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Minimum Mean Squared Error Estimation

In this note, we study the concept of Minimum Mean Squared Error (MMSE)

Estimation. We start with a general description of the problem, then focus

on the special case of MMSE estimation for jointly Gaussian random vectors

— which is what we need in order to estimate the OFDM channel.

Subsequently we study Least Squares (LS) approximations, which will also be

used in the assignments.
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Estimation

We are interested in estimating the realization x of the random variable

X ∈ Cm.

For this, we have access to the realization y of Y ∈ Cn. (Here we use small

letters to denote the realization of random variables). Unless X and Y are

independent, knowing y should help estimating x.

An estimator of X ∈ Cm based on Y ∈ Cn can be an arbitrary function

X̂ : Cn → Cm. We then let x̂ = X̂(y) be the estimate of x based on the

observed y. Clearly this estimate may or may not be a good one.

Thus we need a way to measure the performance of an estimator, and

hopefully we can find an estimator which is optimal under that performance

criterion.
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MMSE Estimator

A popular choice for the fidelity criterion is the mean squared error

MSE(X̂) := E
[∥∥X − X̂(Y )

∥∥2]
where the expectation is over the joint distribution of X and Y .

An estimator that minimizes the mean squared error is called a minimum

mean squared error (MMSE) estimator of X given Y .

We denote by X̂MMSE(y) such an estimator. In other words, for any

estimator X̂(y),

E
[∥∥X − X̂(Y )

∥∥2] ≥ E
[∥∥X − X̂MMSE(Y )

∥∥2] .
4



The MMSE estimator of X given Y turns out to be unique and equal to the

conditional expectation of X given Y , i.e.,

X̂MMSE(y) = E [X|Y = y] .
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Derivation of the MMSE Estimator

We are looking for an estimator X̂ : Cn → Cm such that

MSE(X̂) = E
[∥∥X − X̂(Y )

∥∥2] ,
is minimized.

We are done if we prove that X̂MMSE(y) minimizes

Ey

[∥∥X − X̂(Y )
∥∥2] 4= E

[∥∥X − X̂(Y )
∥∥2∣∣∣∣Y = y

]
,

where Ey means that we are taking the expectation conditioning on Y = y.
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We have

Ey

[∥∥X − X̂(Y )
∥∥2] = Ey

[∥∥X∥∥2] + ∥∥X̂(y)
∥∥2 − 2<

{
Ey

[
X†
]
X̂(y)

}
.

The first term on the RHS of the equality does not depend on X̂. If we

substitute it for another term that does not depend on X̂, then the

minimizing X̂ remains the same.

We choose to minimize∥∥Ey

[
X
]∥∥2 + ∥∥X̂(y)

∥∥2 − 2<
{
Ey

[
X†
]
X̂(y)

}
,

which is the quadratic form ∥∥Ey

[
X
]
− X̂(y)

∥∥2.
The above is non-negative, and it achieves its minimum iff X̂(y) = Ey

[
X
]
.
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MMSE Estimator for Jointly Gaussian Random Vectors

In general, finding an expression for E [X|Y = y] is not a trivial task.

However, when X and Y are jointly Gaussian random vectors, the MMSE

estimator has a simple linear form.

In the rest of this lecture we restrict our discussion to jointly Gaussian

random vectors X and Y .

First we assume that X and Y are zero-mean vectors. Later on, we will take

non-zero means into account.
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A Fact About Jointly Gaussian Random Vectors

If X ∈ Cm and Y ∈ Cn are zero-mean jointly Gaussian random vectors, we

can always write

X = AY +Z

for some matrix A ∈ Cm×n (that we will determine shortly) and a zero-mean

Gaussian vector Z ∼ NC(0, KZ) that is independent of Y .

Proof. For any matrix A ∈ Cm×n,

Z :=X − AY

is a (zero-mean) complex Gaussian vector. (By definition, a linear

combination of jointly Gaussian vectors leads to a Gaussian vector.)

Moreover,

E
[
ZY †

]
= E

[
XY †

]
− AE

[
Y Y †

]
= KXY − AKY
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Hence, if we take

A = KXYK
−1
Y ,

we will have

E
[
ZY †

]
= 0,

i.e., with this specific choice of A , Z is independent of Y .

Note that with this choice of A,

KZ = E
[
(X − AY )(X − AY )†

]
= KX − AKY X − (KXY − AKY )A

†

= KX − AKY X

= KX −KXYK
−1
Y K†XY ,

where in the third line we used the fact that AKY = KXY .
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MMSE Estimator for Jointly Gaussian Vectors

Let X and Y be jointly Gaussian. Then

X̂MMSE(y) = KXYK
−1
Y y.

Moreover, the minimum mean squared error equals

E
[∥∥X − X̂MMSE(Y )

∥∥2] = trace
(
KX −KXYK

−1
Y K†XY

)
.

11



Proof. Write

X = AY +Z with A = KXYK
−1
Y ,

which makes Z independent of Y .

Now

X̂MMSE(y) = E [X|Y = y]

= E [AY +Z|Y = y]

= E [Ay +Z] = Ay.

The minimum mean squared error is

E
[∥∥X − X̂MMSE(Y )

∥∥2] = E
[∥∥(AY +Z)− AY

∥∥2]
= E

[∥∥Z∥∥2] = trace(KZ) = trace
(
KX −KXYK

−1
Y K†XY

)
.
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Channel Coefficients Estimation

We have seen that by using OFDM we ‘forge’ parallel channels described in

matrix form as

Y (m) = DA(m) +Z(m)

where D is the diagonal matrix of channel coefficients. How to estimate the

matrix D?

For certain values of m, we substitute A(m) with an N -tuple S known to the

receiver. Then, dropping the superscript (m) for notational convenience,

Y = DS +Z

where D is diagonal. The same result is obtained by

Y = SD +Z

where S is the diagonal matrix that has S as its diagonal elements and D is

the N -tuple consisting of the diagonal elements of D.
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Assume that D is zero-mean, Gaussian, and independent of Z.

Then Y and D are jointly Gaussian. To see this, write(
Y

D

)
=

(
S I

I 0

)(
D

Z

)
.

This shows that the vector on the left hand side is a linear transformation of

a Gaussian random vector.

Hence, the minimum mean squared error (MMSE) estimate of D based on

the observable Y is

D̂ = KDYK
−1
Y Y ,

where

KDY := E[DY †] = KDS
† and

KY := E[Y Y †] = SKDS
† +KZ

are covariance matrices and D and Y are zero-mean.

Both KY and KDY depend on KD. The question is how to find KD.
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KD from the Channel Model

To determine KD, we make a channel model.

A reasonable assumption for a wireless channel is the multipath channel,

modeled as

h(t) =

M−1∑
l=0

αlδ(t− τl),

where αl and τl are the l-th path strength and delay, respectively.

Since αl and αk, l 6= k, describe the reflection on different

obstacles/surfaces, it is reasonable to assume that they are uncorrelated.

For this channel,

hF(f ) =

∫
h(t)e−j2πftdt =

∑
l

αl

∫
δ(t− τl)e−j2πftdt =

∑
l

αle
−j2πfτl.
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Assuming that the DFT-length N is even (usually a power of 2),

D = (λ0, . . . , λN−1) with

λi =

hF
(

i
NTs

)
, i = 0, . . . , N2 − 1

hF

(
i−N
NTs

)
, i = N

2 , . . . , N − 1
,

where

hF

(
i

NTs

)
=
∑
l

αle
−j2π i

NTs
τl,

and Ts is both the symbol interval and the sampling interval.

If we define

[i] =

{
i, i = 0, . . . , N2 − 1

i−N, i = N
2 , . . . , N − 1

,

then we can write

λi = hF

(
[i]

NTs

)
.
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The (i, k) entry of the covariance matrix KD is

(KD)i,k = E [λiλ
∗
k] = E

[∑
l

αle
−j2π [i]

NTs
τl
∑
v

α∗ve
j2π

[k]
NTs

τv

]
=
∑
l

∑
v

e−j2π
[i]
NTs

τlE [αlα
∗
v] e

j2π
[k]
NTs

τv (1)

The above expression seems complicated but it is actually not. In fact, KD is

the product of three matrices. To see this, notice that if A,B,C are matrices

such that the product ABC is well defined, then

(ABC)i,k =
∑
l

∑
v

Ai,lBl,vCv,k,

which is exactly the right-hand side of (1) with

Ai,l = e−j2π
[i]
NTs

τl, Bl,v = E [αlα
∗
v] , C = A†.

From KD, we determine KY and KDY as described earlier.
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Least Squares (LS) Approximation

An MMSE estimator requires the knowledge of the statistics.

Suppose that all we know is that the observable y ∈ Cn is obtained from

λ ∈ Cn according to

y = Sλ + z,

where S is a diagonal matrix with non-vanishing diagonal elements, and

z ∈ Cn is a noise vector. None of the statistics are known.
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We would like to find the λ̂ ∈ Cn for which ‖y − Sλ‖2 is minimized over all

λ ∈ Cn.

By writing

‖y − Sλ‖2 =
n−1∑
i=0

|yi − Siλi|2,

it is clear that λ̂i needs to be chosen to minimize |yi − Siλi|2.

Clearly the minimum is obtained when

λ̂i =
yi
Si
,

in which case ‖y − Sλ‖2 = 0.

This is a special case that we have worked out since we will need it in the

assignment.
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More generally, suppose that

y = Sλ + z,

where y and z are in Cn, λ ∈ Cm, and S ∈ Cn×m is a general full-rank

matrix (not necessarily diagonal).

As before, we are seeking the λ̂ that minimizes

‖y − Sλ‖2

over all λ ∈ Cm.

If n ≤ m, the system y = Sλ can always be solved. Hence we can always

find a λ for which ‖y − Sλ‖2 = 0.
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So we focus on the case where n > m (the system is overdetermined).

We may reformulate the problem as follows. The observable y is an element

of the inner-product space U = Cn and let V be the subspace spanned by the

columns of S. We are seeking the vector ŷ ∈ V that minimizes

‖y − ŷ‖2.

The projection theorem (see PDC) tells us that ŷ is the projection of y into

V. It has the property that the error vector y − ŷ is orthogonal to every

element of V. In particular, it is orthogonal to the columns of S. Hence

〈y − Sλ̂,Si〉 = 0, i = 1, . . . ,m

where Si is the i-th column of S.

Hence

〈y,Si〉 = 〈Sλ̂,Si〉, i = 1, . . . ,m. (2)

Equivalently,

S†iy = S†iSλ̂ i = 1, . . . ,m.
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In matrix form, we obtain the so-called normal equations:

S†y = S†Sλ̂.

Since S has full rank, S†S is nonsingular. We prove this by arguing that if

S†S is singular, then S does not have full rank. Indeed, if S†S is singular,

there exists a nonzero vector u such that S†Su = 0, which implies that

u†S†Su = ‖Su‖2 = 0, so that Su = 0. This means that the columns of S

are linearly dependent, i.e., S is not full rank — a contradiction.

Solving for λ̂ yields the least-squares approximation of λ:

λ̂ =
(
S†S

)−1
S†y.
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To reconstruct the above formula from memory, it suffices to check the

dimensions. The matrix that estimates λ from y must be of dimension

m× n. If we analyze (S†S)−1S† from right to left, we see that we don’t have

other choices (unless we make the expression more complicated). In

particular, S† has the right dimension to multiply y and notice that (S†S)−1

is m×m, hence it is a valid matrix to multiply the m× n matrix S†, whereas

(SS†)−1 would not fit as it is n× n.

To summarize, recall the fundamental difference between the MMSE

estimate and the LS approximation. On the one hand, the MMSE setup

assumes two random vectors, the unobserved X and the observed Y , and

the objective is to estimate X by means of Y , where the measure of

performance is E[‖X − X̂(Y )‖2].

On the other hand, the LS approximation is about adjusting the parameters

of a model function to best fit the observed data. (See the example that

follows.) It is also called data fitting or regression analysis. (See e.g. Least

Squares in Wikipedia).
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Example: Suppose that the model function is y(x) = α1 + α2x + α3x
2, with

unknown parameters α1, α2, α3. We seek to find the parameters so that the

model fits the noisy observations

yi = y(xi) + zi, i = 1, 2, . . . , n.

Letting y = (y1, y2, . . . , yn)
T , x = (x1, x2, . . . , xn)

T , α = (α1, α2, α3)
T , and

z = (z1, z2, . . . , zn)
T , the observations are of the form

y = Sα + z,

where

S =


1 x1 x21
1 x2 x22
... ... ...

1 xn x2n

 .
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It is worth pointing out that even if we are estimating a nonlinear function of

x, we are dealing with a data observation model where x has fixed values

and the variable is the parameter vector α. As a function of α, the

observation model is linear.

The α that minimizes ‖y − ŷ(x)‖2 is the LS approximation

α̂ = (S†S)−1S†y.

For a MATLAB example, check out the file example.m
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