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Goal

The goal is to decode the bit sequence sent by a GPS satellite.

In this lecture we go over the structure of the satellite signal, derive the

channel model, find the structure of the received signal, and finally learn how

to estimate the various signal parameters.

Once those parameters are estimated, the signal will look to the receiver as

assumed in PDC (Principles of Digital Communications), namely a pulse

train modulated by (binary) symbols plus white Gaussian noise.
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THE SATELLITE SIGNAL
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The Data Structure

The data sent by a satellite is organized in pages, pages are made of

subframes, subframes of words, words of bits, bits of C/A codes, and C/A

codes of chips. Specifically:

• a C/A code consists of 1023 chips. It takes 1 ms to send a C/A code.

• a bit contains 20 repetitions of the C/A code (20 ms)

• 30 bits make one word (600 ms)

• 10 words make a subframe (6 s)

• 5 subframes make one page (30 s)

• 25 pages make a complete data set, also called superframe (12.5 min)

To decode the bits we need to understand the details about the top two

bullets. First a pictorial overview.

4



Pictorially

C/A code made of 1023 chips: 1ms total
1 2 3 4 5 6 . . . 1018 1019 1020 1021 1022 1023

Bit made of 20 C/A codes: 20ms total
1 2 3 4 5 6 . . . 15 16 17 18 19 20

Word made of 30 bits: 600ms total
1 2 3 4 5 6 . . . 25 26 27 28 29 30

Subframe made of 10 words: 6s total
1 2 3 4 5 6 7 8 9 10

Page made of 5 subframes: 30s total
1 2 3 4 5
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How Much Data do we Need

The information contained in the first 3 subframes of each page suffices to

obtain what we need for positioning. (Other frames contain information such

as the satellite “health,” ionospheric conditions, etc.)

Hence, at the very least, it takes 18 sec worth of data for each satellite. If

you collect 30 sec (1 page) worth of data you are sure to have the first three

subframes of each satellite.

You will be given more than 30 sec worth of decoded bits for each satellite.

Your will reconstruct at least one page of four satellites.
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Clocks

There are 24 satellites (plus a few extra).

Each satellite has a clock and the receiver has a clock.

The time shown by the clock of satellite s ∈ {1, . . . , 24} is denoted by ts.

The time shown by the receiver is denoted by tr.

There is a GPS-wide reference clock, with time denoted by t. The various

clocks are related the following way:

ts = t + δts;

tr = t + δtr.

In particular,

ts − tr = δts − δtr.
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The Transmitted Signal

The transmitted signal consists of the superposition of a civilian and a

military part.

We can’t decode the military part since we don’t know some of its key

parameters. We will simply treat it as additive noise. As usual, the receiver

front end will project the received signal onto the signal space of interest

(the one spanned by the civilian signal). Since the signals are of

spread-spectrum type, the projection of the neglected component will simply

show up as additive white Gaussian noise.
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The (civilian) signal at the satellite antenna as a function of the satellite

clock ts has the form

s(ts) = <

{
ej2πfct

s∑
i

bipb(t
s − iTb)

}
where fc is the carrier frequency and pb(t

s − iTb) is the pulse of duration Tb
that carries the i-th bit bi ∈ {±1}. The pulse pb consists of a sequence of

spread-spectrum chips (more on this later).

The baseband-equivalent signal is

sE(ts) =
∑
i

bipb(t
s − iTb).
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The bit-carrying pulse pb(t) consists of 20 repetitions of a pulse pa(t) which is

determined by a satellite-dependent C/A code. Specifically

pb(ξ) =

19∑
i=0

pa(ξ − iTa)

where 20Ta = Tb and

pa(ξ) =

1022∑
i=0

ciu(ξ − iTc)

where ci is the i-th component of the C/A code (satellite dependent) and

u(ξ) is a rectangular pulse (called chip in spread-spectrum jargon) defined by

u(ξ) =

{
1, ξ ∈ [0, Tc)

0, otherwise,

where Ta = 1023Tc.
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It will also be useful to think of the baseband-equivalent signal as a train of

pa pulses, i.e.,

sE(ts) =
∑
n

anpa(t
s − nTa)

where an = bb n20c.

It will be useful to think of the above signal in the following terms: (i) each

bit bk is mapped into a codeword (a20k, a20k+1, . . . , a20k+19) that consists of 20

repetitions of bk; (ii) the {ak} sequence is used as information sequence to

modulate the pa pulse train.

The following diagram reminds us of the relationship between the {ak} and

the {bk} sequences:

bk −→ (a20k, a20k+1, . . . , a20k+19) := (bk, bk, . . . , bk).
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THE RECEIVED SIGNAL

We derive the channel model and then the received signal model. First we

need to talk about the various clocks of the GPS system.
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Timing Issues

The GPS system consists of satellites, ground control stations, and GPS

receivers. Each of these subsystems has its own clock.

Ground stations are important to supervise and control satellites but are not

fundamental to understand how the system works. For the purpose of our

discussion we may assume that they are just the holder of a GPS-wide

reference time called the GPS time. We will refer to it by the letter t.

Satellites keep track of the passage of time by means of precise clocks.

However, due to relativistic effects (accelerations), satellite times are not

aligned with the GPS time. Specifically, we assume that at GPS time t, the

time ts shown by the clock of satellite s is of the form

ts = t + δts

for some offset δts (which depends on the position of the satellite within the

satellite’s orbit).
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GPS receivers have inexpensive clocks. Nevertheless, they may also be

considered as advancing in synchrony over the interval of time of interest to

us. Hence we may assume that the time tr shown by a receiver clock at GPS

time t is

tr = t + δtr.

The fact that satellites have precise clocks just makes it easier, for the

control station, to keep track of δts and send it back to the satellite. The

satellite will then send it down to the receiver along with other information

necessary to determine the satellite position.

When we consider several satellites and possibly several receivers, we will

write t(i) and tj to denote the time at satellite i and GPS receiver j,

respectively. For now we consider only one satellite and one receiver.

A note regarding notation: superscripts are used for satellites (up in the sky)

whereas subscripts are used for the receiver (down on earth).
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The Received Signal

Over a short time interval, we can assume that a satellite is moving towards

the receiver at some constant speed v. (v is the magnitude of the radial

velocity vector v̄r depicted in the figure.) A negative value of v means that

the satellite is moving away from the receiver.

r

s

v̄

v̄⊥

v̄r
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Hence, at GPS time t, the distance between the satellite and the receiver

behaves as

d(t) = d0 − vt
for some d0.

A signal transmitted at GPS time t1, reaches the receiver at GPS time t2

t2 = t1 +
d(t1)

c
= t1(1− ν) +

d0
c
, (1)

where c is the speed of light and ν = v
c .

At t1, the satellite clock shows ts = t1 + δts and at t2, the receiver clock

shows tr = t2 + δtr. If we plug this into (1) to eliminate t1 and t2 we obtain

tr − δtr = (ts − δts)(1− ν) +
d0
c
.

By solving for ts, we find the time shown by the satellite when it sent a

signal received at receiver time tr, namely

16



ts =
tr

1− ν
− τ0,

where τ0 = δtr+d0/c
1−ν − δts.

Hence, neglecting the noise, the received signal at receiver time tr is

r(tr) = s
( tr

1− ν
− τ0

)
,

which is a delayed and time-scaled version of the transmitted signal.

The scaling is by 1/(1− ν), which can be bigger (signal compression) or

smaller (signal expansion) than 1.

Since
1

1− ν
= 1 + ν + ν2 + · · ·

and ν � 1, it is convenient to approximate 1
1−ν by 1 + ν. Using this

approximation, from now on we consider the received signal to be

r(tr) = s
(
tr(1 + ν)− τ0

)
plus AWGN noise.
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The Baseband-Equivalent Signal and the Doppler Effect

The Doppler effect shows up when we look at the baseband-equivalent

received signal.

First we write the satellite signal s(t) in terms of its baseband-equivalent

sE(t)

s(ξ) = <{ej2πfcξsE(ξ)}.

Then

r(tr) = s(tr(1 + ν)− τ0) = <{ej2πfctrej2πfcνtrejφ0sE(tr(1 + ν)− τ0)}

where φ0 = −2πfcτ0.
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The baseband-equivalent received signal is thus

rE(tr) = ejφ0ej2πfcνtrsE(tr(1 + ν)− τ0).

We see that the baseband-equivalent signal has a residual carrier frequency

fcν referred to as the “Doppler shift”.

The parameters ν, τ0 and φ0 = −2πfcτ0 are the result of a linearisation of

the time of flight (from satellite to receiver) with respect to some fixed time

t̄r in the neighborhood of the values of tr of interest.

They may be considered constant over a few bits but we need to be aware

that they vary over longer intervals. For instance, while a satellite approaches

a receiver ν is positive and is negative while the satellite is moving away.
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Summarizing the Received Signal

The received signal (this time including noise) looks like

y(tr) = rE(tr, φ0, ν, τ0) + z(tr)

where

rE(tr, φ0, ν, τ0) = ejφ0ej2πfcνtr
∑
i

bipb(tr(1 + ν)− τ0 − iTb). (2)

To bring the received signal in a more familiar form we define the time-scaled

bit-carrying pulse

pν(ξ) = pb(ξ(1 + ν))

and its duration Tν = Tb
1+ν .
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Now

rE(tr, φ0, ν, τ0) = ej2πfcνtr
∑
i

ejφ0bipν(tr − iTν − τ1). (3)

We see the following:

• the baseband-equivalent signal has a residual carrier frequency ν that

needs to be tracked and the term ej2πfcνtr removed.

• there is a delay τ1 = τ0
1+ν that needs to be estimated so as to know the

exact position of pν(t− τ1) and its shifted versions, shifted by multiples

of Tν = Tb
1+ν .

• the pulse itself has been time-scaled by a factor (1 + ν).

• the effect of ejφ0 is to rotate the symbols bi.
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Decoding Strategy

We will first estimate fcν and τ1 and remove the residual carrier by

multiplying with e−j2πfcνtr.

Then we implement the inner products. In the absence of noise the results

will be ejφ0bi times a scaling constant due to attenuation. Assuming that the

estimates of fcν and τ1 are correct, the i-th inner product constitutes a

sufficient statistic for the rotated symbol ejφ0bi. (The unknown scaling

constant is immaterial for the slicer of antipodal symbols.)
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At this point we could try to estimate φ0, remove its effect by multiplying

the inner product result by e−jφ0, and then estimate bi based on the sign of

what we obtain. Unless we use information contained in the bit-sequence,

the best we can do is estimate φ0 modulo π. If the estimate of φ0 is off by π

then (assuming no error induced by the noise) all the decoded bits will have

“flipped”. We will be able to detect if this is the case when we analyze the

decoded bits sequence (more on this later).

Instead of estimating φ0, we adopt a suboptimal decision rule that consists of

arbitrarily deciding that the first bit is a 1 and then decide on the remaining

bits based on the phase of the inner product results: if the phase of two

subsequent inner product results is essentially the same then also the

corresponding bits are assumed to have equal value. If the phase difference is

essentially π then the corresponding bits have different value. Once again, by

analyzing the decoded bit-sequence we will be able to tell if the first decision

was incorrect, in which case we “flip” all the bits.
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Discussion

How does the GPS channel relate to other channel models? Let us see what

they are:

• The PDC channel accounts for additive white Gaussian noise (AWGN)

and nothing else. It is not realistic for wireless communication since it

does not account for attenuation and propagation delay. Dealing with

attenuation and propagation delay is straightforward if there is a single

path.

• A channel model that consists of a linear time-invariant filter followed

by the AWGN channel is a bit more realistic. The filter can model a

continuum of delayed and attenuated paths.

• If we allow the linear filter to be time-varying, the channel adequately

models situations where there is multipath and the sender and/or the

receiver and/or some of the obstacles in between are in movement.
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The GPS channel model that we are using is arguably a simplest example of

this kind: It has a single path and the delay varies linearly with time. It also

has an attenuation but we are not concerned with it since the symbols are

antipodal which implies that the slicer just compares its input with the

threshold set at zero.
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DECODING
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Decoding The Satellite Signal

Decoding the satellite signal means estimating the bits sent by the satellite.

Now we see how to do this in detail. First let us summarize.

The receiver has “captured” a piece of signal and has transformed it to

baseband. The result is a function y of the receiver clock

y : [Tstart, Tend]→ C.

The receiver knows that the signal has the following structure

y(tr) =

M−1∑
i=0

(ejφ0bi)e
j2πfcνtrpν

(
tr − i

Tb
1 + ν

− T1
)

+ z(tr)

where φ0, ν, bi (bi ∈ {±1}), T1 (0 ≤ T1 ≤ Tb
(1+ν)) are all unknown and z(tr) is

a realization of Gaussian noise.1
1There is a relationship between τ1, which can be quite large, and T1 which is in 0 ≤ T1 ≤ Tb

(1+ν) , but figuring out this relationship will not help us.

All we need to know is that there is an uncertainty about the position of the pulses within the received signal and it suffices to know that uncertainty

modulo the length of a pulse. The purpose of T1 is to model that uncertainty.
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With some abuse of notation, in the above expression we have re-indexed the

symbols so that those in the interval [Tstart, Tend] are indexed by

0, 1, . . . ,M − 1 for some integer M .

Even if not relevant for what follows, for completeness we also point out that

T1 is τ1 modulo the symbol duration ( Tb
(1+ν)).

Pictorially, the bit-boundaries within y look as following

6

Tstart
Tstart + T1

Tb
1+ν

� -

0 1

. . .
- tr

Tend

M − 2 M − 1
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Once we have determined (an estimate of) fcν and T1, we pretend that they

are correct, we remove the effect of the Doppler by multiplying the received

signal by e−j2πfcνtr, we neglect the portion of the signal prior to Tstart + T1
(see above figure) and from now on we are back to the situation of a

modulated pulse train as studied in PDC, where the symbols have the form

ejφ0bi and the pulse has the form pν(tr − T1) (or pν(ξ) if we see the signal as

a function of the new time variable ξ which has value 0 where the first pulse

starts, i.e. ξ = tr − (Tstart + T1).)
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We start by estimating fcν as well as the position of the first complete pulse

pa within y.

To do so we use the fact that the inner product between the time functions

ej2πf̃trpν(tr) and ej2πftrpν̃(tr + τ ) has a sharp peak when f = f̃ and τ = 0.

In fact, the sharpness as we vary τ is due to the fact that pa(ξ) has a sharp

self-similarity function. (You may want to use MATLAB/Python to check

this out).

The sharpness as a function of ν̃ comes from the fact that the inner product

between two truncated complex exponentials is maximum when they have

the same frequency and decays rapidly as the frequency gap increases.

30



To implement the above idea, we take the inner products of y(ξ + τ ) and

ej2πfξpa(ξ(1 + ν)) and find the value of f and τ for which the absolute value

of the result is largest. The absolute value is needed since when we introduce

τ we not only shift the pulse pν within y but we also change ej2πfcνtr into

ej2πfcντej2πfcνtr thereby introducing a rotation by ej2πfcντ .

The sequence of inner products with different values of τ is obtained in one

shot by correlating y(ξ) and ej2πfcνξpa(ξ(1 + ν)).

We can increase the speed of our implementation with a negligible loss in

performance if we correlate with ej2πfξpa(ξ) instead of ej2πfξpa(ξ(1 + ν)).

The result is essentially the same since ν � 1. We gain in speed since we

don’t have to sample pa(ξ(1 + ν)) for every value of ν.

According to the above discussion, define

Ra(f, τ ) =

∫ Ta

0

y(α + τ )e−j2πfαp∗a(α)dα,

where p∗a(α) is the complex conjugate of pa(α), and let f̂d and τ̂ be the

maximizers of |Ra(f, τ )| in the specified range.
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The following plots illustrate the result of |Ra(f, τ )| when we use pa instead

of y.
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The result of maximizing |Ra(f, τ )| gives us an estimate f̂d of fd = νfc and

an estimate τ̂ of the position where the first shifted pa starts. The search for

the maximizer f̂d will take place over the range determined by the possible

Doppler values, namely in the range ±5 [KHz].

It turns out that the precision of the estimate f̂d obtained by correlating with

one C/A code is not sufficient. To increase the precision we refine the

estimate of fd by correlating with the concatenation of 10 C/A codes2. With

a slight abuse of notation let us also denote by f̂d the fine estimate. (The

coarse estimate will no longer be used.)

The search for τ̂ should be in the range [0, Ta
1+ν ] but, once again, it makes

essentially no difference if we search within the interval [0, Ta].

At this point we may assume that the first pa pulse within y starts at tr = τ̂ ,

and we can remove the Doppler for the data starting from that point on.

Recall that, once in a while, the parameter f̂d needs to be adjusted3.

2We are choosing 10 since this is the largest integer n for which the following in true: from any position at the boundary of a C/A code in the received

signal, either the previous or the next n C/A codes fall within one bit.
3In our implementation we do this every 5 bits.
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Since we work with chunks of data (it would be unwise to load all the

samples into a very large MATLAB/Python vector), in removing the Doppler

one has to ensure phase continuity. Specifically, if in chunk i we multiply the

received data by ejθie−j2πfiξ where ξ runs from 0 to T , and in chunk i + 1 we

multiply by ejθi+1e−j2πfi+1ξ, then we have to choose θi+1 = θi − 2πfiT . For

the first chunk we may choose θ1 = 0.

Next we need to find the beginning of a bit. Recall that a bit-carrying pulse

pb contains 20 repetitions of the pa pulse. To find the beginning of a bit we

inspect Ra(0, τ̂ + kTa) k = 1, 2, . . . (we are using f = 0 since we assume that

the Doppler has been removed) until we detect a change in phase by roughly

π (exactly π if we did not have noise and the parameters stayed fixed). Such

a change denotes the beginning of a bit.

Let us say that it occurs when k = k̂. Accordingly, we set T̂1 = τ̂ + k̂Ta. This

marks the beginning of a bit.
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Now it is convenient to shift our view from a train of pa pulses to a train of

pb pulses. As a function of pb, the Doppler-corrected signal ȳ(tr) looks like

ȳ(tr) =

M−1∑
i=0

ejφ0bipb

(
(1 + ν̂)

(
tr − i

Tb
1 + ν̂

− T̂1
))

+ z(tr).

Using the approximation (1 + ν̂) ≈ 1, it is convenient to write the above

signal in the familiar form

ȳ(tr) ≈
M−1∑
i=0

ejφ0bipb

(
tr − iTb − T̂1

)
+ z(tr).

It should be clear how to estimate the bit sequence from the above signal.
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To update f̂d by means of the pulse that carries the i-th bit we let the next

f̂d be the f that maximizes |Rb(f, T̂i)|, where Rb is defined as Ra with the

pulse pb instead of pa and T̂i = T̂i−1 + Tb.

The above updating rule for T̂i is used over short spans. Once in a while4,

also T̂i needs to be updated. We do so by choosing it as the τ around the

current T̂i that maximizes |Rb(f̂d, τ )|.

4again every 5 bits in our implementation
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What Next

Once we have decoded the bits of the visible satellites (at least 4 of them),

for each such satellite we will

• Find the beginning of the first subframe. This is done by looking for a

certain bit pattern. If we find the negative of the bit pattern it means

that we need to “flip” all bits. (The first decoded bit, arbitrarily

declared as a 1, is indeed a −1.)

• Identify the five pages. (The first three pages are actually sufficient.)

• Verify that the parities are fulfilled.

• Extract the ephemeris information from the decoded bit sequence.

• Determine the pseudoranges.

We will give you routines to do some of the above and will give additional

information to implement the missing parts.
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