Modern Digital Communications:
A Hands-On Approach

Basic Digital Communication Link

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Sept. 26, 2022



This Week’s Assignment

We implement a software-defined-radio version of a basic point-to-point

communication system for band-limited white Gaussian channels. (See

Principles of Digital Communications.)
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In This Lecture

We review the big picture, namely

e the notion of orthonormal expansion for the sender’'s implementation
e the Nyquist criterion, to construct a convenient orthonormal basis

e the notions of projection and sufficient statistic to justify the receiver
front-end.

We review the sampling theorem, we recall that it belongs to the family of
orthogonal expansions like the Fourier transform and all of its variants.

We discuss questions that have come up in the past.



The Channel of Interest

We focus on the following waveform channel:

s(t) R(1)
0

where N(t) is white Gaussian noise and

L, [fI<B
h p—
) {O, otherwise.

If the signals are real-valued, then the power spectral density (PSD) of the
noise Iis % If they are complex-valued, which is the case if they are
baseband-equivalent signals, then the PSD is NV,.
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Review of the Fundamental Concepts

Digital communication is characterized by a finite (possibly very large) set of
messages. Let M be the cardinality of the message set.

Let {s1(t),s2(t),...,sn(t)} be the associated finite-energy signals. These
signals span an inner product space W in L.

Let y1(t), Yo(t) ..., 1¥,(t), be an orthonormal basis for W.

For each ¢, there exists a unique ntuple s; = (s; 1, S;2, ..., Si,) such that

n

silt) =) sigtn(t).

k=1



The approach followed in the previous page underlines the generality of the

expansion
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In practice, the signals {si(t), s2(t), ..., sy (t)} are not the starting point but
the result from choosing the codewords sy, ss, ..., sy and an orthonormal
basis ¥ (%), 1¥s(t) ..., ¥, (t) (more on the orthonormal basis later).

The codeword’s components are taken from a finite constellation of signal
points, e.g. from Quadrature Amplitude Modulation (QAM).



We say that there is no coding when, over the random experiment of
selecting a message and sending the corresponding codeword, each codeword

component appears as being selected independently from the other
components.

On the other hand, coding introduces dependency among components.

Picking the components of s; from a regular and small-dimensional
constellation like QAM simplifies the receiver.

From information theory we know that, for a well-designed system, we can
do so without compromising the achievable throughput.



Without loss of optimality, the receiver front-end may project the received
signal r(t) = s(t) + N(t) into W. Let y(¢) be the resulting signal. We may

write

where

Let y = (y1, %2, - - -, Un)-

The n-tuple Y = (Y1, Y5, ..

random variables.)

y(t) =) ye(t),

yr = (r(t), Yi(t)).

., Y,,) is a sufficient statistic. (We use capitals for



This explains the generality of the receiver structure.
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A receiver that minimizes the error probability may decide that the

transmitted signal is (one of) the signals that minimizes the distance

ly — sill.



Convenient Orthonormal Bases

For several reasons (including implementation convenience), it is particularly
appealing if, for some pulse 1(t) and some epoch T', we can choose

Vi(t) = Y(t —T).

Then we may obtain all the y;, = (r(t),¢r(t)), k =1,...,n with a single
filter, namely the matched filter.

If the matched-filter impulse response is chosen to be 1*(—t), then
yr = (r(t),Yx(t)) is obtained by sampling the filter output at ¢t = kT

Nyquist criterion helps us design such a pulse ¢(¢) while controlling the
power spectral density of the resulting communication signal.

A pulse ¢ (t) such that {¢(t —iT) : i € Z} is an orthonormal family is
referred to as a Nyquist pulse.
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Setup Considered Hereafter

S1y -5 Sn s(t) = >_; syt —jT) R(t) Y= (R, ¢;)
() h(t) ) (=)
| i
N()
AWGN

We may assume baseband communication since passband communication
can be ensured by means of an extra “layer’ namely the up-conversion
before and the down-conversion after the waveform channel.
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Equivalent Discrete-Time Channel

We assume that the channel frequency response is 1 over the band occupied
by the signal. The time-domain condition is (¢ x h)(t) = ¥(t), where %
denotes convolution. This means that the channel is “transparent” to the
pulse.

Then the input/output behavior of the above block diagram is identical to
that of the following discrete-time AWGN channel model.

Sj ) Yj=s;+ 2

.i.d.

where Z; ~ N (0, Ny/2) if N(t) is real-valued and Z; ~ N¢(0, Ny) if N(t) is
complex-valued.
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Derivation of Nyquist Criterion

We are looking for functions (t) with the property

/wt—nT “(B)dt = 6, (1)

This means that {¢(t),y(t —T),...,¥(t —nT)} is an orthonormal set.
Hence it is an orthonormal basis for the space spanned by

{81<t), 82<t>7 Ceey SM<t)}

If we were completely free to choose (1), it would be easy to design it in the
time domain. For instance we could chose a rectangle.

But we want v (t) to have a certain characteristic in the frequency domain,
e.g. limited bandwidth. (Recall that the power spectral density of the
transmitted signal is proportional to [1)=(f)|>.) So we are interested in the
frequency-domain equivalent of (1).
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Define the periodic function of period

(g ) (r-5) - X

keZ keZ

vr (f - ;)

Using Parseval'’s relationship, we can now rewrite (1) as follows:

5 _/ w}_ w}_ —]QWandf /1 —]27mdef.
2T

If we divide left and right by the period, i.e. by 1/T', we obtain

1
2T .
T5, = T/2 g(f)e=i2mTs gf.
1
2T

The right hand side is the Fourier series coefficient A,, of the function g(f)
of period 1/T. The left hand side says that Ay =T and A,, = 0 for n # 0.

Hence g(f) is the constant function that takes the value T everywhere.
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Nyquist Criterion

Theorem' (Nyquist). Let ¢(¢) be an L5 function. The set {¢(t — KT)}3°__
consists of orthonormal functions if and only if

L.im. EOO:

k=—o00

2

Vr(f—7)| =T forfeR )

[]

If |7(f)] is an even function (always the case if ¢(¢) is real-valued) and has
support within an interval of width 2/T', checking Nyquist condition is
particularly easy:

[Wr2(f) and [YF*(f — F)

T - [Wr(55 —€) + [UrP(—55 —¢) =T

> :

1 1

oT T

.im. stands for limit in mean square or, equivalently, limit in Lo norm. It is a technicality that can be neglected in this course.
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A Popular Practical Choice

For any roll-off factor g € (0,1),

[Yr)*(f) = <

( 1—
T7 |f‘ < Q—Tﬁ
i 1— 1— 1
F(1reos |F(11-5)]), <<%
0 otherwise

\ Y

fulfills Nyquist criterion.

By taking the inverse Fourier transform of 1) z(f), we obtain the pulse (t),
called root-raised-cosine pulse. The result (after some manipulations) is

(t)

where

483 cos ((1 -+ 5)77%) -+ (ig)ﬂ sinc ((1 — B)%)
T L (495)° |
sin(7x)

sinc(x) =
X
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Sampling Theorem Reuvisited

The sampling theorem plays a key role in software-defined radio. Let us
review it.

Assume that s(t) is a continuous £, function, and sz(f) =0, f € [—B, B].

Then we can write L
— 1
t) = [7) sl
s(t) Zs(z )Slnc( L )

1

for any T' < %.

t

Recall that the Fourier transform of sinc(7) is the rectangular function

T, |f|<B

0, otherwise,

sincg(f) = {

where B = L.
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It is straightforward to see that %SiﬂCf(f) fulfills the Nyquist criterion.

Hence
Y(t) = % sinc (%)

(W(t),¥(t = kT)) = 0.

has the property

We call such a pulse 9 (t) a Nyquist pulse.

We have discovered that a simple rescaling turns the sampling theorem into
an orthonormal expansion, namely

s(t) = 3 s(iT) sinc (t _TiT) (sampling thm)

= Z si(t —iT) (orthonormal expansion)

where
1 t

si=s(iT)VT and ¥(t) :ﬁsinc <T>
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To remember the relationship s; = s(iT)v/T we may compare terms in

S sf = [ IstoPde = Y IstT)PT

where the equality holds since an orthonormal expansions relates a signal to
the corresponding n-tuple of coefficients via a unitary transformation (i.e., a
norm-preserving transformation).

The expression on the right is Riemann’s approximation to the integral.

As a byproduct we observe that Riemann’s “approximation” is actually exact
when we use samples that fulfill the sampling theorem.

An even easier way to remember that s; = s(iT)v/T is to notice that for a
fixed signal s(t), the value of >_ |s(¢T)|* halves when we double T'. Hence,
S |s(iT)|*T does not depend on the value of T.
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To summarize: when we sample a signal, we have to multiply the samples by
VT if we want the norm of the resulting discrete-time signal to be equal that
of the original continuous-time signal.

We recommend that you normalize the discrete-time version of 1(¢) that you
use to implement the sender and the receiver. (See below why.)

With MATLAB/Python we can normalize a signal just by dividing it by its
norm.
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Something Useful for the Assignment

You may find the following to be useful (not done in PDC).

How to efficiently create the samples of

s(t) =Y sup(t — kT)

k

from the sequence of coefficients s, and from the coefficients (normalized
samples) of 1(t)?

Assumption and Notation:

slk] = \/T,s(kT,)

Y[k] = /Tp(KT,)
T = NT..

Now
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sin) = /Tus(nTy) = > sp/Tap(nT, — kT)
- i siv/ T ((n — kN)T)
~ zk: sitoln — kN (3)
~ zj:§z¢[n —1] (4)

where we have defined

X {sk when [ = kN for some integer k
S| —

0  otherwise.

In words, the sequence s; is obtained from the sequence s; by inserting

N — 1 zeros between consecutive symbols, i.e., by upsampling s;. by a factor
N. In MATLAB, this is done via the command upsample. In Python, for
example, you can achieve that by using numpy.kron with an appropriate
sequence (1 followed by N — 1 zeros).
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What we have gained is that

sfn] =) $upln — k]

k

is the convolution of the upsampled symbols sequence s; and the sampled
pulse ¥|k]. MATLAB/Python provide functions to upsample and to convolve.
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Here is a related question: Suppose that we want to simulate a convolution
like
r(t) = s(t) x h(t).

How do we obtain the coefficients of r(t) from the coefficients of s(¢) and of

h(t)?

Define

The relationship is

rln] = (s % h) [n] /T

\

-~
discrete-time convolution
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Here is why

rin] = \/Tyr(nT})
— /T, / s(@)h(nT, — a)da
= VTi(s(a), h*(nT; — o))
— /T,(s[k], h*[n — k))

= VT, (s%h)[n]
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About generating the discrete-time root-raised-cosine
pulse y|n| in MATLAB/Python

The continuous-time root-raised-cosine pulse 1 (t) is completely specified by
two parameters: the symbol time 7" and the roll-off factor .

For the discrete-time pulse v [n|, instead of T" we need the
number-of-samples per symbol-interval T". (Once sampled, the notion of
time no longer makes sense. All you have, is a sequence of numbers.) Let us
call this SPS (for samples per symbol).

You can generate a truncated version of 1|n| with the MATLAB function
rcosdesign. For Python, please check my_utilPDC.sol_rcosdesign. The
length of the truncated pulse is specified in terms of the number of symbols,
denoted by SPAN.

To summarize, rcosdesign requires the mandatory parameters BETA, SPAN,
and SPS.
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Frequently Asked Questions

Q1: If the sampling theorem is an orthogonal expansion, then | should be
able to obtain the samples from a projection. | don't see the projection.

Al: Consider the sampling theorem written as an orthonormal expansion.
The coefficients are then computed according to s; = (s(t), 1;(t)), where

Y;(t) = (t —iT) and (t) is the normalized sinc. A matched filter
implementation of this consists of a lowpass filter with frequency response

VT, |fI <3
0, otherwise

Vr(f) {

and output sampled at time ¢t = ¢1". But the above filter does nothing to the

sighal (which vanishes outside the frequency interval [—-, 5=]) except for

2T 2T
scaling it by v/T.

Hence the sampled output s; = (s(t), (1)) equals v/Ts(iT), as expected.
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Q2: Why do we care whether or not we normalize the sampled version of

P(t)?
A2: Several reasons:

(1): If you normalize, in absence of noise the ith matched filter output will

be exactly s;. Verifying that it is indeed the case is a “sanity check” that you
should do.

(2): To implement the AWGN channel (sample-level implementation) you
need to figure out the correct variance of the Gaussian noise that the channel
adds to each sample. When we specify the SNR, it is the SNR at the output
of the matched filter the one that matters. If N = (N, Ny,..., N,,) is a
random vector with i.i.d. components and ¥ = (¢, s, ..., %,) has unit
norm, then the matched-filter output (IN, 1)) has the same variance as the
components of IV.

In summary, normalization can save you a headache in debugging.
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Q3: How can we test the end-to-end system?

A3: One test is to check that the error probability is what it should be. For
4-QAM, the symbol (as opposed to bit) error probability is 2Q) — Q* where
Q = Q(L). Here ¢ is half the minimum distance between 4-QAM points at
the matched filter output and 2 is the noise variance per dimension at the
same point. If o2 is the variance of the complex-valued noise, then 262 = o?.
It is useful to know that the average energy of m-PAM with symbol at

. m’—1
{£1,£3,...,&£(m — 1)} is "5—.

If S =X +1Y where X and Y are independent m-PAM points and

i = +/—1, then S belongs to M-QAM with M = m?. Due to the

independence of X and Y, the average energy of S is twice that of X, i.e., it
2(M—1)

is twice that of m-PAM, namely .
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