Modern Digital Communications: A Hands-On Approach

General Information

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Sept. 9, 2024

Instructors:

- Dr. Nicolae Chiurtu (nicolae.chiurtu@epfl.ch)
- Mr. Raphael Cannatà (raphael.cannata@epfl.ch)

Course Web Page: http://moodle.epfl.ch

Why a Hands-On Course

Confucius (551-479 BC) has summarized it well in the following proverb:

I hear and I forget,

I see and I remember,

I do and I understand.

In This Course Hopefully You Will

- 1. Consolidate what you have learned about digital communications.
- 2. Improve your MATLAB/Python skills.
- 3. Become aware of practical issues that are neglected in the PDC course (*Principles of Digital Communications* EPFL, 6th semester).
- 4. Acquire the feeling that, given enough time, you could implement a communication system based on software-defined radio.
- 5. Expand your digital communications knowledge (OFDM, software-defined radio, GPS, fading channels, etc.).

Weekly Workflow

The focal point of the course are the lab assignments. Every week we will:

- Comment as we see fit on the previous lab assignment.
- Review the theory and/or acquire new background material for the next lab assignment.
- A typical assignment is to develop MATLAB/Python code that implements key modules of a sender and/or a receiver.
- Work at the new assignment during lab time.
- The homework consists of completing the assignment (typically one or two weeks).

What We Expect From You

- You write your own code.
- Make a reasonable effort to find and correct the bugs in your program (if any). Often they happen at places where there is something for you to learn.
- Pay attention to the program structure, documentation, and running speed.
- Uploading your solutions is optional (we provide a link on moodle).

 But it can be very useful in helping you to stay on track with the class and not to fall behind.

Exercise Sessions: Be Proactive, Collaborate

- Collaboration is encouraged. We learn a lot from others. We acquire new knowledge by asking questions and we consolidate our knowledge by giving explanations. In particular ...
 - You can ask for clarifications about the theory and the assignment.
 - Ask for a hint if you are stuck.
 - Ask someone to take a look at your code if you are unable to find/fix a problem.
 - But as a general rule, try as much as possible to write your own code. That is the best way to learn.

How We Evaluate

- We will have a Midterm (worth 40% of the total) and a Final Exam (60%). The Midterm is on Wed. Nov. 6 and the Final on Wed. Dec. 18 (last day of class).
- The exams are mostly based on variations of what has been asked in the homework assignments.
- If the code you have written for the weekly assignments is clean, bug-free, and is the result of your own efforts, then you should do well in the exams.
- For the midterm, you are allowed to use one A4 sheet (one single-sided page) of handwritten notes. For the final exam, you are allowed twice as much.
- Homework is not graded. (We have given the same assignments in the past and solutions are out there.)

Background

We assume that you are familiar with the content of PDC: Principles of $Digital\ Communications$ (EPFL, 6th semester) (or equivalent courses).

Supporting Material:

- 1. Background material not covered in a standard course in digital communications will be presented in class.
- 2. Additional notes will be put on the web as needed.

To Know More: Ask us for additional reading.

Approximate Course Content

- 1. Introduction [1 week]
 - general Info
 - software-defined radio
 - review Fourier
 - AM modulation
 - (MATLAB/Python)
- 2. Building a simple communication system [3 weeks]
 - symbol- and sample-level implementation
 - eye diagram and symbol synchronization
- 3. GPS [3 to 4 weeks]
 - signal description and decoding
 - system description and positioning

- 4. Midterm Exam
- 5. OFDM [3 weeks]
 - basic setup
 - MMSE channel estimation
 - OFDM implementation on USRP (universal software radio peripheral)
- 6. Communication in the presence of fading [1 week]
 - Rayleigh channel
 - diversity
 - Alamouti scheme
- 7. Final Exam on the last day of class