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Goal

The goal of this module is to summarize how to compute the receiver

position given the data (ephemeris) and the pseudorange for at least 4

satellites.
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Model Versus Reality

So far we have assumed an ideal model. In reality (see e.g., Misra and Enge,

p. 75),

• The earth is not round, there is a gravitational field due to the sun and

the moon, and there is solar radiation pressure. All these perturb the

satellite orbit.

• The earth’s rotational axis is subject to precession (periodic oscillation

with a period of 26,000 years due to the torque created by the sun and

the moon on the non-homogeneous earth) and nutation (period 18.6

years).

• The earth’s angular speed is not uniform.

• The earth moves with respect to the earth’s rotational axis. This is

called polar motion. (About 15m per year.)
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Because of the above effects, some of the “constants” actually have

correction terms that depend on time. Here they are:

Ωer = Ω0 − Ω̇et ⇒ Ω0 + Ω̇(t− toe)− Ω̇et.

You may think of Ω0 + Ω̇(t− toe) as a Taylor series expansion of Ω0 around

the time toe called reference time of the ephemeris.

The parameters Ω0, Ω̇, and toe are sent by the satellite as part of the

ephemeris data.

n ⇒ n + ∆n =
√

µ
a3

+ ∆n. (Recall that M = M0 + n(t− toe))

φ(k) = ν(k) + ω =⇒ ν(k) + ω+ cωs sin
(
2(ν(k) + ω)

)
+ cωc cos

(
2(ν(k) + ω)

)
.

r(k) ⇒ a(1− e cosE(k)) + crs sin
(
2(ν(k) + ω)

)
+ crc cos

(
2(ν(k) + ω)

)
.

i(k) ⇒ i0 + cis sin
(
2(ν(k) + ω)

)
+ cic cos

(
2(ν(k) + ω)

)
+ IDOT (t− toe).
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TOW

• The time of the week TOW is a parameter sent by the satellite in each

subframe.

• It is the GPS time at which the next subframe is supposed to start.

• Hence, ttr = TOW− 6 refers to the GPS time at which the current

subframe was supposed to start.

• In reality, due to the satellite clock error δt(k), the current subframe of

satellite k started at GPS time ttr − δt(k).
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- t (GPS time)? ?

satellite k starts sending the subframe

at GPS time ttr − δt(k)

?

receiver starts receiving the subframe of satellite k

EMW received at t∗ leaves satellite k

at GPS time ttr − δt(k) − a(k)(1 + ν(k))

t̃k − δtrt∗ − δtr
� -

a(k)(1 + ν(k))

� -

a(k)
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Getting The Position in 8 Steps

The following steps lead to the receiver position. (For more information see

Table 20-IV (pages 97,98) of the official GPS document that you can find on

the course web page.)

Step 1: Find the ephemerides of the “visible” satellites and the

pseudoranges at some receiver time t∗ (the same for all satellites). (We have

this part from the previous assignment.)
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Step 2: Write calcE(ephdata,t).

This function returns the eccentric anomaly E(k) at GPS time t.

Recall that

M (k) = E(k) − e sinE(k),

where

• M (k) = M0 + n(t− toe) is the mean anomaly.

• n =
√

µ
a3

+ ∆n is the corrected mean motion,

• µ = 3.986005× 1014 m3/sec2 is the earth’s gravitational constant

• toe is the reference time of the ephemeris,

• e, M0, ∆n

are all contained in ephdata.
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We find the solution iteratively: Dropping the superscript, we start with

E0 = M

and for i = 0, 1, . . . we compute

Ei+1 = M + e sinEi

until the change is negligible.
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Step 3: Write calcDeltaT(ephdata,E_k,t).

This function returns δt(k) at any desired GPS time t, where

δt(k) = af0 + af1(t− toc) + af2(t− toc)2 + ∆t,

where

• ∆t = Fe
√
a sinE(k) is the relativistic term and

• F =
−2√µ
c2

= −4.442807633× 10−10 sec/m1/2 is a constant,

• toc is a clock data reference time,

• and af0, af1, af2 are the coefficients of the Taylor expansion.

All parameters are contained in ephdata.
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Step 4: Write satpos(ephdata,t).

This function returns p(k)(t, t) via the following steps:

• ν(k) = tan−1
(√

1−e2 sinE(k)

cosE(k)−e

)
is the true anomaly

• r(k) = a(1− e cosE(k)) + crs sin
(
2(ν(k) + ω)

)
+ crc cos

(
2(ν(k) + ω)

)
is

the radius with correction terms

The above gives us the satellite’s position in polar coordinates with respect

to the reference system matched to its orbit.

11



Next we convert to cartesian coordinates and rotate the coordinate system

around the z axis so as to have xOP on the equatorial plane.

• φ(k) = ν(k) + ω + cωs sin
(
2(ν(k) + ω)

)
+ cωc cos

(
2(ν(k) + ω)

)
is the true

anomaly plus the argument of perigee with correction terms,

• p(k)OP =

r(k) cosφ(k)

r(k) sinφ(k)

0


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Next we rotate around the x axis by −i(k) radiants and around the z axis by

−Ω
(k)
er :

• i(k) = i0 + cis sin
(
2(ν(k) + ω)

)
+ cic cos

(
2(ν(k) + ω)

)
+ IDOT (t− toe),

• Ω
(k)
er = Ω0 + Ω̇(t− toe)− Ω̇et, where Ω̇e = 7.2921151467× 10−5,

• p(t, t) = pG = R3(−Ω
(k)
er )R1(−i(k))p(k)OP .

All the parameters are contained in ephdata.

With p(k)(t, t), we can determine p(k)(t, ξ) for any t and ξ.
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Step 5: With reference to the figure below, determine

p(k) := p(k)
(
ttr − δt(k) − a(k)(1 + ν(k)), ttr

)
.

This is the position of the satellite when it sends the signal received at

(receiver time) t∗, expressed in ECEF(ttr).

The specific value of ξ (ξ = ttr in our case) is not important but it is

important that we choose the same ξ for all satellites, so that all positions

are expressed in a common reference frame.

- t (GPS time)? ?

satellite k starts sending the subframe

at GPS time ttr − δt(k)

?

receiver starts receiving the subframe of satellite k

EMW received at t∗ leaves satellite k

at GPS time ttr − δt(k) − a(k)(1 + ν(k))

t̃k − δtrt∗ − δtr
� -

a(k)(1 + ν(k))

� -

a(k)
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Recall that t∗ − δtr is the GPS time for which we want to determine the

receiver position, and

p(k) := p(k)
(
ttr − δt(k) − a(k)(1 + ν(k)), ttr

)

is the position of the satellite when it sent the signal received at GPS time

t∗ − δtr.

Notice that the δt(k) on the right of t := ttr − δt(k) − a(k)(1 + ν(k)) is the one

that holds at time t. There is a ‘chicken-egg’ problem.
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We determine t iteratively as follows. Let t be ttr − a(k)(1 + ν(k)), where ttr is

sent by the satellite and a(k)(1 + ν(k)) is measured by the receiver.

Delta = 0;

while true % infinite loop

t=t-Delta

E=calcE(ephdata, t)

Delta_new = calcDeltaT(ephdata, E, t)

if (abs(Delta_new - Delta)<=1e-10)

break;

end

Delta=Delta_new;

end

When the loop breaks, t-Delta_new equals ttr − δt(k) − a(k)(1 + ν(k)).

The above is a disguised form of iteration to find the fixed point of a

function.
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Step 6: If we could, we would write 3 or more equations such as

‖p(k) − p̃‖ = cτ kf ,

and solve for p̃.

We don’t have cτ kf but we have ρ
(k)
c , where where

cτ kf = c
(
t∗ − δtr − ttr + δt(k) + (a(k)(1 + ν(k))

)
is the range (unknown),

ρ(k)c = c
(
δt(k) + a(k)(1 + ν(k)

)
is the corrected pseudorange (known).

By letting b = cτ kf − ρ
(k)
c (unknown), we write the equations

‖p(k) − p̃‖ = b + ρ(k)c ,

for at least 4 satellites and solve for p̃ and b.
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Step 7: Notice that

b = cτ kf − ρ(k)c

= c(t∗ − δtr − ttr)

can be rewritten as

t∗ − δtr =
b

c
+ ttr.

The RHS is known, and the LHS is the GPS time that corresponds to the

receiver time t∗. From this moment on, the receiver knows the GPS time.
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Recall that p̃ is the receiver position at GPS time t∗ − δtr, with respect to

the ECEF(ttr) coordinate system.

What we want is p := p (t∗ − δtr, t∗ − δtr)

Reusing the fact that t∗ − δtr = b
c + ttr we obtain

p = p (t∗ − δtr, t∗ − δtr)

= p

(
t∗ − δtr,

b

c
+ ttr

)
= R3

(
Ω̇e
b

c

)
p (t∗ − δtr, ttr)

= R3

(
Ω̇e
b

c

)
p̃.
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Step 8: We convert p = (x, y, z) to coordinates expressed in terms of

latitude l, longitude L, and elevation h.

For comparison, and since some of the terms are in common, it is convenient

to first write down the polar coordinates (l, Lp, r):

r =
√
x2 + y2 + z2

l = tan−1
(y
x

)
Lp = tan−1

(
z/
√
x2 + y2

)
.

If the earth were a sphere, then we just would write L = Lp and h = r − r0
with r0 being the radius of the earth.
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However, the earth is rather a squashed sphere (squeezed at the poles).

The GPS standard uses the WGS84 geodetic coordinates that may be

obtained via the following rather accurate approximation (with

e = 0.00335281066474 and a = 6378137)

l = tan−1
(y
x

)
L ≈ Lp + e sin(2L)

h ≈ r − r0, where r0 ≈ a(1− e sin2L).
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Once you have obtained the coordinates, you may check the location by

inserting the latitude and longitude in http://maps.google.com. Here is

the result:
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