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Review and Motivation

The (baseband-equivalent) signaling method of choice for band-limited
AWGN channels is'

(t) =Y agb(t —kT),
k
where a;. is a sequence of symbols, typically from a QAM constellation, 1" is

the symbol time, and the pulse () is unit-norm and such that it is
orthogonal to ¥ (t — kT') for any nonzero integer k, i.e.,

(W(t),Y(t — kT)) = o.
If the channel only adds noise, then the channel output is
y(t) = z(t) + 2(1),

where we are assuming that the noise z(t) has independent real and
imaginary parts which are both Gaussian, zero-mean, and white.

!By default, we use capital letter for random variables and random processes, but not in these notes. Here we reserve capital letters for quantities
(variable and functions) that are in the Fourier domain.



We like the above signalling method for various reasons, including the
following:

e [he signal is written as an orthonormal expansion.

e The fact that the orthonormal basis consists of shifted versions of a
single pulse, simplifies the implementation. At the sender, we obtain
ap)(t — kT) by sending a;0(t — kT') into a filter of impulse response
Y (t). At the receiver, we obtain all the sufficient statistics by sending
the received baseband-equivalent signal into the matched filter of

impulse response 1*(—t) and by sampling the matched filter output at
integer multiples of T

e For a fixed power spectral density of the noise, the error probability is
completely determined by the encoder.



e If the symbols produced by the encoder are uncorrelated, which is the
case here, then the power spectral density (PSD) of the transmitted
signal is, up to scaling, completely determined by the pulse ) (¢)
according to

_ (A1

where £ = E Uakﬂ is the symbol energy.

e From the encoder output to the sampled matched filter output, the
channel is the symbol-level discrete-time channel

Y = aj + Z,

where z;. is the kth element of a sequence of i.i.d. circularly symmetric
Gaussian random variables.



If the channel is a linear time-invariant (LTI) system of impulse response h,
the received signal has the form

y(t) =) ap(t — kT) + 2(t),

k
where p = 1 % h.

Because typically we do not have control over h, we cannot choose p to be
orthogonal to its shifts by integer multiples of T'.



The T-spaced samples of the matched filter output at the receiver (matched
to 1) are still a sufficient statistic. (The filtered signal is in the space
spanned by the basis that created the original signal.)

The general form of those samples is
L-1

Y = Z ap—1h + 2. (1)

=0
Here h;, [ =0,1,...,L — 1 is the impulse response of the discrete-time
channel “seen” by the symbols.

Now each y; depends on a;,ar_1,...,ar_1+1, @ phenomenon called
inter-symbol interference (ISI).

There are several methods to deal with ISI. The most common ones are:

e We undo the IS| by means of an equalizer. A linear equalizer is a linear
filter that “undoes” the ISI at the expense of boosting the variance of
the noise.



e By means of a maximum-likelihood sequence decoder, implemented
with the Viterbi algorithm. This achieves optimal performance in terms
of minimizing the block-error probability, but it can be quite complex.
lts complexity is proportional to M*, where M is the size of the symbol
alphabet and L the length of the sampled channel-impulse-response.

e We do OFDM, which is a signaling method that prevents ISI from
happening. This is an elegant and efficient signaling method, which is

adopted in many modern communication standards, including the 4G
and 5G wireless standards.

The OFDM concept is developed in the remainder of these notes.



The Fundamental Question Leading to OFDM

Given that any signaling method can be written as an orthonormal expansion

such as
N-1
p(t) =) anpalt),
n=0
can we construct a set of pulses p,, n =0,1,..., N — 1, such that p; x h is

orthogonal to p; x b whenever ¢ # 57 And if yes, can we do it so that it
works regardless of the channel impulse response h?

The answer to both questions is yes, and the functions to be used are the
eigenfunctions of the LTI.



Every LTI system has the complex exponentials as eigenfunctions.

pu(t) = e/ /nt r(t)
- h(t) -

r(t) = /_OO pu(t — a)h(a)da
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_ / ej%fn(t—a)h(awoé

©.¢)

— 6j27ffnt /OO h(Oé)@_]Qan&dOé

©. @)

= pu(t)hr(fn)-

If the eigenfunction p,(t) = exp{j27 f,t} is the input to an LTI of impulse
response h(t), the output is p,(t)\,, where \, = hx(f,) is the Fourier
transform of h(t) evaluated at f,.



Hence if we send the sum of weighted pulses®

N-1
Z Ay exp{j2n fut},
n=0

where the weight is the information-carrying symbol, we receive
N-1

Z A\ exp{j2m ft} + 2(t).

n=0

We see that the symbols have been modified from A, to A, \,.

Furthermore, using Parseval’s identity, it is clear that two complex
exponentials of distinct frequencies are orthogonal to one another. Hence the
channel output is still a sequence of weighted pulses that are orthogonal to
one another, where the weight is A, \,,.

2For reasons that will become clear, we are now using A,, instead of a,.
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If we can estimate )\, we are back to the basic PDC setting that we know so

well.

Complex exponentials are only a tentative answer since there are two
technical problems: Complex exponentials are neither finite-energy nor of
finite support.

To fix these problems, we choose a fixed time 1" = NT, where T is the
sampling interval and /N a positive integer, we truncate the complex
exponentials so that their support is [0, 7], and we choose the frequencies to
be integer multiples of % l.e.,

pa(t) = %GXP {jQW%t}ﬂ[O,T] (1),
where 1, 7(¢) is the indicator function of the interval |0,77, i.e., it is 0

everywhere except for t € [0, T| where it is 1.

It is straightforward to verify that p;. is orthogonal to p; when k = [.
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Unfortunately, by truncating the complex exponential we have lost the
property that it is an eigenfunction of any LTI system. The following figure is
an example of the output of an LTI system when p,(t) is the input and the
impulse response is h. (The frequency-domain figures on the right can be
ignored.)
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What is important here is that the convolutional integral

LTy
yit) = [ alt ~ ahla)da
0
where LT is the length of the impulse response h, tells us that the output at

some t can be affected only by the input at ¢t € [t — LTj,t].

This means that for t € LT, T}, the output y(t) is the same whether the
input is the original complex exponential or its truncated counterpart.

So if we send

£t =3 Aupult),

for t € [LTs, NT,] we receive
N-1

y(t) = 3= Adupalt) + 2(8).

Instead of sending x(¢) we send

ro(t) = o(t) + (1),
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where
f(t) — [C(t + NTS)]I[—LTS,O] (t)
is obtained by copying the tail of x(¢) and pasting it in front of x(¢).

Since x(t) is a periodic signal of period T' (or an integer fraction thereof),
copying its tail and pasting it in front amounts to extending the domain of
the truncated complex exponentials from [0, NT;| to |[—LT,, NT;]. (As we
will see, copy-pasting turns out to be more advantageous from an
implementation point of view.)

In so doing, the part of the output which is unaffected by the truncation of
the complex exponentials is extended to ¢t € [0, NT,| = [0, T].
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Next, we need to find an efficient way to construct x¢(t). Since we are doing
SDR, we just need its samples. In fact, we only need the samples of x(t),

since the samples of Z(t) are the last L — 1 samples of z(t).

Hence we need an efficient way to construct @ = [z, ..., xy_1], where

X = z(kTs) — Z Anpn<kTs>

We see that
x = DFT 'A),

where A = (Ao, ce 714]\7_1>T.

Notice that & = DEFT!(A) can be obtained very efficiently via
MATLAB /Python function ifft.
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So we have an efficient way to construct

zro(t) = T(t) + x(t)

N-1
= cyclic extension + Z Appn(t).
te[— LT, 0] =
t€]0,T]

For t € [0, T, the received signal is

N—-1

M) =3 Adhapa(t) + 2(1),

n=0
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Maximum Likelihood Receiver

The waveform former of the sender (PDC terminology) maps the samples
into the signal using the interpolation pulse p(t) = sinc(TiS), which is a

Nyquist pulse.

Hence the receiver front end obtains sufficient statistics by filtering the
received signal with the matched filter of impulse response p*(—t) = sinc(TiS)

and output sampled at integer multiples of 7.

Without loss of optimality, we can use a scaled version thereof, namely

(t) I . ( t )
= — SINC | —
q TS TS Y,

which is an ideal lowpass filter of edge-to-edge bandwidth -+

Ty
We are going to use only the samples taken at t = 0,75, 27, ..., (N — 1)1,
which means that we are discarding the part of the signal which is affected
by the truncation of the complex exponential.
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Of course this results in a suboptimal receiver, but if L is small compared to
N, then we expect the loss to be negligible.

Let the resulting vector of samples be
Yy = (yOJ Yty - .- 7yN—1>T‘

Let Y be the DFT of y. Since the DFT is an invertible transformation, there
is no loss of information in this step.

Recall that y;. is the k-th sample of
N-1

— Z An)\npn(t) T Z(t)

n=0

Hence

ZA An exp{ —nk}Jrzk,

where z; is i1id, zero-mean, complex Gaussian of variance o2 = 20

Ts "
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In vector form,
y = DFT ' ((MAg, ..., Av1An 1)) + 2.
Hence
Y = DFT(y) = Modor ... Ay Av )T + Z.

where we have defined
Z =DFT(z)
NN

as an iid, zero-mean, complex Gaussian vector of variance o?N = —7— 1IN
each component. The scaling by N follows from the fact that ﬁDFT(z) IS
a unitary transformation.

To summarize, from A to Y the channel is
Y, =AM\ +72, n=0,...,N—1.

These are N parallel channels that are completely independent. Each
channel is an AWGN channel except that the input to the nth channel is
scaled by A,. The key is that there is no ISI.
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In matrix form,
Y =DA+ Z,

where
D =diag(A), A= (Ao,..., v_1)"

We will see that

A= DFT(hy),
where hg is the symbol-level channel. This information is not essential since
we will estimate A from measurements.

It is time to say that we have focussed on sending one single OFDM block A
of length N by sending a signal x¢(t) that vanishes outside the time interval
|— LT, NT,|. The procedure can of course be repeated indefinitely by
sending the next block of N symbols over the next interval of T = (L + N)T,
seconds.

To help the receiver estimate the vector A of channel coefficients, once in a
while we send a block of symbols that are known to the receiver, called
training symbols.
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OFDM: From A MATLAB /Python Perspective

OFDM can be implemented very efficiently with MATLAB /Python.

For some frame length F' and for some N (power of 2), form an N by F' + 2
matrix of symbols from the desired constellation (e.g. QAM). The matrix
shall have the following form

time
The first column consists of the
S 1AOAW] - |AE) training symbols, one symbol per
channel.

 frequency
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Next take the inverse DFT of each column. MATLAB/Python do this with
one command.

At this point, each column contains the samples needed to generate the
corresponding signal without the cyclic extension. The samples of the cyclic
extension are obtained by copying the bottom L — 1 rows of the matrix and

pasting them on top.

cyclic prefix
(copy of the bottom)

IFFT of the matrix IFFT of the matrix
of the previous page of the previous page

(bottom)
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By means of the MATLAB command (:) ( .flatten('F') for Python) we
finally obtain the vector that contains all the samples of the transmitted

signal.

It should now be clear how to organize the corresponding receiver operations.
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Appendix A: The DFT as a Matrix

The DFT (discrete Fourier transform) of a vector u € C¥ is the vector
U < CV defined by

U=Flu
FZ(fO?fl)"').fN—l)

A )
fi= B 1 =0,1,...,N — 1,

K5“§_U)

where 8 = exp {j2} is the primitive N-th root of unity in C.

The IDFT (inverse discrete Fourier transform) of U is u = %FU.

This definition of DFT corresponds to the FFT defined in Matlab/Python.
Notice that F'F'' = NI where I is the identity matrix (and F'=F"). Hence
ﬁF IS a unitary transformation.
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Appendix B: A Convenient Interpretation

Let U € CV and u = %FU be its inverse DFT, which is what we send to
the reconstruction device (the waveform former). It is convenient to picture

u as follows?®

)
? ><lﬁ) + “7
) i,
1 | —— ~ ~— _
U= | samples samples
of of
p2m ft 27 ft
with with
e F-

3For convenience, here we use the form e/? instead of exp{jz}.
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samples
of
€j2ﬂft
with

__ N-1
f=F

XUn_1




By sending u to the waveform former (reconstruction device), we are
producing a linear combination of complex exponentials, where the n-th
complex exponential, n =0,..., N — 1, has frequency = and its coefficient is

Un.
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Appendix C: The Power Spectral Density

The transmitted signal (baseband-equivalent) can be written as

o) = 3 a0

with N

we(t) = Y AVt —iT),
where
and

1 21
Or(t) = ¥ exp {]Tkt} L _rr,m ().
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The power spectral density (PSD) of the random process Xj(t) is (see e.g.
PDC)
Pr(f)I°
B[4 2k
[ Ax] =
where ®(f) is the Fourier transform of ¢ (t).

Y

Recall the following Fourier transform pairs:

1 F
—1 [_ N’%ﬂ] <t> <

N sine(fT)

=9

N[~

~

wt—T) <&  U(f)e >/,

where U(f) is the Fourier transform of w(t).
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Hence

The PSD of xx(t) is thus
T kN -
o1 4 .9 K
E || Axl?] 773 sine ((f T)T>

By summing over all k, we obtain the PSD of xz(¢).

Notice that the PSD of () can be shaped by choosing an appropriate
constellation for A,, n=0,...,N — 1.
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PSD of Xn(t) for several n
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