
Modern Digital Communications:
A Hands-On Approach

OFDM

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Nov. 19, 2024

1

Review and Motivation

The (baseband-equivalent) signaling method of choice for band-limited

AWGN channels is1

x(t) =
∑
k

akψ(t− kT),

where ak is a sequence of symbols, typically from a QAM constellation, T is

the symbol time, and the pulse ψ(t) is unit-norm and such that it is

orthogonal to ψ(t− kT) for any nonzero integer k, i.e.,

〈ψ(t), ψ(t− kT)〉 = δk.

If the channel only adds noise, then the channel output is

y(t) = x(t) + z(t),

where we are assuming that the noise z(t) has independent real and

imaginary parts which are both Gaussian, zero-mean, and white.
1By default, we use capital letter for random variables and random processes, but not in these notes. Here we reserve capital letters for quantities

(variable and functions) that are in the Fourier domain.

2

We like the above signalling method for various reasons, including the

following:

• The signal is written as an orthonormal expansion.

• The fact that the orthonormal basis consists of shifted versions of a

single pulse, simplifies the implementation. At the sender, we obtain

akψ(t− kT) by sending akδ(t− kT) into a filter of impulse response

ψ(t). At the receiver, we obtain all the sufficient statistics by sending

the received baseband-equivalent signal into the matched filter of

impulse response ψ∗(−t) and by sampling the matched filter output at

integer multiples of T .

• For a fixed power spectral density of the noise, the error probability is

completely determined by the encoder.

3

• If the symbols produced by the encoder are uncorrelated, which is the

case here, then the power spectral density (PSD) of the transmitted

signal is, up to scaling, completely determined by the pulse ψ(t)

according to

Sx(f) = E |ψF(f)|2

T
,

where E = E
[
|ak|2

]
is the symbol energy.

• From the encoder output to the sampled matched filter output, the

channel is the symbol-level discrete-time channel

yk = ak + zk,

where zk is the kth element of a sequence of i.i.d. circularly symmetric

Gaussian random variables.

4

If the channel is a linear time-invariant (LTI) system of impulse response h,

the received signal has the form

y(t) =
∑
k

akp(t− kT) + z(t),

where p = ψ ? h.

Because typically we do not have control over h, we cannot choose p to be

orthogonal to its shifts by integer multiples of T .

5

The T -spaced samples of the matched filter output at the receiver (matched

to ψ) are still a sufficient statistic. (The filtered signal is in the space

spanned by the basis that created the original signal.)

The general form of those samples is

yk =

L−1∑
l=0

ak−lhl + zk. (1)

Here hl, l = 0, 1, . . . , L− 1 is the impulse response of the discrete-time

channel “seen” by the symbols.

Now each yk depends on ak, ak−1, . . . , ak−L+1, a phenomenon called

inter-symbol interference (ISI).

There are several methods to deal with ISI. The most common ones are:

• We undo the ISI by means of an equalizer. A linear equalizer is a linear

filter that “undoes” the ISI at the expense of boosting the variance of

the noise.

6

• By means of a maximum-likelihood sequence decoder, implemented

with the Viterbi algorithm. This achieves optimal performance in terms

of minimizing the block-error probability, but it can be quite complex.

Its complexity is proportional to ML, where M is the size of the symbol

alphabet and L the length of the sampled channel-impulse-response.

• We do OFDM, which is a signaling method that prevents ISI from

happening. This is an elegant and efficient signaling method, which is

adopted in many modern communication standards, including the 4G

and 5G wireless standards.

The OFDM concept is developed in the remainder of these notes.

7

The Fundamental Question Leading to OFDM

Given that any signaling method can be written as an orthonormal expansion

such as

x(t) =

N−1∑
n=0

anpn(t),

can we construct a set of pulses pn, n = 0, 1, . . . , N − 1, such that pi ? h is

orthogonal to pj ? h whenever i 6= j? And if yes, can we do it so that it

works regardless of the channel impulse response h?

The answer to both questions is yes, and the functions to be used are the

eigenfunctions of the LTI.

8

Every LTI system has the complex exponentials as eigenfunctions.

- h(t)

pn(t) = ej2πfnt r(t)

-

r(t) =

∫ ∞
−∞

pn(t− α)h(α)dα

=

∫ ∞
−∞

ej2πfn(t−α)h(α)dα

= ej2πfnt
∫ ∞
−∞

h(α)e−j2πfnαdα

= pn(t)hF(fn).

If the eigenfunction pn(t) = exp{j2πfnt} is the input to an LTI of impulse

response h(t), the output is pn(t)λn, where λn = hF(fn) is the Fourier

transform of h(t) evaluated at fn.

9

Hence if we send the sum of weighted pulses2

N−1∑
n=0

An exp{j2πfnt},

where the weight is the information-carrying symbol, we receive

N−1∑
n=0

Anλn exp{j2πfnt} + z(t).

We see that the symbols have been modified from An to Anλn.

Furthermore, using Parseval’s identity, it is clear that two complex

exponentials of distinct frequencies are orthogonal to one another. Hence the

channel output is still a sequence of weighted pulses that are orthogonal to

one another, where the weight is Anλn.

2For reasons that will become clear, we are now using An instead of an.

10

If we can estimate λn, we are back to the basic PDC setting that we know so

well.

Complex exponentials are only a tentative answer since there are two

technical problems: Complex exponentials are neither finite-energy nor of

finite support.

To fix these problems, we choose a fixed time T = NTs, where Ts is the

sampling interval and N a positive integer, we truncate the complex

exponentials so that their support is [0, T], and we choose the frequencies to

be integer multiples of 1
T , i.e.,

pn(t) =
1

N
exp
{
j2π

n

T
t
}
1[0,T](t),

where 1[0,T](t) is the indicator function of the interval [0, T], i.e., it is 0

everywhere except for t ∈ [0, T] where it is 1.

It is straightforward to verify that pk is orthogonal to pl when k 6= l.

11

Unfortunately, by truncating the complex exponential we have lost the

property that it is an eigenfunction of any LTI system. The following figure is

an example of the output of an LTI system when pn(t) is the input and the

impulse response is h. (The frequency-domain figures on the right can be

ignored.)

0 5 10 15 20 25 30 35

ms

-1

-0.5

0

0.5

1

p
n
(t

)

input signal (only real part shown)

-5 0 5

KHz

0

100

200

300
fft of input (absolute value shown)

0 5 10 15 20 25 30 35

ms

-1

-0.5

0

0.5

1
output signal (only real part shown)

-5 0 5

KHz

0

100

200

300
fft of output (absolute value shown)

0 5 10 15 20 25 30 35

ms

-0.2

-0.1

0

0.1

0.2

h
(t

)

impulse response

-5 0 5

KHz

0

0.5

1

1.5
fft of impulse response (absolute value)

12

What is important here is that the convolutional integral

y(t) =

∫ LTs

0

x(t− α)h(α)dα,

where LTs is the length of the impulse response h, tells us that the output at

some t can be affected only by the input at t ∈ [t− LTs, t].

This means that for t ∈ [LTs, T], the output y(t) is the same whether the

input is the original complex exponential or its truncated counterpart.

So if we send

x(t) =

N−1∑
n=0

Anpn(t),

for t ∈ [LTs, NTs] we receive

y(t) =

N−1∑
n=0

Anλnpn(t) + z(t).

Instead of sending x(t) we send

xC(t) = x̃(t) + x(t),

13

where

x̃(t) = x(t + NTs)1[−LTs,0](t)

is obtained by copying the tail of x(t) and pasting it in front of x(t).

Since x(t) is a periodic signal of period T (or an integer fraction thereof),

copying its tail and pasting it in front amounts to extending the domain of

the truncated complex exponentials from [0, NTs] to [−LTs, NTs]. (As we

will see, copy-pasting turns out to be more advantageous from an

implementation point of view.)

In so doing, the part of the output which is unaffected by the truncation of

the complex exponentials is extended to t ∈ [0, NTs] = [0, T].

14

Next, we need to find an efficient way to construct xC(t). Since we are doing

SDR, we just need its samples. In fact, we only need the samples of x(t),

since the samples of x̃(t) are the last L− 1 samples of x(t).

Hence we need an efficient way to construct x = [x0, . . . , xN−1], where

xk = x(kTs) =

N−1∑
n=0

Anpn(kTs)

=
1

N

N−1∑
n=0

An exp
{
j2π

n

T
kTs

}
=

1

N

N−1∑
n=0

An exp
{
j2π

n

N
k
}
.

We see that

x = DFT−1(A),

where A = (A0, . . . , AN−1)
T .

Notice that x = DFT−1(A) can be obtained very efficiently via

MATLAB/Python function ifft.

15

So we have an efficient way to construct

xC(t) = x̃(t) + x(t)

= cyclic extension︸ ︷︷ ︸
t∈[−LTs,0]

+

N−1∑
n=0

Anpn(t)︸ ︷︷ ︸
t∈[0,T]

.

For t ∈ [0, T], the received signal is

r(t) =

N−1∑
n=0

Anλnpn(t) + z(t).

16

Maximum Likelihood Receiver

The waveform former of the sender (PDC terminology) maps the samples

into the signal using the interpolation pulse p(t) = sinc(t
Ts

), which is a

Nyquist pulse.

Hence the receiver front end obtains sufficient statistics by filtering the

received signal with the matched filter of impulse response p∗(−t) = sinc(t
Ts

)

and output sampled at integer multiples of Ts.

Without loss of optimality, we can use a scaled version thereof, namely

q(t) =
1

Ts
sinc

(t
Ts

)
,

which is an ideal lowpass filter of edge-to-edge bandwidth 1
Ts

.

We are going to use only the samples taken at t = 0, Ts, 2Ts, . . . , (N − 1)Ts,

which means that we are discarding the part of the signal which is affected

by the truncation of the complex exponential.

17

Of course this results in a suboptimal receiver, but if L is small compared to

N , then we expect the loss to be negligible.

Let the resulting vector of samples be

y = (y0, y1, . . . , yN−1)
T .

Let Y be the DFT of y. Since the DFT is an invertible transformation, there

is no loss of information in this step.

Recall that yk is the k-th sample of

r(t) =

N−1∑
n=0

Anλnpn(t) + z(t)

Hence

yk =
1

N

N−1∑
n=0

Anλn exp
{
j

2π

N
nk
}

+ zk,

where zk is iid, zero-mean, complex Gaussian of variance σ2 = N0
Ts

.

18

In vector form,

y = DFT−1
(
(λ0A0, . . . , λN−1AN−1)

T
)

+ z.

Hence

Y = DFT (y) = (λ0A0, . . . , λN−1AN−1)
T +Z,

where we have defined

Z = DFT (z)

as an iid, zero-mean, complex Gaussian vector of variance σ2N = N0N
Ts

in

each component. The scaling by N follows from the fact that 1√
N
DFT (z) is

a unitary transformation.

To summarize, from A to Y the channel is

Yn = Anλn + Zn, n = 0, . . . , N − 1.

These are N parallel channels that are completely independent. Each

channel is an AWGN channel except that the input to the nth channel is

scaled by λn. The key is that there is no ISI.

19

In matrix form,

Y = DA +Z,

where

D = diag(λ), λ = (λ0, . . . , λN−1)
T .

We will see that

λ = DFT (h0),

where h0 is the symbol-level channel. This information is not essential since

we will estimate λ from measurements.

It is time to say that we have focussed on sending one single OFDM block A

of length N by sending a signal xC(t) that vanishes outside the time interval

[−LTs, NTs]. The procedure can of course be repeated indefinitely by

sending the next block of N symbols over the next interval of T̃ = (L+N)Ts
seconds.

To help the receiver estimate the vector λ of channel coefficients, once in a

while we send a block of symbols that are known to the receiver, called

training symbols.

20

OFDM: From A MATLAB/Python Perspective

OFDM can be implemented very efficiently with MATLAB/Python.

For some frame length F and for some N (power of 2), form an N by F + 2

matrix of symbols from the desired constellation (e.g. QAM). The matrix

shall have the following form

S A(0)A(1) . . . A(F)

-
time

?frequency

The first column consists of the

training symbols, one symbol per

channel.

21

Next take the inverse DFT of each column. MATLAB/Python do this with

one command.

At this point, each column contains the samples needed to generate the

corresponding signal without the cyclic extension. The samples of the cyclic

extension are obtained by copying the bottom L− 1 rows of the matrix and

pasting them on top.

IFFT of the matrix

of the previous page

(bottom)

IFFT of the matrix

of the previous page

cyclic prefix

(copy of the bottom)

22

By means of the MATLAB command (:) (.flatten('F') for Python) we

finally obtain the vector that contains all the samples of the transmitted

signal.

It should now be clear how to organize the corresponding receiver operations.

23

Appendix A: The DFT as a Matrix

The DFT (discrete Fourier transform) of a vector u ∈ CN is the vector

U ∈ CN defined by

U = F †u

F = (f 0,f 1, . . . ,fN−1)

f i =


βi0

βi1

...

βi(N−1)

 i = 0, 1, . . . , N − 1,

(2)

where β = exp
{
j 2πN
}

is the primitive N -th root of unity in C.

The IDFT (inverse discrete Fourier transform) of U is u = 1
NFU .

This definition of DFT corresponds to the FFT defined in Matlab/Python.

Notice that FF † = NI where I is the identity matrix (and F=F T). Hence
1√
N
F is a unitary transformation.

24

Appendix B: A Convenient Interpretation

Let U ∈ CN and u = 1
NFU be its inverse DFT, which is what we send to

the reconstruction device (the waveform former). It is convenient to picture

u as follows3

u =
1

N




1

1
...

1


︸ ︷︷ ︸
samples

of

ej2πft

with

f = 0

×U0 +


1

ej
2π
N

...

ej
2π
N (N−1)


︸ ︷︷ ︸

samples

of

ej2πft

with

f = 1
T

×U1 + · · · +


1

ej
2π
N (N−1)

...

ej
2π
N (N−1)(N−1)


︸ ︷︷ ︸

samples

of

ej2πft

with

f = N−1
T

×UN−1


3For convenience, here we use the form ejx instead of exp{jx}.

25

By sending u to the waveform former (reconstruction device), we are

producing a linear combination of complex exponentials, where the n-th

complex exponential, n = 0, . . . , N − 1, has frequency n
T and its coefficient is

Un.

26

Appendix C: The Power Spectral Density

The transmitted signal (baseband-equivalent) can be written as

x(t) =

N−1∑
k=0

xk(t)

with

xk(t) =

∞∑
i=−∞

A
(i)
k φk(t− iT̃),

where

T̃ = T + TsL

and

φk(t) =
1

N
exp

{
j

2π

T
kt

}
1[−LTs,T](t).

27

The power spectral density (PSD) of the random process Xk(t) is (see e.g.

PDC)

E
[
|Ak|2

] |Φk(f)|2

T̃
,

where Φk(f) is the Fourier transform of φk(t).

Recall the following Fourier transform pairs:

1

N
1[
− T̃2 ,

T̃
2

](t) F⇐⇒ T̃

N
sinc(fT̃)

u(t− T̃)
F⇐⇒ U(f)e−j2πT̃ f ,

where U(f) is the Fourier transform of u(t).

28

Hence

|Φ0(f)|2 =
(T̃
N

)2
sinc2(fT̃)

|Φ1(f)|2 =
(T̃
N

)2
sinc2

((
f − 1

T

)
T̃

)
...

|Φk(f)|2 =
(T̃
N

)2
sinc2

((
f − k

T

)
T̃

)
.

The PSD of xk(t) is thus

E
[
|Ak|2

] T̃
N 2

sinc2
((

f − k

T

)
T̃

)

By summing over all k, we obtain the PSD of x(t).

Notice that the PSD of x(t) can be shaped by choosing an appropriate

constellation for An, n = 0, . . . , N − 1.

29

30

