst=(distances(2)-distances(1))/(times(2)-times (1))

%distance at t=0
dO=distances(1)-vEst*times (1)
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Problem 6. 5 p. (“paper and pencil”) We want to determine the position of a parked
car using three satellites labeled 1,2, 3.

(a) 2p. Lett;, 1 =1,2,3, be three arbitrary but fixed times. If p,.(¢, ) is the car’s position
at time ¢ in ECEF(£), what is the relationship between p,(t1,¢1) and p, (2, t2)?

(b) 3 p. At time ¢, the car determines that the time of flight from satellite 1 is 7, i.e., a
signal from satellite 1 received at time ¢; is emitted at time t; — 7. Similarly, the car
determines that for ¢ = 2, 3, a signal emitted by satellite 7 at time t; — 7; is received
at time ;.

Suppose that for i = 1,2,3 you know 7; and the position p;(t; — 7;,t;) of satellite i.
Which system of 3 equations would you solve to find the position p,(t1, ;) of the car
? (Don’t worry if the system has two solutions.)
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Solution 6

(a) The parked car is rotating together with the earth. Hence
pr(ti ty) = pr(ta, ta) = pr(ts, ts).
(b) The following are three valid equations:
|piti — 7, ti) — pr(ti, &) = 7, 1=1,2,3.
Using Part (a), with p, = p,.(t1,t1) = pr(te, t2) = p,(ts, t3), we obtain

||pz(tz_7—zatz)_pr|| = CT;, 1= 1,2,3.
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