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Goal

The goal of this part is to learn how to describe the position of a satellite

with respect to an earth-centered earth-fixed reference system. This is a

system that rotates with the earth.

We start by reviewing Kepler’s laws of planetary motion and a few useful

facts about ellipses.
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Background Review 1: Kepler’s Laws

Kepler’s Laws of planetary motion (written for planets of the sun but of

course they apply to any planetary motion):

1. (Law of Orbits) All planets move in elliptical orbits, with the sun at

one focus.

2. (Law of Areas) A line that connects a planet to the sun sweeps out

equal areas in equal times.

3. (Law of Periods) The square of the period of any planet is proportional

to the cube of the semimajor axis of its orbit. (The proportionality

constant does not depend on the semiminor axis.)
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Background Review 2: Useful Facts about Ellipses

An ellipse is the set of points in the plane the sum of whose distances from

two fixed points F1 and F2 is a constant (see figure). The two fixed points

are called the foci (plural of focus).

F1 F2

P1

P2

To get the simplest equation of an ellipse we place the foci on the x-axis at

equal distance from the origin. Then an ellipse is the set of points (xe, ye)
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that fulfill
x2e
a2

+
y2e
b2

= 1

where a and b are the semimajor and semiminor axes, respectively (see

figure).

x

y

F1 F2

a
b

We leave it up to you to verify that the sum of the distances from the foci to

a point (xe, ye) that fulfills the above equation is indeed constant.
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By considering the point with coordinates (a, 0), see next figure, and using

the fact that the two blue segments have identical length, we see that the

constant equals 2a.

x

y

F1 F2

2a
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By considering the point on the ellipse with coordinates (0, b) (see figure),

using Pythagoras’ theorem we see that the distance from the origin to the

foci is ea where

e =
√

1− (b/a)2

is called the eccentricity. Clearly e ∈ [0, 1] and e = 0 when the ellipse is a

circle.

F1 F2

ea

b
a a
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The ellipse equation x2e
a2

+ y2e
b2

= 1 may be obtained from the equation of the

circle x2c
a2

+ y2c
a2

= 1 and the transformation

xe = xc and ye = yc
b

a
.

This means that the ellipse with semimajor axis a and semiminor axis b may

be obtained by “squashing” the circle of radius a along the ordinate so as to

reduce its vertical dimension by the factor b
a. (See the figure below.)

x

y

xe

ye

yc
ye = b

a yc

An immediate consequence is that the area of the ellipse is A = abπ, i.e., b
a
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times the area of a circle of radius a. (If this is not clear to you, slice up the

circle and the ellipse into narrow vertical stripes of equal width: the stripe

inside the ellipse is shorter by a factor b
a compared to the corresponding

stripe inside the circle.)

END OF THE BACKGROUND REVIEW
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The Need For Several Coordinate Systems

Even for a single satellite it is convenient to introduce several coordinate

systems. It is rather evident that we need at least two:

• One that rotates with the earth. It is called the Earth Centered Earth

Fixed (ECEF) coordinate system. A stationary object on the surface of

the earth has fixed ECEF coordinates.

• One that makes it easy to describe the satellite’s position. This is a

coordinate system with origin at the earth’s center, fixed orientation in

space, and x and y axes spanning the orbital plane.

We need to know how to go from one system to the other. This is best done

via a sequence of intermediate coordinate systems so that each system is

related to the next by a rotation around one of the three main axes.
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Convention

All our coordinate systems are related to some rotating object (the earth

around the sun, the earth around itself, the satellite around the earth).

We use the following convention: x and y will always span the plane that

contains the orbit of the rotating object (or of the equator in case of the

earth rotating around itself), with y obtained from rotating x by 90◦ in the

direction of rotation.

To complete the system into a 3-dimensional coordinate system we pick z

according to the right-hand rule. (This means that z corresponds to the

direction of the cross product ex × ey, where ex and ey are (unit) vectors

pointing in the x and y direction, respectively). Following our convention, z

is then lined up with the axis of rotation of the reference object.
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To know if an angle is positive or negative we use the right-hand rule: when

the thumb points in the direction of the positive z-axis then the other fingers

point in the direction of positive angles.
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Change of Coordinate System: Rotations

We need to know how to relate coordinate systems that are rotated with

respect to one another.

Consider a coordinate system x′, y′, z′ (z′ pointing towards you, not shown)

obtained by rotating x, y, z by α around z, as shown in the following figure.

x′

y′
y

x
α

Consistently with our convention, the angle α by which we have to rotate the

x, y system to obtain the x′, y′ system is a positive one.

13



Let R3(α) be the matrix defined by

p′ = R3(α)p

where p and p′ are the coordinates of a point with respect to the system

x, y, z and x′, y′, z′, respectively.

Here is how we determine R3(α). Let ex be the vector with coordinates

(1, 0, 0)T in x, y, z.

x′

y′
y

x

cos(α)

− sin(α)

The first column of R3(α) contains the coordinates of ex in x′, y′, z′. From

the picture we see that they are (cos(α),− sin(α), 0)T .
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Reasoning similarly with the vector ey of coordinates (0, 1, 0)T in x, y, z we

obtain

R3(α) =

 cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1


Similarly, a rotation by α around x is described by

R1(α) =

1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)

 ,

and, a rotation by α around y by

R2(α) =

cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)

 .
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Absolute Reference System

How should we choose our first coordinate system? Is it possible to uniquely

describe a coordinate system without another reference system?

Yes it is. A natural choice is to use a Cartesian coordinate system with origin

at the center of the sun, with its x, y axes that span the orbital plane of the

earth, and x that goes through the vernal equinox (position of the earth

during the first day of Fall1). We call this the absolute reference system.

(See the figure.)

1One of two instants each year when the sun is on the equatorial plane.
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Earth

y

z

vernal equinox x

Sun

Notice that on the vernal equinox x goes through the equator and through

the earth’s center.

It turns out that we will not need the above system. Nevertheless it is

comforting to know that there is a natural definition of a “first system” that

does not rely on another coordinate system.

The direction of the vernal equinox will play an important role.
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Earth Centered Inertial (ECI) System

Next we define the Earth Centered Inertial (ECI) coordinate system and

denote it by xI, yI, zI. It has its origin at the center of the earth, the xI axis

points in the direction of the vernal equinox, and the xI and yI axis span the

equatorial plane. The convention mentioned earlier completely specifies yI
and zI.

Notice that xI goes through the equator. Also note that zI is aligned with

the earth’s rotation axis.
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From The ECI To The Satellite’s Orbital Plane

The orbit of each satellite is on a plane that goes through the center of the

earth. The orbital plane is fixed with respect to our ECI.

Since the orbital plane goes through the center of the earth, it crosses the

equator at two points. The one that corresponds to the satellite passing from

the Southern to the Northern Hemisphere is called the ascending node.

Let xA, yA, zA be a coordinate system with origin at the center of the earth,

xA that goes through the ascending node, and xA, yA that span the

equatorial plane according to the stated convention.
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We endow the orbital plane with a coordinate system xOP , yOP , zOP with

origin at the center of the earth and xOP that goes through the ascending

node. (The direction of yOP and zOP are then determined by our convention.)

vernal equinox xI

zA

equator
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xA, xOP (ascending node)

The orientation of the orbital plane may be described by the angle Ω between

xOP and xI and by the inclination angle i which is the angle by which we

have to rotate the equatorial plane around xOP to obtain the orbital plane.
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Satellite Within Orbital Plane

A satellite’s orbit is an ellipse on the orbital plane, with the earth in one of

its two focal points.

It is convenient to introduce one more coordinate system xS, yS, zS such that

xS, yS span the orbital plane and xS points in the direction of the perigee

(shortest distance from the earth).
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The satellite position may be described by the angle ν from xS and by the

distance r(ν) from the earth.2

ν xS

yS

r

r cos(ν)

r sin(ν) satellite

earth

It is then straightforward to convert from polar coordinates ν, r to Cartesian

coordinates xS, yS, zS (with zS = 0).

2The ν in these notes is the angle that describes the position of a satellite in its orbit and has nothing to do with the Doppler shift considered in previous

notes and also denoted by ν. The angle ν is used only for intermediate calculations. Hence there is no risk for confusion in the actual implementation.
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Let ω be the angle from xOP to xS, so that xOP , yOP , zOP is obtained by

rotating xS, yS, zS by −ω around zS.

vernal equinox xI
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i
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Earth-Centered Earth Fixed Reference System

Eventually we want to have the satellite position in an earth-centered

earth-fixed (ECEF) coordinate system.

This is a system xG, yG, zG that has xG, yG on the equator plane and rotates

with the earth. So a point on the earth has fixed xG, yG, zG coordinates. We

let xG go through the Greenwich meridian.
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vernal equinox xI
xG

zG, zA
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The xA, yA, zA coordinates are obtained from xG, yG, zG by rotating around

zA by Ωer = Ω0 − Ω̇et (see the figure), where Ω̇e is the angular velocity of the

earth, t is the GPS time, and Ω0 is a parameter sent by the satellite.

(Because it is the angle from the G to the A system, Ωer decreases as a

function of time.3)
3To us it makes more sense to describe the angle from A to G, which increases with time, but the GPS designers have thought otherwise.
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Putting The Transformations Together

Let pi, i = 1, . . . , 4 be the position of a satellite in the coordinate system

xi, yi, zi, i ∈ {S,G, I, OP}.

pS = (r cos(ν), r sin(ν), 0)T

pOP = R3(−ω)pS =
(
r cos(ν + ω), r sin(ν + ω), 0

)T
pA = R1(−i)pOP
pG = R3(−Ωer)pA

pG is the sought ECEF coordinate.

The transformation from pA to pG depends on time. Hence pG depends on

time even if pA is a constant (normally it isn’t of course).
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We let ECEF(ξ) be the ECEF coordinate system valid at GPS time ξ and for

an object of interest (satellite or receiver) we let p(t, ξ) be its position at

GPS time t with respect to ECEF(ξ).

Unless otherwise specified, when we talk about the ECEF position we mean

p(t, t). For an earth-fixed object, this position does not depend on t .

For a fixed ∆, p(t, t + ∆) does not depend on t for an earth-fixed object.

Notice also that for any t, ξ, and ∆,

p(t, ξ + ∆) = R3(Ω̇e∆)p(t, ξ). (1)
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A Summary and A Refinement

There are several ways to describe the position of a satellite.

Thanks to Newton, if we know the position and velocity of a satellite at a

given epoch we can determine the position and the velocity of the satellite at

any future (or past) epoch. This is done by solving a differential equation. It

takes 6 parameters to specify position and velocity.

Alternatively, we explicitly describe the orbit (the ellipse) and the satellite

position within the orbit at some specified epoch. This also requires 6

parameters.

28



The ones we have described so far are:

• parameters of the orbital plane: inclination i with respect to the

equatorial plane and ascending node argument Ω with respect to the

vernal equinox.

• ellipse orientation within orbital plane: the argument of perigee ω.

• shape of the ellipse: semi-major axis a and eccentricity e

• position of the satellite in the orbit at one epoch: this can be done by

describing the true anomaly ν (the angle between the perigee and the

satellite position).
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The satellite sends 5 of the above 6 parameters, namely i, Ω, ω, a, e. All

these are constant parameters (at least in theory, we’ll come back to reality

later).

The 6th parameter, namely ν(t), depends on t. Instead of sending ν(t) for

every value of t (which would require much communication), the satellite

sends a constant from which ν(t) can be derived. The details follow.

The key to understand this are Kepler’s laws and the relationship that an

ellipse of semimajor axis a and semiminor axis b has with a circle or radius a.
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The third law tells us that the period of a satellite on an elliptic orbit of

semimajor axis a is the same as that of a satellite on a circular orbit of radius

a.

For circular orbits we can compute the velocity by equating the gravitational

force msMeµe
a2

(where ms is the satellite mass, Me the mass of the earth, and

µe the gravitational constant) to the centrifugal force msv
2

a .

By solving for the velocity v we obtain v =
√
Meµe/a and then we can

determine the period T = 2πa
v = 2π

√
a3/Meµe as well as the angular velocity

n of a satellite on a circular orbit of radius a, namely

n =
2π

T
=

√
Meµe
a3

where we are using red for parameters sent by the satellite.
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From Kepler’s second law we know that the area A(ν) comprized between the

angle ν and the orbit increases linearly with time. Hence it can be written as

A(ν) =
A

2π
M

where A is the area of the ellipse and M increases linearly with time (modulo

2π). Specifically, A = abπ and M may be written as

M = M0 + n(t− toe) (mod 2π).

M is called mean anomaly4 and M0 is the mean anomaly at reference time

toe. For a satellite on a circular orbit, ν = M .

As we see next, M is what allows us to compute the satellite position at all

times, based only on M0 and some constants.

From a, M0 and toe we can determine A(ν) and then the satellite position

pS = (xS, yS, 0). The details follow.
4Angles are called anomalies in planetary motion’s jargon.
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We introduce the eccentric anomaly E as the angle measured at the center

of the orbit between the perigee and the projection of the satellite position

on a circle of radius a as shown in the next figure.

O F P
E ν

ys

a
b ys

ae xs

x

y

S
S ′

To determine E we write the area OPS’ two ways, namely as a2π
2π E and as

ae(a sin(E))
2 + a

bA(ν), where the first term is the area of the triangle OFS’ and

the second the area of FPS’.
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Equating, using a
bA(ν) = a

b
A
2πM = a2M

2 , and canceling common terms yields

E − e sin(E) = M.

Unfortunately we don’t have a closed form solution for E but we can solve

iteratively by starting with E0 = M and following the recursion that

computes E1, E2, etc. according to Ek+1 = M + e sin(Ek) until the change is

small (say smaller than 10−13).

Once we have E we immediately obtain the coordinates pS of the satellite

xS = a cos(E)− ae

yS = (a sin(E))
b

a
= b sin(E) = a

√
1− e2 sin(E)

zS = 0.
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Because of certain correction terms to be introduced shortly, it turns out

that we have to compute pS from r and ν. From xS, and yS we obtain

r = a(1− e cos(E))

ν = tan−1
(√

1− e2 sin(E)

cos(E)− e

)
.

Then

pS = (r cos(ν), r sin(ν), 0)T .
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