
Modern Digital Communications:
A Hands-On Approach

LMMSE Estimation

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Dec. 12, 2023

1

Linear Minimum Mean Squared Error Estimation

In this note, we study the concept of Linear Minimum Mean Squared Error

(LMMSE) estimation. We derive the LMMSE estimator via the orthogonality

principle.

2

Setup

Let X ∈ Cm and Y ∈ Cn be random vectors. We want to estimate X from

Y .

We are interested in the estimator X̂ : Cn → Cm that minimizes

E
[
‖X − X̂(Y)‖2

]
. (1)

As we have seen, without additional constraints, the solution is the MMSE

estimator

X̂MMSE(y) = E[X|Y = y].

Finding an expression for X̂MMSE(y) when X and Y are not jointly Gaussian

is often a non-trivial task.

3

We can trade complexity for performance by settling on the LMMSE

estimator, namely the one that minimizes

E
[
‖X − X̂(Y)‖2

]
(2)

among all estimators of the form

X̂(y) = Ay + b,

where A ∈ Cm×n and b ∈ Cm.

We begin by assuming that X and Y are zero-mean. Later on we drop this

assumption.

4

The Orthogonality Principle

Let X ∈ Cm and Y ∈ Cn be zero-mean random vectors. For the LMMSE

estimator X̂LMMSE(Y), the estimation error X − X̂LMMSE(Y) is orthogonal

to the data:

E
[(
X − X̂LMMSE(Y)

)
Y †
]

= 0. (3)

Note that we are assuming column vectors. Hence both sides of the above

equality are m× n matrices.

5

Proof of the Orthogonality Principle

Suppose that the orthogonality principle holds for the estimator

X̂A(y) = Ay,

and let X̂B(y) = By be an alternative estimator.

E
[
‖X −BY ‖2

]
= E

[
‖(X − AY) + (AY −BY)‖2

]
= E

[
‖X − AY ‖2

]
+ E

[
‖AY −BY ‖2

]
+ 2<E

[
(X − AY)†(AY −BY)

]
= E

[
‖X − AY ‖2

]
+ E

[
‖AY −BY ‖2

]
≥ E

[
‖X − AY ‖2

]
,

6

where in the third equality we used the assumption on AY to obtain

<E
[
(X − AY)†(AY −BY)

]
= trace<E

[
(X − AY)(AY −BY)†

]
= trace<

[
E
[
(X − AY)Y †

]︸ ︷︷ ︸
0

(A−B)†
]

= 0.

We conclude that the expected squared error of a linear estimator cannot be

smaller than that of a linear estimator that satisfies the orthogonality

principle (3).

7

The LMMSE Estimator

We still assume that X ∈ Cm and Y ∈ Cn are zero-mean random vectors.

We seek a matrix A ∈ Cm×n s.t.

E
[
‖X − AY ‖2

]
(4)

is minimized.

By the orthogonality principle, A must satisfy

E
[(
X − AY)Y †

]
= 0,

i.e.,

E[XY †] = AE[Y Y †],

or, changing notation,

KXY = AKY .

Solving for A yields

A = KXYK
−1
Y .

8

Hence

X̂LMMSE(y) = Ay = KXYK
−1
Y y.

Note that we have already found this expression in deriving the MMSE

estimator X̂MMSE(y) for the case that X and Y are jointly Gaussian random

vectors.

In fact, for jointly Gaussian random vectors, the MMSE estimator is linear,

which implies that it is identical to the LMMSE estimator.

9

Dropping the Zero-Mean Assumption

Lemma. For a general random vector Z ∈ Cm, the constant vector b ∈ Cm

that minimizes

E
[
‖Z − b‖2

]
is b = E[Z].

Proof: b can be seen as the MMSE estimate of Z based on an observation

W which is a constant – hence independent of Z. This estimate is

b = E[Z|W] = E[Z].

10

For an alternative proof we write

E
[
‖Z − b‖2

]
= E

[
‖Z − E[Z] + E[Z]− b]‖2

]
= E

[
‖Z − E[Z]‖2

]
+ E

[
‖E[Z]− b‖2

]
+ 2< E

[
(Z − E[Z])†(E[Z]− b)]︸ ︷︷ ︸

(E[Z]−E[Z])†(E[Z]−b)=0†(E[Z]−b)=0

= E
[
‖Z − E[Z]‖2

]
+ E

[
‖E[Z]− b‖2

]
≥ E

[
‖Z − E[Z]‖2

]

11

Now consider general random vectors X ∈ Cm and Y ∈ Cn, not necessarily

zero-mean.

Define X̃ = X − E[X] and Ỹ = Y − E[Y], both zero-mean.

We are seeking the matrix B and vector b that minimize

E
[
‖X − (BY + b)︸ ︷︷ ︸

X̂LMMSE(Y)

‖2
]
. (5)

From the above lemma, for a fixed B, the minimizing b is

b = E[X −BY] = E[X]−BE[Y].

With this b, (5) becomes

E
[
‖X − E[X]− (BY −BE[Y])‖2

]
= E

[
‖X − E[X]︸ ︷︷ ︸

X̃

−B (Y − E[Y])︸ ︷︷ ︸
Ỹ

‖2
]
.

12

The minimum is achieved for

B = KX̃ỸK
−1
Ỹ

= KXYK
−1
Y .

Summarizing,

X̂LMMSE(Y) = BY + b

= BY −BE[Y] + E[X]

= B(Y − E[Y]) + E[X], (6)

with

B = KXYK
−1
Y .

Notice that (6) is confirming what our intuition should suggest, namely that

the LMMSE estimate of X based on Y is E[X] plus the LMMSE estimate

of X̃ based on Ỹ .

13

Example: LS vs LMMSE

It is instructive to compare the LS approximation and the LMMSE

estimation by means of a simple example.

Let

Y = hX + Z

be the output of a channel, where X is the channel input symbol, h the

channel strength known to the receiver, and Z the additive noise, assumed

to be independent of X. For simplicity, we assume that all quantities are

scalar and real-valued, and that X and Z are zero-mean.

Suppose that we are interested in an equalizer that tries to undo the effect of

the channel by delivering an estimate of the channel input X based on the

channel output Y .

14

The LS approximation is the X̂(y) that minimizes

|y − hX̂(y)|2.

In this particular example, the minimum is 0, achieved by setting

X̂LS(y) =
y

h
.

The LMMSE estimate is the X̂(y) that minimizes

E|X − X̂(y)|2,

and the minimizer is

X̂LMMSE(y) =
KXY

KY
y =

hP

h2P + σ2
y,

where P = E[|X|2] is the signal’s energy and σ2 = E[|Z|2] is the noise

variance.

15

It is important to notice the different objective between the two estimators:

• the LS estimator tries to find the input that “explains” the output

with the smallest possible noise. For this scalar case the smallest noise

is 0. Notice that there are infinitely many choices for x̂ and ẑ for

which the observed y equals hx̂ + ẑ, and choosing ẑ = 0 seems

arbitrary for the problem at hand.

• the LMMSE estimate better matches the objective of an equalizer,

which is to find the input estimate that, in average “best matches” the

actual input. To do so, it uses the statistic of the input and of the

noise.

As h2P becomes much larger than σ2, the output of the LMMSE estimator

tends to y
h, which is the output of the LS estimator. This is to be expected

as h2P � σ2 means that the noise is negligible.

Notice that

X̂LS(y) =
y

h
= x +

z

h
,

16

which explains why we say that the LS estimator boosts the noise when the

channel parameter h is small.

17

LS Approximation Revisited

and MATLAB/Python commands

In a more general context, LS approximation is about model fitting in the

following sense. We observe data y1, . . . , yn and we assume that the data

comes from a parametric model. The objective of the LS approximation is to

find the parameters so that the model “best” fits the observations.

For instance, in our communication application, the model is y = Ax for

some given matrix A and unknown vector x which plays the role of the

parameters to be determined. If A is an invertible square matrix, then

x̂ = A−1y constitutes a perfect fit, but this is not the typical situation. In

general, as we have seen, the LS approximation is x̂ = (A†A)−1A†y.

18

In another example, the model could be yi = p(xi), i = 1, . . . , n, where

p(x) = b1 + b2x + b3x
2 is a polynomial of a specified degree (here of degree

2). The parameters here are b1, b2, and b3. Both the xi and the yi,

i = 1, . . . , n, are given. Since in general there are more observations than

parameters, and the observations are noisy, there is no perfect fit. Notice

that we can write the model as

y =


1 x1 x21
1 x2 x22
...

1 xn x2n


b1b2
b3

 = Ab.

We have already encountered this situation in estimating the Doppler

frequency of a GPS signal, but in that case the number of observations was

the same as the number of parameters, and we could find a perfect fit.

When there is a linear relationship between the parameters and the

observations, as in the above examples, we speak of Linear Least Squares,

and the parameter vector that minimizes the norm of the error is

(A†A)−1A†y. The matrix (A†A)−1A† is the Moore-Penrose pseudoinverse of

A.

19

If A is a non-singular square matrix, then A−1 exists and

(A†A)−1A†y = A−1(A†)−1A†y = A−1y.

We see that in this case the Moore-Penrose pseudoinverse of A is the same

as the inverse of A. In this case, the LS approximation of x in the model

y = Ax + z is the exact solution to the equation y = Ax.

The MATLAB command for the Moore-Penrose pseudoinverse of A is

pinv(A).

In Python, one can use numpy.linalg.pinv(A).

When A is a rectangular matrix or a singular square matrix, then, as we

know, pinv(A)*y is a vector x̂ such that Ax̂ is as close as possible (in

square norm) to y.

The same is true for the MATLAB backslash command A\y but the two

results are not necessarily the same when there are multiple solutions. In this

case, the Moore-Penrose pseudoinverse leads to the minimum-norm x̂,

whereas the backslash operator leads to the x̂ that has the fewest non-zero

entries. (See the documentation on pinv for an example.)

20

In Python, when there are multiple solutions, the command

numpy.linalg.lstsq(A, y) returns the minimum-norm x̂.

When A is a non-singular square matrix, then the inverse, the Moore-Penrose

pseudoinverse the backslash operation (applied on y) and

numpy.linalg.lstsq(A, y) lead to the same unique solution x that

satisfies y = Ax.

21

Appendix A: The orthogonality Principle and The

Projection Theorem

It it instructive to derive the orthogonality principle from the projection

theorem.

Recall that a random variable X is a function

X : Ω→ R or C.

We know (e.g. from PDC) that functions can be seen as vectors of an

inner-product space.

22

Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be random vectors and let U be

the inner-product space spanned by X1, . . . , Xm, Y1, . . . , Yn, with the inner

product defined by

〈Xi, Yj〉 = E[XiY
∗
j].

(You should verify that this is indeed a valid inner product.)

In U , the squared norm of Xi is

‖Xi‖2 = 〈Xi, Xi〉 = E[|Xi|2].

Let X̂i be the LMMSE of Xi based on Y .

Let V be the subspace of U spanned by Y1, . . . , Yn.

X̂i is the element of V for which

|Xi − X̂i|2

is minimized.

23

By the projection theorem (see e.g. PDC), X̂i is the projection of Xi onto V.

It has the property that

Xi − X̂i

is orthogonal to every element of V, including Y1, . . . , Yn.

Hence, for all i and j,

〈Xi − X̂i, Yj〉︸ ︷︷ ︸
E[(Xi−X̂i)Y ∗j]

= 0.

The above equality corresponds to the i, j component of the matrix equality

E[(X − X̂)Y †] = 0,

which is precisely the orthogonality principle.

24

