ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14 Solutions to Assignment 9 Modern Digital Communications November 27, 2024

For the first 3 exercises, please see the provided MATLAB/Python code, which is self-explanatory. Solution 4.

1. By the linearity of convolution, we have

$$r(t) = s(t) \star h(t) + N(t) = \sum_{k} a[k](p \star h)(t - kT) + N(t).$$

2. Let $\tilde{q}(t) := q^*(-t)$ for the sake of brevity. We have

$$y[k] = y(kT) = (s \star h \star \tilde{q})(kT) + \int N(\alpha)\tilde{q}(kT - \alpha)d\alpha$$

Since N(t) is a zero-mean white Gaussian process,

$$z[k] := \int N(\alpha)\tilde{q}(kT - \alpha)d\alpha = \int N(\alpha)q^*(\alpha - kT)d\alpha$$

is a collection of zero-mean jointly Gaussian random variables with covariance (see the PDC notes)

$$E[z[k]z[j]^*] = N_0\langle q(t-jT), q(t-kT)\rangle.$$

Finally

$$(s \star h \star \tilde{q})(t) = \sum_{j} a[j](p \star h \star \tilde{q})(t - jT).$$

Therefore,

$$(s\star h\star \tilde{q})(kT) = \sum_{j} a[j](p\star h\star \tilde{q})(kT-jT) = \sum_{n} a[k-n]\underbrace{(p\star h\star \tilde{q})(nT)}_{=:h[n]}$$

Putting everything together we get

$$y[k] = \sum_{n} a[k-n]h[n] + z[k],$$

where the symbol-level equivalent channel is

$$h[n] = p(t) \star h(t) \star q^*(-t) \Big|_{t=nT}.$$

- 3. From our results of part 2, we know that if q(t) is a Nyquist pulse, i.e., $\langle q(t-kT), q(t-jT) \rangle = \mathbb{1}\{k=j\}$ the noise process z[k] will be white (i.e., an i.i.d. Gaussian sequence).
- 4. From PDC we know that sufficient statistics for decisions are obtained by projecting the received signal onto the space spanned by the set of signals. Therefore, if $\{q(t-kT)\}_{k\in\mathbb{Z}}$ forms a basis for the signal space spanned by $\{(p\star h)(t-kT)\}_{k\in\mathbb{Z}}$, the observables y[k] will be sufficient statistics for decisions. To see this, suppose that $\psi_1(t), \ldots, \psi_n(t)$ is an orthonormal basis, and $v_1(t), \ldots, v_n(t)$ is another basis, not necessarily orthonormal. Let $r_i = \langle r(t), \psi_i(t) \rangle$ be the projections that form a sufficient statistic. Let $t_i = \langle r(t), v_i(t) \rangle$ be the projections on the second basis. We want to show that we can recover r_1, \ldots, r_n from t_1, \ldots, t_n .

$$r_{i} = \langle r(t), \psi_{i}(t) \rangle \stackrel{(i)}{=} \langle r(t), \sum_{j} \alpha_{ij} v_{j}(t) \rangle$$
$$= \sum_{j} \langle r(t), v_{j}(t) \rangle \alpha_{ij}^{*}$$
$$= \sum_{j} t_{j} \alpha_{ij}^{*},$$

where in (i) we used the fact that $\psi_i(t)$ can be written as a linear combination of $v_1(t), \ldots, v_n(t)$.

5. With this choice of h(t),

$$p(t) \star h(t) \star q^*(-t) = f(t) \star h(t) = \sum_{l=0}^{M-1} \alpha_l f(t - \tau_l).$$

Consequently

$$p(t) \star h(t) \star q^*(-t) \Big|_{t=nT} = \sum_{l=0}^{M-1} \alpha_l f(nT - \tau_l).$$