ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 18

Solutions to Assignment 11

Modern Digital Communications
December 11, 2024

See the provided MATLAB/Python routines that implement the required algorithms. For the function correctOFDMSymbolRotation we implement the LS estimator that uses both pilot carriers (as discussed in Exercise 4).

SOLUTION 4. The observable Y is an element of the inner-product space $\mathcal{U} = \mathbb{C}^k$ and let \mathcal{V} be the subspace spanned by X. We are seeking for the vector $\hat{Y} \in \mathcal{V}$ that minimizes $\|Y - \hat{Y}\|^2$.

The projection theorem tells us that \hat{Y} is the projection of Y into \mathcal{V} . It has the property that the error vector $Y - \hat{Y}$ is orthogonal to every element of \mathcal{V} . In particular, it is orthogonal to X. Hence,

$$\langle \boldsymbol{Y} - \hat{R}\boldsymbol{X}, \boldsymbol{X} \rangle = 0$$

which is the same as

$$\langle \boldsymbol{Y}, \boldsymbol{X} \rangle = \langle \hat{R} \boldsymbol{X}, \boldsymbol{X} \rangle.$$

Hence

$$\hat{R}_{\mathrm{LS}}(\boldsymbol{Y}) = \frac{\langle \boldsymbol{Y}, \boldsymbol{X} \rangle}{\langle \boldsymbol{X}, \boldsymbol{X} \rangle} = \frac{\boldsymbol{X}^{\dagger} \boldsymbol{Y}}{\left\| \boldsymbol{X} \right\|^2} \,.$$

Obviously, since we are only interested in the phase of R, in our problem we can ignore the normalization by $\|X\|^2$ and estimate the phase as

$$\hat{\theta}_{\mathrm{LS}} = \arg\{\boldsymbol{X}^{\dagger}\boldsymbol{Y}\}.$$