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Linear Minimum Mean Squared Error Estimation

In this note, we study the concept of Linear Minimum Mean Squared Error
(LMMSE) estimation. We derive the LMMSE estimator via the orthogonality
principle.



Setup

Let X € C"™ and Y & C"™ be random vectors. We want to estimate X from
Y.

We are interested in the estimator X : C"* — C™ that minimizes

E[|X - X(Y)|]. (1)

As we have seen, without additional constraints, the solution is the MMSE
estimator
Xwmse(y) = B XY =y

Finding an expression for XMMSE(y) when X and Y are not jointly Gaussian
is often a non-trivial task.



We can trade complexity for performance by settling on the LMMSE
estimator, namely the one that minimizes

E[|X - X(Y)|’] (2)

among all estimators of the form

A

X(y) = Ay + b,
where A € C"™*" and b € C™,

We begin by assuming that X and Y are zero-mean. Later on we drop this
assumption.



The Orthogonality Principle

Let X € C™ and Y € C” be zero-mean random vectors. For the LMMSE
estimator XLMMSE(Y), the estimation error X — XLMMSE(Y) is orthogonal
to the data:

B (X - Xuuss(Y)) Y| =0, (3)
Note that we are assuming column vectors. Hence both sides of the above

equality are m X n matrices.



Proof of the Orthogonality Principle

Suppose that the orthogonality principle holds for the estimator
XA<y> — Ay7

and let X 5(y) = By be an alternative estimator.
E[|X — BY|*] = E[|(X — AY) + (AY — BY)|"]

= E[|X - AY|’] + E[J|AY - BY |
+2RE[(X — AY)'(AY — BY)]

= E[||X — AY |’] + E[|AY — BY ||’]

> E[| X — AY|],

6



where in the third equality we used the assumption on AY to obtain

RE[(X — AY)[(AY — BY)] = traceRE[(X — AY)(AY — BY)']

= trace?R[E[(X — AY)YT]/(A _ B)T}

A

-~

0

We conclude that the expected squared error of a linear estimator cannot be
smaller than that of a linear estimator that satisfies the orthogonality
principle (3).



The LMMSE Estimator

We still assume that X € C" and Y € C" are zero-mean random vectors.

We seek a matrix A € C"™*" s.t.
B[IX - AY|] ()

IS minimized.

By the orthogonality principle, A must satisfy
Bl(X - AY)Y'| =0,

E[XY' = AE[YY],
or, changing notation,
KXY = AKY

Solving for A yields
A=KxyKy"
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Hence
Xianse(y) = Ay = Kxy Ky'y.

Note that we have already found this expression in deriving the MMSE
estimator X vse(y) for the case that X and Y are jointly Gaussian random

vectors.

In fact, for jointly Gaussian random vectors, the MMSE estimator is linear,
which implies that it is identical to the LMMSE estimator.



Dropping the Zero-Mean Assumption

Lemma. For a general random vector Z € C™, the constant vector b € C™
that minimaizes

E[|Z - b|’]
is b= FE|Z].

Proof: b can be seen as the MMSE estimate of Z based on an observation
W which is a constant — hence independent of Z. This estimate is

b= E[Z|W] = E[Z].
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For an alternative proof we write

E[|Z - b|] = E[|Z - (2] + F(2] - bl
- E[I1Z - BIZ)|"] + E[| E[2] - b]]*
+2R E[(Z - BZ))(F|Z] - b)

7
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(B[2)-E|2))} (E|Z)-b)=0' (E[2]-b)=0
E||Z - E(Z)|*] + E[||E[Z] - b|’]
E[l|Z - E[Z]|]?]

AVARNI
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Now consider general random vectors X € C™ and Y € C", not necessarily

zero-mean.
Define X = X — E[X] and Y =Y — E[Y], both zero-mean.

We are seeking the matrix B and vector b that minimize
E[|X — (BY +b)|]]. (5)

Xiase(Y)

From the above lemma, for a fixed B, the minimizing b is

b= E[X — BY| = E|X| - BE[Y].

With this b, (5) becomes
B[|IX - E[X] - (BY — BEIY])|] = E[|| X - EIX]—-B(¥ — EIY]) ]

TV TV

X Y
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The minimum is achieved for

B=KigyK,' = KxyKy'.

Summarizing,

Xiause(Y) = BY + b
— BY — BE[Y] + E[X]
= B(Y — E|Y)|) + E[X], (6)
with
B=KxyKy'

Notice that (6) is confirming what our intuition should suggest, namely that
the LMMSE estimate of X based on Y is E|X]| plus the LMMSE estimate
of X based on' Y.
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Example: LS vs LMMSE

It is instructive to compare the LS approximation and the LMMSE
estimation by means of a simple example.

et

Y =hX+Z
be the output of a channel, where X is the channel input symbol, A the
channel strength known to the receiver, and Z the additive noise, assumed
to be independent of X. For simplicity, we assume that all quantities are
scalar and real-valued, and that X and Z are zero-mean.

Suppose that we are interested in an equalizer that tries to undo the effect of
the channel by delivering an estimate of the channel input X based on the
channel output Y.
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A

The LS approximation is the X (y) that minimizes
ly — hX(y)*

In this particular example, the minimum is 0, achieved by setting

> Y
XLS@) = L

A

The LMMSE estimate is the X (y) that minimizes

and the minimizer is

Ky hP
Y= 5Ys

KY h P-i- o

where P = E[|X|?] is the signal’s energy and o = E[|Z]?] is the noise

X LMMSE(y) —

variance.
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It is important to notice the different objective between the two estimators:

e the LS estimator tries to find the input that “explains” the output
with the smallest possible noise. For this scalar case the smallest noise
is 0. Notice that there are infinitely many choices for x and z for
which the observed y equals Az + 2z, and choosing z = 0 seems
arbitrary for the problem at hand.

e the LMMSE estimate better matches the objective of an equalizer,
which is to find the input estimate that, in average “best matches” the
actual input. To do so, it uses the statistic of the input and of the
noise.

As h?P becomes much larger than o2, the output of the LMMSE estimator
tends to ¢, which is the output of the LS estimator. This is to be expected
as h2P > 0% means that the noise is negligible.

Notice that
Xis(y) =



which explains why we say that the LS estimator boosts the noise when the
channel parameter h is small.
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LS Approximation Revisited
and MATLAB/Python commands

In a more general context, LS approximation is about model fitting in the
following sense. We observe data 11, ..., y, and we assume that the data
comes from a parametric model. The objective of the LS approximation is to
find the parameters so that the model “best” fits the observations.

For instance, in our communication application, the model is y = Ax for
some given matrix A and unknown vector x which plays the role of the
parameters to be determined. If A is an invertible square matrix, then

x = A~ 'y constitutes a perfect fit, but this is not the typical situation. In
general, as we have seen, the LS approximation is x = (ATA)"1Aly.
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In another example, the model could be y; = p(x;), i = 1,...,n, where
p(x) = by + by + b3z? is a polynomial of a specified degree (here of degree
2). The parameters here are by, by, and b3. Both the z; and the ;,

1 =1,...,n, are given. Since in general there are more observations than
parameters, and the observations are noisy, there is no perfect fit. Notice
that we can write the model as

(1 T xi\ b,

1 xy a5

I ;
\1 Tp az%) ’
We have already encountered this situation in estimating the Doppler

frequency of a GPS signal, but in that case the number of observations was
the same as the number of parameters, and we could find a perfect fit.

When there is a linear relationship between the parameters and the
observations, as in the above examples, we speak of Linear Least Squares,

and the parameter vector that minimizes the norm of the error is
(ATA)~tAly. The matrix (ATA)"'AT is the Moore-Penrose pseudoinverse of
A.
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If A is a non-singular square matrix, then A~ exists and
(ATA) 1Ay = A71 (AN ATy = A7y,

We see that in this case the Moore-Penrose pseudoinverse of A is the same
as the inverse of A. In this case, the LS approximation of x in the model
y = Ax + z is the exact solution to the equation y = Ax.

The MATLAB command for the Moore-Penrose pseudoinverse of A is
pinv(A).
In Python, one can use numpy.linalg.pinv(A).

When A is a rectangular matrix or a singular square matrix, then, as we
know, pinv(A)*y is a vector X such that Ax is as close as possible (in
square norm) to y.

The same is true for the MATLAB backslash command A\y but the two
results are not necessarily the same when there are multiple solutions. In this
case, the Moore-Penrose pseudoinverse leads to the minimum-norm X,
whereas the backslash operator leads to the x that has the fewest non-zero
entries. (See the documentation on pinv for an example.)
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In Python, when there are multiple solutions, the command
numpy.linalg.lstsq(A, y) returns the minimum-norm x.

When A is a non-singular square matrix, then the inverse, the Moore-Penrose

pseudoinverse the backslash operation (applied on y) and
numpy.linalg.lstsq(A, y) lead to the same unique solution x that

satisfies y = Ax.
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Appendix A: The orthogonality Principle and The
Projection Theorem

It it instructive to derive the orthogonality principle from the projection
theorem.

Recall that a random variable X is a function

X:OQ—=RorC.

We know (e.g. from PDC) that functions can be seen as vectors of an

inner-product space.
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Let X = (X4,...,X,,) and Y = (Y7,...,Y,,) be random vectors and let U be
the inner-product space spanned by Xy,...,X,,,Y1,...,Y,, with the inner

product defined by
(X..Y)) = EIXY]]
(You should verify that this is indeed a valid inner product.)

In U, the squared norm of Xj is

1XG]° = (X5, Xi) = E[|X,[].
Let X; be the LMMSE of X; based on Y.
Let V be the subspace of i/ spanned by Y7,....Y,,.

)A(i Is the element of V' for which
X — X,

IS minimized.
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By the projection theorem (see e.g. PDC), X; is the projection of X; onto V.
It has the property that
X, — X,

is orthogonal to every element of V), including Y7,...,Y,,.

Hence, for all 7 and 7,
(X~ X.Y)) =0,

"~

E[(X;—X;)Y]]

The above equality corresponds to the 7, 5 component of the matrix equality
E[(X - X)Y'] =0,

which is precisely the orthogonality principle.
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