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This Week’s Assignment

We implement a software-defined-radio version of a basic point-to-point

communication system for band-limited white Gaussian channels. (See

Principles of Digital Communications.)
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In This Lecture

We review the big picture, namely

• the notion of orthonormal expansion for the sender’s implementation

• the Nyquist criterion, to construct a convenient orthonormal basis

• the notions of projection and sufficient statistic to justify the receiver

front-end.

We review the sampling theorem, we recall that it belongs to the family of

orthogonal expansions like the Fourier transform and all of its variants.

We discuss questions that have come up in the past.
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The Channel of Interest

We focus on the following waveform channel:

- h(t)

s(t) R(t)
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# 

-

6

N(t)

where N(t) is white Gaussian noise and

hF(f ) =

{
1, |f | ≤ B

0, otherwise.

If the signals are real-valued, then the power spectral density (PSD) of the

noise is N0
2 . If they are complex-valued, which is the case if they are

baseband-equivalent signals, then the PSD is N0.
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Review of the Fundamental Concepts

Digital communication is characterized by a finite (possibly very large) set of

messages. Let M be the cardinality of the message set.

Let {s1(t), s2(t), . . . , sM(t)} be the associated finite-energy signals. These

signals span an inner product space W in L2.

Let ψ1(t), ψ2(t) . . . , ψn(t), be an orthonormal basis for W.

For each i, there exists a unique ntuple si = (si,1, si,2, . . . , si,n) such that

si(t) =

n∑
k=1

si,kψk(t).

5



The approach followed in the previous page underlines the generality of the

expansion

si(t) =

n∑
k=1

si,kψk(t)

and that of the sender’s block diagram.
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In practice, the signals {s1(t), s2(t), . . . , sM(t)} are not the starting point but

the result from choosing the codewords s1, s2, . . . , sM and an orthonormal

basis ψ1(t), ψ2(t) . . . , ψn(t) (more on the orthonormal basis later).

The codeword’s components are taken from a finite constellation of signal

points, e.g. from Quadrature Amplitude Modulation (QAM).
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We say that there is no coding when, over the random experiment of

selecting a message and sending the corresponding codeword, each codeword

component appears as being selected independently from the other

components.

On the other hand, coding introduces dependency among components.

Picking the components of si from a regular and small-dimensional

constellation like QAM simplifies the receiver.

From information theory we know that, for a well-designed system, we can

do so without compromising the achievable throughput.
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Without loss of optimality, the receiver front-end may project the received

signal r(t) = s(t) +N(t) into W. Let y(t) be the resulting signal. We may

write

y(t) =

n∑
k=1

ykψk(t),

where

yk = 〈r(t), ψk(t)〉.

Let y = (y1, y2, . . . , yn).

The n-tuple Y = (Y1, Y2, . . . , Yn) is a sufficient statistic. (We use capitals for

random variables.)
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This explains the generality of the receiver structure.
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A receiver that minimizes the error probability may decide that the

transmitted signal is (one of) the signals that minimizes the distance

‖y − si‖.
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Convenient Orthonormal Bases

For several reasons (including implementation convenience), it is particularly

appealing if, for some pulse ψ(t) and some epoch T , we can choose

ψi(t) = ψ(t− iT ).

Then we may obtain all the yk = 〈r(t), ψk(t)〉, k = 1, . . . , n with a single

filter, namely the matched filter.

If the matched-filter impulse response is chosen to be ψ∗(−t), then

yk = 〈r(t), ψk(t)〉 is obtained by sampling the filter output at t = kT .

Nyquist criterion helps us design such a pulse ψ(t) while controlling the

power spectral density of the resulting communication signal.

A pulse ψ(t) such that {ψ(t− iT ) : i ∈ Z} is an orthonormal family is

referred to as a Nyquist pulse.
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Setup Considered Hereafter

-
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��
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@
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∑
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jT
N(t)

AWGN

6

We may assume baseband communication since passband communication

can be ensured by means of an extra “layer” namely the up-conversion

before and the down-conversion after the waveform channel.
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Equivalent Discrete-Time Channel

We assume that the channel frequency response is 1 over the band occupied

by the signal. The time-domain condition is (ψ ? h)(t) = ψ(t), where ?

denotes convolution. This means that the channel is “transparent” to the

pulse.

Then the input/output behavior of the above block diagram is identical to

that of the following discrete-time AWGN channel model.

sj -��
��

- Yj = sj + Zj
6

Zj
i.i.d.

where Zj ∼ N (0, N0/2) if N(t) is real-valued and Zj ∼ NC(0, N0) if N(t) is

complex-valued.
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Derivation of Nyquist Criterion

We are looking for functions ψ(t) with the property∫ ∞
−∞

ψ(t− nT )ψ∗(t)dt = δn. (1)

This means that {ψ(t), ψ(t− T ), . . . , ψ(t− nT )} is an orthonormal set.

Hence it is an orthonormal basis for the space spanned by

{s1(t), s2(t), . . . , sM(t)}.

If we were completely free to choose ψ(t), it would be easy to design it in the

time domain. For instance we could chose a rectangle.

But we want ψ(t) to have a certain characteristic in the frequency domain,

e.g. limited bandwidth. (Recall that the power spectral density of the

transmitted signal is proportional to |ψF(f )|2.) So we are interested in the

frequency-domain equivalent of (1).
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Define the periodic function of period 1
T

g(f ) =
∑
k∈Z

ψF

(
f − k

T

)
ψ∗F

(
f − k

T

)
=
∑
k∈Z

∣∣∣∣ψF (f − k

T

)∣∣∣∣2 .
Using Parseval’s relationship, we can now rewrite (1) as follows:

δn =

∫ ∞
−∞

ψF(f )ψ
∗
F(f )e

−j2πnTfdf =

∫ 1
2T

− 1
2T

g(f )e−j2πnTfdf.

If we divide left and right by the period, i.e. by 1/T , we obtain

Tδn = T

∫ 1
2T

− 1
2T

g(f )e−j2πnTfdf.

The right hand side is the Fourier series coefficient An of the function g(f )

of period 1/T . The left hand side says that A0 = T and An = 0 for n 6= 0.

Hence g(f ) is the constant function that takes the value T everywhere.
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Nyquist Criterion

Theorem1 (Nyquist). Let ψ(t) be an L2 function. The set {ψ(t− kT )}∞k=−∞
consists of orthonormal functions if and only if

l.i.m.

∞∑
k=−∞

∣∣∣∣ψF(f − k

T
)

∣∣∣∣2 = T for f ∈ R (2)

If |ψF(f )| is an even function (always the case if ψ(t) is real-valued) and has

support within an interval of width 2/T , checking Nyquist condition is

particularly easy:

and 

f

T
|ψF |2( 1

2T
− ε) + |ψF |2(− 1

2T
− ε) = T

|ψF |2(f) |ψF |2(f − 1
T
)

1
2T

1
T

1l.i.m. stands for limit in mean square or, equivalently, limit in L2 norm. It is a technicality that can be neglected in this course.
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A Popular Practical Choice

For any roll-off factor β ∈ (0, 1),

|ψF |2(f ) =


T, |f | ≤ 1−β

2T

T
2

(
1 + cos

[
πT
β

(
|f | − 1−β

2T

)])
, 1−β

2T < |f | < 1+β
2T

0, otherwise

fulfills Nyquist criterion.

By taking the inverse Fourier transform of ψF(f ), we obtain the pulse ψ(t),

called root-raised-cosine pulse. The result (after some manipulations) is

ψ(t) =
4β

π
√
T

cos
(
(1 + β)π t

T

)
+ (1−β)π

4β sinc
(
(1− β) tT

)
1−

(
4β t

T

)2 ,

where

sinc(x) =
sin(πx)

πx
.
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Sampling Theorem Revisited

The sampling theorem plays a key role in software-defined radio. Let us

review it.

Assume that s(t) is a continuous L2 function, and sF(f ) = 0, f 6∈ [−B,B].

Then we can write

s(t) =
∑
i

s(iT ) sinc

(
t− iT
T

)
for any T < 1

2B .

Recall that the Fourier transform of sinc( tT ) is the rectangular function

sincF(f ) =

{
T, |f | ≤ B

0, otherwise,

where B = 1
2T .
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It is straightforward to see that 1√
T
sincF(f ) fulfills the Nyquist criterion.

Hence

ψ(t) =
1√
T
sinc

(
t

T

)
has the property

〈ψ(t), ψ(t− kT )〉 = δk.

We call such a pulse ψ(t) a Nyquist pulse.

We have discovered that a simple rescaling turns the sampling theorem into

an orthonormal expansion, namely

s(t) =
∑
i

s(iT ) sinc

(
t− iT
T

)
(sampling thm)

=
∑
i

siψ(t− iT ) (orthonormal expansion)

where

si = s(iT )
√
T and ψ(t) =

1√
T
sinc

(
t

T

)
.
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To remember the relationship si = s(iT )
√
T we may compare terms in∑

|si|2 =
∫
|s(t)|2dt ≈

∑
|s(iT )|2T

where the equality holds since an orthonormal expansions relates a signal to

the corresponding n-tuple of coefficients via a unitary transformation (i.e., a

norm-preserving transformation).

The expression on the right is Riemann’s approximation to the integral.

As a byproduct we observe that Riemann’s “approximation” is actually exact

when we use samples that fulfill the sampling theorem.

An even easier way to remember that si = s(iT )
√
T is to notice that for a

fixed signal s(t), the value of
∑
|s(iT )|2 halves when we double T . Hence,∑

|s(iT )|2T does not depend on the value of T .
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To summarize: when we sample a signal, we have to multiply the samples by√
T if we want the norm of the resulting discrete-time signal to be equal that

of the original continuous-time signal.

We recommend that you normalize the discrete-time version of ψ(t) that you

use to implement the sender and the receiver. (See below why.)

With MATLAB/Python we can normalize a signal just by dividing it by its

norm.
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Something Useful for the Assignment

You may find the following to be useful (not done in PDC).

How to efficiently create the samples of

s(t) =
∑
k

skψ(t− kT )

from the sequence of coefficients sk and from the coefficients (normalized

samples) of ψ(t)?

Assumption and Notation:

s[k] :=
√
Tss(kTs)

ψ[k] :=
√
Tsψ(kTs)

T = NTs.

Now
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s[n] :=
√
Tss(nTs) =

∑
k

sk
√
Tsψ(nTs − kT )

=
∑
k

sk
√
Tsψ

(
(n− kN)Ts

)
=
∑
k

skψ[n− kN ] (3)

=
∑
l

ŝlψ[n− l] (4)

where we have defined

ŝl =

{
sk when l = kN for some integer k

0 otherwise.

In words, the sequence ŝl is obtained from the sequence sk by inserting

N − 1 zeros between consecutive symbols, i.e., by upsampling sk by a factor

N . In MATLAB, this is done via the command upsample. In Python, for

example, you can achieve that by using numpy.kron with an appropriate

sequence (1 followed by N − 1 zeros).
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What we have gained is that

s[n] =
∑
k

ŝkψ[n− k]

is the convolution of the upsampled symbols sequence ŝk and the sampled

pulse ψ[k]. MATLAB/Python provide functions to upsample and to convolve.
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Here is a related question: Suppose that we want to simulate a convolution

like

r(t) = s(t) ? h(t).

How do we obtain the coefficients of r(t) from the coefficients of s(t) and of

h(t)?

Define

s[n] = s(nTs)
√
Ts

h[n] = h(nTs)
√
Ts

r[n] = r(nTs)
√
Ts.

The relationship is

r[n] = (s ? h) [n]︸ ︷︷ ︸
discrete-time convolution

√
Ts.
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Here is why

r[n] =
√
Tsr(nTs)

=
√
Ts

∫
s(α)h(nTs − α)dα

=
√
Ts〈s(α), h∗(nTs − α)〉

=
√
Ts〈s[k], h∗[n− k]〉

=
√
Ts (s ? h) [n].
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About generating the discrete-time root-raised-cosine

pulse ψ[n] in MATLAB/Python

The continuous-time root-raised-cosine pulse ψ(t) is completely specified by

two parameters: the symbol time T and the roll-off factor β.

For the discrete-time pulse ψ[n], instead of T we need the

number-of-samples per symbol-interval T . (Once sampled, the notion of

time no longer makes sense. All you have, is a sequence of numbers.) Let us

call this SPS (for samples per symbol).

You can generate a truncated version of ψ[n] with the MATLAB function

rcosdesign. For Python, please check my_utilPDC.sol_rcosdesign. The

length of the truncated pulse is specified in terms of the number of symbols,

denoted by SPAN.

To summarize, rcosdesign requires the mandatory parameters BETA, SPAN,

and SPS.
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Frequently Asked Questions

Q1: If the sampling theorem is an orthogonal expansion, then I should be

able to obtain the samples from a projection. I don’t see the projection.

A1: Consider the sampling theorem written as an orthonormal expansion.

The coefficients are then computed according to si = 〈s(t), ψi(t)〉, where

ψi(t) = ψ(t− iT ) and ψ(t) is the normalized sinc. A matched filter

implementation of this consists of a lowpass filter with frequency response

ψF(f ) =

{√
T , |f | ≤ 1

2T

0, otherwise

and output sampled at time t = iT . But the above filter does nothing to the

signal (which vanishes outside the frequency interval [− 1
2T ,

1
2T ]) except for

scaling it by
√
T .

Hence the sampled output si = 〈s(t), ψi(t)〉 equals
√
Ts(iT ), as expected.
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Q2: Why do we care whether or not we normalize the sampled version of

ψ(t)?

A2: Several reasons:

(1): If you normalize, in absence of noise the ith matched filter output will

be exactly si. Verifying that it is indeed the case is a “sanity check” that you

should do.

(2): To implement the AWGN channel (sample-level implementation) you

need to figure out the correct variance of the Gaussian noise that the channel

adds to each sample. When we specify the SNR, it is the SNR at the output

of the matched filter the one that matters. If N = (N1, N2, . . . , Nn) is a

random vector with i.i.d. components and ψ = (ψ1, ψ2, . . . , ψn) has unit

norm, then the matched-filter output 〈N ,ψ〉 has the same variance as the

components of N .

In summary, normalization can save you a headache in debugging.
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Q3: How can we test the end-to-end system?

A3: One test is to check that the error probability is what it should be. For

4-QAM, the symbol (as opposed to bit) error probability is 2Q−Q2 where

Q = Q( d2σ̃). Here d
2 is half the minimum distance between 4-QAM points at

the matched filter output and σ̃2 is the noise variance per dimension at the

same point. If σ2 is the variance of the complex-valued noise, then 2σ̃2 = σ2.

It is useful to know that the average energy of m-PAM with symbol at

{±1,±3, . . . ,±(m− 1)} is m2−1
3 .

If S = X + iY where X and Y are independent m-PAM points and

i =
√
−1, then S belongs to M -QAM with M = m2. Due to the

independence of X and Y , the average energy of S is twice that of X, i.e., it

is twice that of m-PAM, namely 2(M−1)
3 .
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