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Minimum Mean Squared Error Estimation

In this note, we study the concept of Minimum Mean Squared Error (MMSE)
Estimation. We start with a general description of the problem, then focus
on the special case of MMSE estimation for jointly Gaussian random vectors
— which is what we need in order to estimate the OFDM channel.

Subsequently we study Least Squares (LS) approximations, which will also be
used in the assignments.



Estimation

We are interested in estimating the realization x of the random variable
X eCm.

For this, we have access to the realization y of Y € C". (Here we use small
letters to denote the realization of random variables). Unless X and Y are
independent, knowing y should help estimating x.

An estimator of X € C™ based on Y € C” can be an arbitrary function
X : C" — C™. We then let * = X (y) be the estimate of x based on the
observed y. Clearly this estimate may or may not be a good one.

Thus we need a way to measure the performance of an estimator, and
hopefully we can find an estimator which is optimal under that performance
criterion.



MMSE Estimator

A popular choice for the fidelity criterion is the mean squared error

AN

MSE(X) = E U\X — X<Y>H2}

where the expectation is over the joint distribution of X and Y.

An estimator that minimizes the mean squared error is called a minimum
mean squared error (MMSE) estimator of X given Y.

We denote by XMMSE(y) such an estimator. In other words, for any
estimator X (y),

L MX - X(Y)Hz} > B {HX - XMMSE<Y>H2} -



The MMSE estimator of X given Y turns out to be unique and equal to the
conditional expectation of X given Y, i.e.,

Xyuse(y) = E[X|Y =1y].



Derivation of the MMSE Estimator

We are looking for an estimator X : C" — C™ such that

A

MSE(X) = F [HX - X<Y)|ﬂ ,

IS minimized.

We are done if we prove that XMMSE(y) minimizes

B[ - X)) 2 B{1x - X))

Yzy],

where E, means that we are taking the expectation conditioning on Y = y.



We have
B,||X = XY = B, ||1X]] +

X(y)| - 2m{E,| X' | X(»)}.

The first term on the RHS of the equality does not depend on X. If we
substitute it for another term that does not depend on X, then the
minimizing X remains the same.

We choose to minimize

|2, (X1 +

X(y)|| - 2m{B,|[X| X ()]
which is the quadratic form
|2, [X] - X ()|

The above is non-negative, and it achieves its minimum iff X (y) = E, X].



MMSE Estimator for Jointly Gaussian Random Vectors

In general, finding an expression for E'| X |Y = y] is not a trivial task.

However, when X and Y are jointly Gaussian random vectors, the MMSE
estimator has a simple linear form.

In the rest of this lecture we restrict our discussion to jointly Gaussian
random vectors X and Y.

First we assume that X and Y are zero-mean vectors. Later on, we will take
non-zero means into account.



A Fact About Jointly Gaussian Random Vectors

If X € C"™ and Y € C" are zero-mean jointly Gaussian random vectors, we

can always write
X =AY +Z

for some matrix A € C™*" (that we will determine shortly) and a zero-mean
Gaussian vector Z ~ N¢(0, Kz) that is independent of Y.

Proof. For any matrix A € C"™*",
Z =X —AY

is a (zero-mean) complex Gaussian vector. (By definition, a linear
combination of jointly Gaussian vectors leads to a Gaussian vector.)

Moreover,

E|ZY'|=E[XY'| -AE[YY']| = Kxy — AKy



Hence, if we take
A= KxyKy',

we will have
E[ZY'] =0,
i.e., with this specific choice of A, Z is independent of Y.

Note that with this choice of A,

Kz=E[(X — AY)(X — AY)']
— Kx — AKyx — (Kxy — AKy)A'
— Kx — AKyx
— Kx — KxyKy' 'K,

where in the third line we used the fact that AKy = Kxy.
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MMSE Estimator for Jointly Gaussian Vectors

Let X and Y be jointly Gaussian. Then

. ~1
Xwvse(y) = Kxy Ky y.
Moreover, the minimum mean squared error equals

B {[|X = Xunss(Y)||| = trace(Kx — Kxy Ky' Ky,
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Proof. Write
X =AY +Z with A= KxyKy'

which makes Z independent of Y.

Now
Xse(y) = E[X|Y =y
= F[AY + Z|Y =y
= F[Ay + Z| = Ay.

The minimum mean squared error is

E MX — Xanse(Y) 2] =Lk WAY +2) - AYHZ}

— B |]|2]] = trace(Kz) = trace(Kx — Kxy Ky Kly).
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Channel Coefficients Estimation

We have seen that by using OFDM we ‘forge’ parallel channels described in

matrix form as
Y™ — pAlm) 4 z(m)

where D is the diagonal matrix of channel coefficients. How to estimate the
matrix D7

For certain values of m, we substitute A(™) with an N-tuple S known to the
receiver. Then, dropping the superscript (m) for notational convenience,

Y=DS+Z
where D is diagonal. The same result is obtained by
Y=5S5D+Z
where S is the diagonal matrix that has S as its diagonal elements and D is

the N-tuple consisting of the diagonal elements of D.
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Assume that D is zero-mean, Gaussian, and independent of Z.

Then Y and D are jointly Gaussian. To see this, write

(5)-(70)(2)

This shows that the vector on the left hand side is a linear transformation of
a Gaussian random vector.

Hence, the minimum mean squared error (MMSE) estimate of D based on
the observable Y is
D = KpyKy'Y,

where

Kpy = E[DYT] = KpS' and
Ky = E[YY'| = SKpST+ K,

are covariance matrices and D and Y are zero-mean.

Both Ky and Kpy depend on Kp. The question is how to find Kp.

14



Kp from the Channel Model

To determine Kp, we make a channel model.

A reasonable assumption for a wireless channel is the multipath channel,
modeled as

M-1
h(t) =) it —7),
1=0
where «; and 7; are the [-th path strength and delay, respectively.

Since oy and «y, [ # k, describe the reflection on different
obstacles/surfaces, it is reasonable to assume that they are uncorrelated.

For this channel,

hr(f) = / h(t)e > dt = "o / 5(t —m)e Pl =y " age I
[ [
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Assuming that the DFT-length IV is even (usually a power of 2),
D = ()\(), c e uy >\N—1) with

e vr) im0 Y-
N j;;Y) i=Y  N-1

where

2 L —jQWLTl
" (NTS) =2 e
and T is both the symbol interval and the sampling interval.

If we define

then we can write
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The (7, k) entry of the covariance matrix Kp is

—92 )2
(Kp)ix = E N\ = E e’ WNTSTZ E ae’ 7TNTSTU

= ZZ

N "E o) e P2 (1)

The above expression seems complicated but it is actually not. In fact, Kp is
the product of three matrices. To see this, notice that if A, B, C' are matrices
such that the product ABC is well defined, then

(ABC)@)k — Z Z Az’,lBl,UOv,ka
[ v

which is exactly the right-hand side of (1)) with

oo i
A;y = e IIRTT B, = Eaal], C = Al

Y

From Kp, we determine Ky and K py as described earlier.
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Least Squares (LS) Approximation

An MMSE estimator requires the knowledge of the statistics.

Suppose that all we know is that the observable y € C" is obtained from
A € C" according to
Yy =95+ z,

where S is a diagonal matrix with non-vanishing diagonal elements, and
z & C" is a noise vector. None of the statistics are known.
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We would like to find the XA € C” for which ||y — SA||? is minimized over all
AeC".

By writing

n—1

ly — SA|I* = Z lyi — Sihil”,
i=0

it is clear that )\; needs to be chosen to minimize ly; — SiNi]?.

Clearly the minimum is obtained when

A Yi
=2,
Si

in which case [y — SA[]* = 0.

This is a special case that we have worked out since we will need it in the
assignment.
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More generally, suppose that
Yy =5+ z,

where y and z are in C", A € C™, and S € C"*™ is a general full-rank
matrix (not necessarily diagonal).

As before, we are seeking the X that minimizes
ly — SA|?

over all A € C™.

If n < m, the system y = S can always be solved. Hence we can always
find a A for which |y — SAJ|* = 0.
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So we focus on the case where n > m (the system is overdetermined).

We may reformulate the problem as follows. The observable y is an element
of the inner-product space i/ = C" and let V' be the subspace spanned by the
columns of S. We are seeking the vector y € V that minimizes

2

ly — vy

The projection theorem (see PDC) tells us that y is the projection of y into
V. It has the property that the error vector y — y is orthogonal to every
element of V. In particular, it is orthogonal to the columns of S. Hence

(y—SX,S)=0, i=1,....m

where S; is the i-th column of S.

Hence

Equivalently,



In matrix form, we obtain the so-called normal equations:

Sty = STSA.

Since S has full rank, STS is nonsingular. We prove this by arguing that if
STS is singular, then S does not have full rank. Indeed, if STS is singular,
there exists a nonzero vector u such that STSu = 0, which implies that
u'STSu = ||Su||*> = 0, so that Su = 0. This means that the columns of S
are linearly dependent, i.e., S is not full rank — a contradiction.

Solving for A yields the least-squares approximation of A:

A= (S19) sty
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To reconstruct the above formula from memory, it suffices to check the
dimensions. The matrix that estimates A from y must be of dimension

m x n. If we analyze (STS)~1ST from right to left, we see that we don’t have
other choices (unless we make the expression more complicated). In
particular, ST has the right dimension to multiply y and notice that (S1S)™!
is m X m, hence it is a valid matrix to multiply the m x n matrix ST, whereas
(SST)~! would not fit as it is n x n.

To summarize, recall the fundamental difference between the MMSE
estimate and the LS approximation. On the one hand, the MMSE setup
assumes two random vectors, the unobserved X and the observed Y, and

the objective is to estimate X by means of Y, where the measure of
performance is E[|| X — X (Y)]]%].

On the other hand, the LS approximation is about adjusting the parameters
of a model function to best fit the observed data. (See the example that
follows.) It is also called data fitting or regression analysis. (See e.g. Least
Squares in Wikipedia).
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https://en.wikipedia.org/wiki/Least_squares
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Example: Suppose that the model function is y(z) = a1 + aoz + asz?, with
unknown parameters oy, a9, ag. We seek to find the parameters so that the
model fits the noisy observations

v =y(x) +2z, 1=12,...,n.

Letting ¥y = (Y1, %2, ..., yn)’, © = (21,22, ...,2,)", a = (1, a9, 3), and
z = (21,29,...,2,)", the observations are of the form
y=>5Sa+ z,
where
/1 X1 az‘%\
g _ 1 29 3
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It is worth pointing out that even if we are estimating a nonlinear function of
x, we are dealing with a data observation model where x has fixed values
and the variable is the parameter vector ax. As a function of «, the

observation model is linear.

The « that minimizes ||y — y(x)||* is the LS approximation

a = (S15)715Ty.

For a MATLAB example, check out the file example.m
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