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Goal

The goal of this part is to learn how to describe the position of a satellite
with respect to an earth-centered earth-fixed reference system. This is a
system that rotates with the earth.

We start by reviewing Kepler's laws of planetary motion and a few useful
facts about ellipses.



Background Review 1: Kepler’'s Laws

Kepler's Laws of planetary motion (written for planets of the sun but of
course they apply to any planetary motion):

1. (Law of Orbits) All planets move in elliptical orbits, with the sun at
one focus.

2. (Law of Areas) A line that connects a planet to the sun sweeps out
equal areas in equal times.

3. (Law of Periods) The square of the period of any planet is proportional
to the cube of the semimajor axis of its orbit. (The proportionality
constant does not depend on the semiminor axis.)



Background Review 2: Useful Facts about Ellipses

An ellipse is the set of points in the plane the sum of whose distances from
two fixed points F; and F; is a constant (see figure). The two fixed points
are called the foci (plural of focus).

To get the simplest equation of an ellipse we place the foci on the z-axis at
equal distance from the origin. Then an ellipse is the set of points (z., ¥.)



that fulfill

Ve _
—+§_1

where a and b are the semimajor and semiminor axes, respectively (see

We leave it up to you to verify that the sum of the distances from the foci to

figure).

a point (z.,y.) that fulfills the above equation is indeed constant.



By considering the point with coordinates (a, (), see next figure, and using
the fact that the two blue segments have identical length, we see that the
constant equals
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By considering the point on the ellipse with coordinates (0, 0) (see figure),
using Pythagoras' theorem we see that the distance from the origin to the

foci is where

e=1/1—(b/a)?

is called the eccentricity. Clearly e € |0, 1] and e = 0 when the ellipse is a
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The elllpse equatlon xQ + ye = 1 may be obtained from the equation of the
circle %5 + yc =1 and the transformation

b

Te = T, and Yo = Yo—.

This means that the ellipse with semimajor axis @ and semiminor axis b may
be obtained by “squashing” the circle of radius a along the ordinate so as to
reduce its vertical dimension by the factor 2. (See the figure below.)
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An immediate consequence is that the area of the ellipse is A = abm, i.e., g
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times the area of a circle of radius a. (If this is not clear to you, slice up the
circle and the ellipse into narrow vertical stripes of equal width: the stripe
inside the ellipse is shorter by a factor g compared to the corresponding
stripe inside the circle.)

END OF THE BACKGROUND REVIEW



The Need For Several Coordinate Systems

Even for a single satellite it is convenient to introduce several coordinate
systems. It is rather evident that we need at least two:

e One that rotates with the earth. It is called the Earth Centered Earth
Fixed (ECEF) coordinate system. A stationary object on the surface of
the earth has fixed ECEF coordinates.

e One that makes it easy to describe the satellite’s position. This is a
coordinate system with origin at the earth’s center, fixed orientation in
space, and x and y axes spanning the orbital plane.

We need to know how to go from one system to the other. This is best done
via a sequence of intermediate coordinate systems so that each system is
related to the next by a rotation around one of the three main axes.
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Convention

All our coordinate systems are related to some rotating object (the earth
around the sun, the earth around itself, the satellite around the earth).

We use the following convention: = and y will always span the plane that
contains the orbit of the rotating object (or of the equator in case of the
earth rotating around itself), with y obtained from rotating = by 90° in the
direction of rotation.

To complete the system into a 3-dimensional coordinate system we pick 2
according to the right-hand rule. (This means that z corresponds to the
direction of the cross product e, X e,, where e, and e, are (unit) vectors
pointing in the = and y direction, respectively). Following our convention, z
is then lined up with the axis of rotation of the reference object.
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To know if an angle is positive or negative we use the right-hand rule: when
the thumb points in the direction of the positive z-axis then the other fingers
point in the direction of positive angles.
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Change of Coordinate System: Rotations

We need to know how to relate coordinate systems that are rotated with
respect to one another.

Consider a coordinate system z’,%/, 2’ (2’ pointing towards you, not shown)
obtained by rotating z, vy, 2z by « around z, as shown in the following figure.
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Consistently with our convention, the angle o by which we have to rotate the
x, 1y system to obtain the 2/, 1y’ system is a positive one.
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Let R3(c) be the matrix defined by

p = Rs(a)p
where p and p’ are the coordinates of a point with respect to the system

x,y,z and 2, v, 2/, respectively.

Here is how we determine R3(«). Let e, be the vector with coordinates
(1,0,0)" in z,y, 2.

tb

~.

The first column of R3(«) contains the coordinates of e, in 2/, ¢, 2’. From
the picture we see that they are (cos(a), —sin(a), 0)!.
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Reasoning similarly with the vector ¢, of coordinates (0,1,0)" in z,y, z we
obtain

cos(a) sin(a) 0
Rs(a) = | —sin(a) cos(a) 0
0 0 1

Similarly, a rotation by « around z is described by

1 0 0
Ri(a) =10 cos(a) sin(a) |,
0 —sin(a) cos(a)

and, a rotation by « around y by

cos(a) 0 —sin(«)
RQ(O&) — 0 1 0
sin(a) 0 cos(a)
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Absolute Reference System

How should we choose our first coordinate system? Is it possible to uniquely
describe a coordinate system without another reference system?

Yes it is. A natural choice is to use a Cartesian coordinate system with origin
at the center of the sun, with its x, y axes that span the orbital plane of the
earth, and x that goes through the vernal equinox (position of the earth
during the first day of Fall'). We call this the absolute reference system.
(See the figure.)

1One of two instants each year when the sun is on the equatorial plane.
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vernal equinox x

Notice that on the vernal equinox x goes through the equator and through
the earth’s center.

It turns out that we will not need the above system. Nevertheless it is
comforting to know that there is a natural definition of a “first system” that
does not rely on another coordinate system.

The direction of the vernal equinox will play an important role.
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Earth Centered Inertial (ECI) System

Next we define the Earth Centered Inertial (ECI) coordinate system and
denote it by x7,y7, z7. It has its origin at the center of the earth, the z; axis
points in the direction of the vernal equinox, and the x; and y; axis span the
equatorial plane. The convention mentioned earlier completely specifies y;

and z;.

Notice that x; goes through the equator. Also note that z; is aligned with
the earth’s rotation axis.
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From The ECI To The Satellite’s Orbital Plane

The orbit of each satellite is on a plane that goes through the center of the
earth. The orbital plane is fixed with respect to our ECI.

Since the orbital plane goes through the center of the earth, it crosses the
equator at two points. The one that corresponds to the satellite passing from
the Southern to the Northern Hemisphere is called the ascending node.

Let x4,y4, 24 be a coordinate system with origin at the center of the earth,
x 4 that goes through the ascending node, and x4, y4 that span the
equatorial plane according to the stated convention.
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We endow the orbital plane with a coordinate system xpp, yop, zop with
origin at the center of the earth and xpp that goes through the ascending
node. (The direction of yop and zpp are then determined by our convention.)

ZA A

equator
vernal equinox xj

The orientation of the orbital plane may be described by the angle () between
xop and x; and by the inclination angle © which is the angle by which we
have to rotate the equatorial plane around xpp to obtain the orbital plane.
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Satellite Within Orbital Plane

A satellite’s orbit is an ellipse on the orbital plane, with the earth in one of
its two focal points.

It is convenient to introduce one more coordinate system xg, yg, zg such that

xg,Ys span the orbital plane and zg points in the direction of the perigee
(shortest distance from the earth).
xs

<A perigee

equator
vernal equinox

orbit T4, Top (ascending node)
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The satellite position may be described by the angle v from xg and by the
distance 7(v) from the earth.

It is then straightforward to convert from polar coordinates v, r to Cartesian
coordinates g, yg, zs (with zg = 0).

2The v in these notes is the angle that describes the position of a satellite in its orbit and has nothing to do with the Doppler shift considered in previous
notes and also denoted by v. The angle v is used only for intermediate calculations. Hence there is no risk for confusion in the actual implementation.
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Let w be the angle from xpp to xg, so that xop, yop, zop is obtained by
rotating xg, ys, zg by —w around zg.

Ls

satellite

perigee

equator
vernal equinox xy
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Earth-Centered Earth Fixed Reference System

Eventually we want to have the satellite position in an earth-centered
earth-fixed (ECEF) coordinate system.

This is a system x¢, yq, 2z that has xq, yo on the equator plane and rotates
with the earth. So a point on the earth has fixed x¢, yq, 2o coordinates. We
let £ go through the Greenwich meridian.
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“GH FA S perigee

vernal equinox xj

The x4,y4, 24 coordinates are obtained from z¢, yg, 2 by rotating around
24 by Qo = Qp — Out (see the figure), where Q). is the angular velocity of the
earth, t is the GPS time, and () is a parameter sent by the satellite.
(Because it is the angle from the G to the A system, ()., decreases as a
function of time.?)

3To us it makes more sense to describe the angle from A to G, which increases with time, but the GPS designers have thought otherwise.
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Putting The Transformations Together

Let p;,  =1,...,4 be the position of a satellite in the coordinate system
T, Yi, zi, © € {9, G, I,OP}.
ps = (rcos(v), rsin(v),0)"
pop = Rs(—w)ps = (rcos(v + w), rsin(v + w), O)T
pa = Ri(—i)pop
pa = R3(—Qe)pa
pc 1s the sought ECEF coordinate.

The transformation from p4 to pe depends on time. Hence ps depends on
time even if p4 is a constant (normally it isn't of course).
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We let ECEF(&) be the ECEF coordinate system valid at GPS time £ and for

an object of interest (satellite or receiver) we let p(t, &) be its position at
GPS time ¢ with respect to ECEF(&).

Unless otherwise specified, when we talk about the ECEF position we mean
p(t,t). For an earth-fixed object, this position does not depend on ¢ .

For a fixed A, p(t,t + A) does not depend on ¢ for an earth-fixed object.

Notice also that for any ¢, &, and A,

p(t, &+ A) = Ry(Q.A)p(t,€). (1)
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A Summary and A Refinement

There are several ways to describe the position of a satellite.

Thanks to Newton, if we know the position and velocity of a satellite at a
given epoch we can determine the position and the velocity of the satellite at
any future (or past) epoch. This is done by solving a differential equation. It
takes 6 parameters to specify position and velocity.

Alternatively, we explicitly describe the orbit (the ellipse) and the satellite
position within the orbit at some specified epoch. This also requires 6
parameters.

28



The ones we have described so far are:

e parameters of the orbital plane: nclination © with respect to the
equatorial plane and ascending node argument () with respect to the
vernal equinox.

e cllipse orientation within orbital plane: the argument of perigee w.
e shape of the ellipse: semi-major axis a and eccentricity e

e position of the satellite in the orbit at one epoch: this can be done by
describing the true anomaly v (the angle between the perigee and the
satellite position).
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The satellite sends 5 of the above 6 parameters, namely ¢, €2, w, a, e. All
these are constant parameters (at least in theory, we'll come back to reality
later).

The 6th parameter, namely v(t), depends on t. Instead of sending v/(t) for
every value of ¢t (which would require much communication), the satellite
sends a constant from which v(t) can be derived. The details follow.

The key to understand this are Kepler's laws and the relationship that an
ellipse of semimajor axis a and semiminor axis b has with a circle or radius a.
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The third law tells us that the period of a satellite on an elliptic orbit of
semimajor axis a is the same as that of a satellite on a circular orbit of radius
a.

For circular orbits we can compute the velocity by equating the gravitational
force % (where my is the satellite mass, M, the mass of the earth, and

. . . 2
/L. the gravitational constant) to the centrifugal force ™=

By solving for the velocity v we obtain v = \/M_u./a and then we can

determine the period T' = 2I% = 27 /a®/M.p. as well as the angular velocity
n of a satellite on a circular orbit of radius a, namely
27 M. pte
n —m — —
T a3

where we are using red for parameters sent by the satellite.
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From Kepler's second law we know that the area A(v) comprized between the
angle v and the orbit increases linearly with time. Hence it can be written as

A
Alv)=—M
2T
where A is the area of the ellipse and M increases linearly with time (modulo

21). Specifically, A = abr and M may be written as
M = My+n(t —t,) (mod 2m).

M is called mean anomaly* and 1, is the mean anomaly at reference time
t,.. For a satellite on a circular orbit, v = M.

As we see next, M is what allows us to compute the satellite position at all
times, based only on M, and some constants.

From a, M, and t,. we can determine A(v) and then the satellite position
ps = (x5,ys,0). The details follow.

4Angles are called anomalies in planetary motion’s jargon.
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We introduce the eccentric anomaly I/ as the angle measured at the center
of the orbit between the perigee and the projection of the satellite position
on a circle of radius a as shown in the next figure.

Y,
zys“ : S’
Yst A\ S
E | X
0 LA
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. . , 2
To determine £/ we write the area OPS’ two ways, namely as S F and as

“G(QS;H(E)) + #A(v), where the first term is the area of the triangle OFS’ and

the second the area of FPS’.
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Equating, using A(v) = %%M = “QM, and canceling common terms vyields

E —esin(FE) = M.

Unfortunately we don’t have a closed form solution for E' but we can solve
iteratively by starting with £y = M and following the recursion that
computes E;, E», etc. according to Ej 1 = M + esin(FEy) until the change is
small (say smaller than 10719).

Once we have £ we immediately obtain the coordinates ps of the satellite
rs = acos(E) — ae

ys = (a sin(E))é = bsin(F) = ay/1 — e?sin(F)

a
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Because of certain correction terms to be introduced shortly, it turns out
that we have to compute ps from r and v. From zg, and y5 we obtain

r=a(l —ecos(F))

v = tan ! (\/E;i_ng)) .

Then
ps = (rcos(v), rsin(v),0)".
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