
Modern Digital Communications:
A Hands-On Approach

MATLAB Style, Pointers, and Pitfalls

Dr. Nicolae Chiurtu

- Course material of Prof. Bixio Rimoldi -

Last revision: Sept. 24, 2018

1



Use Constants, Not Literals

• Avoid the use of literals in the code. Instead, define constants at the

top of your file.

Example:

ORDER = 2;

F_SAMPLE = 50000; % Hz

F_INFO = 1000; % Hz

...

[b,a] = butter(ORDER, 2*F_INFO / F_SAMPLE);

rather than

...

[b,a] = butter(2, 0.04); % Who remembers what 0.04 meant?

2



Comment Your Code

• Comments not only help someone else to better understand your code,

but also make it easier for yourself to retrace your thoughts.

• Comments help even when writing code, since you can write out what

you will do before doing it:

% First we'll filter the signal,

% then we recover the message symbols.

...

• This is of course useless:

% Set a to 5

a = 5;

3



Write Function Descriptions

By writing a description in English of how exactly a function works, it will be

much easier to actually write the functions, and it will of course help anyone

who later uses the function (including yourself):

function a = foo(b, c)

% FOO Short description here

% A = FOO(B, C) returns the foomatic number of

% the vectors B and C.

% If B and C are matrices, the foomatic numbers are

% computed columnwise.

%

% A = FOO(B, C, Q) allows you to specify in addition

% the foomatic parameter Q.

...

This description will be available if we type help foo at MATLAB’s prompt.

4



Time Consuming Operations

• Your code should display what it’s doing if it doesn’t otherwise

produce any output for several seconds.

• Use fprintf to display text, e.g.,

fprintf('%d percent done\n', 100* k / total_iter);

• For a nice graphical display, use waitbar (see help):

5



Figures

• Use subplot when appropriate to avoid cluttering the screen with

figure windows.

• All plots must have a title and labeled axes. Use the commands

title, xlabel, and ylabel.

• Pictures say more than 1000 words. . .

6



Figures (cont’d)

7



Figures (cont’d)

8



Figures (cont’d)

9



Don’t Overwrite Built-In Constants

• MATLAB lets you overwrite built-in constants or function names

without warning:

pi = 4; % revolutionize geometry

var = 7; % we cannot access the function to

% compute the variance any more

• This can lead to errors that are hard to track:

for i = 1:length(some_vec)

...

s = exp(i*2*pi*t*f_c); % not a sinusoid!

...

end

10



• If in doubt, use which -all name to check if name will shadow an

already existing function or variable.

• Always use 1i (or 1j) instead of simply i (or j) for the imaginary

unit. For instance, complex constants can be written as 3+1i*2 or,

even better, as 3+2i.

• (You can also use j instead of i.)

• As an alternative, you can always type i = sqrt(-1) if you have

overwritten the imaginary unit.

11



Why for-loops Are Bad in MATLAB

• Built-in MATLAB functions are optimized to work with matrices

(rather than with single numbers)

• Main parts are implemented in C

• Using for-loops destroys this optimization, since the C-functions have

to “return” to MATLAB after processing each element of a vector

12



for Loops: A Typical Example

• Problem: Convert uniform random numbers to 0’s and 1’s

• Bad solution:

x = rand(1, NBITS); % Create uniform random numbers

for k = 1:length(x)

if x(k) > 0.5

x(k) = 1; % Set bit to 1

else

x(k) = 0; % Set bit to 0

end

end

13



for Loops: A Typical Example (cont’d)

• Problem: Convert uniform random numbers to 0’s and 1’s

• Good solution: logical indexing

x(x > 0.5) = 1;

x(x <= 0.5) = 0;

• Even shorter:

x = (x > 0.5);

(Possible disadvantage: the data type of x is now logical)

(Possible advantage: one logical requires 8 times less memory than a

double)

Related tip: use the command whos to know the type and size of your

variables in memory

14



for Loops: Example 2

Application of functions to vectors:

• Bad solution:

for k = 1:M

sym_const(k) = exp(j*2*pi*(k-1)/M);

end

• Good solution:

sym_const = exp(j*2*pi*[0:M-1]/M);

Many MATLAB functions do not only accept vectors as input, but matrices,

operating in some cases on each column independently (for instance sum,

max, min, prod, fft, etc) ⇒
Organize your data appropriately taking this into account to improve

performance.

15



for Loops: Example 3

Using one vector as index of another

constellationMap = ...;

% Maps source symbols to constellation symbols

• Bad solution:

for k = 1:length(dataSymb)

constSymb(k) = constellationMap(dataSymb(k));

end

• Good solution:

% dataSymb used directly as index

constSymb = constellationMap(dataSymb);

16



for Loops: Conclusions

Replacing for-loops by equivalent matrix operations (often called vectorizing

your code) makes it

• faster,

• shorter,

• (in most cases) more readable.

This will come in handy in future assignments where you will be dealing with

large amounts of data.

17



Creative use of

• find,

• repmat

• reshape

• kron

• the colon operator (:)

can really help vectorize your code, but try not to make the code too cryptic.

Readability is very important.

18



Preallocation

• Do not make vectors or matrices grow inside for or while loops.

• Preallocate the whole memory before filling elements.

Use the commands zeros, ones for this.

• Example: bad

x = 0;

for k = 2:1000

x(k) = x(k-1) + 5;

end

• Example: good - no need to repeatedly reallocate memory and move

data as more values are assigned to x in the loop

x = zeros(1,1000);

for k = 2:1000

x(k) = x(k-1) + 5;

end

19



• Preallocation may not always be possible, i.e., when you do not know

the size of the resulting matrix.

20



Odds and ends

• Keep code lines short. Use the ellipsis (...) if you need to break a

long line. Easier to read, easier to print.

• Although not strictly necessary, make function names match the

filename. And remember that case matters.

• If you preallocate memory for a vector that might eventually become

complex, make it complex from the beginning.

• Do not change variable’s data types

x = zeros(1, 1E4)

% -- other code --

x = 'ABC';

The change of x from double to char has a negative impact on

performance.

When you need to store data of a different type, create a new variable.

21



• Use appropriate logical operators: & is not the same as && (short

circuit form). Use A && B when evaluating B might give a runtime

error when A is not true.

• Pay attention to the use of Hermitian transpose (A') and plain

transpose (A.')

• Remember: indices in MATLAB are 1-based (as opposed to C, Python,

Java ..., where array indices are 0-based)

• Use MATLAB tools: debugger, profiler, variable inspector

• Make your code modular. Break complex functions into simpler

functions. If one function is only meant to be called by another, then

make it a sub-function of that one.

22



Reminder

• The guidelines presented here are not only a suggestion, we will also

consider their correct application by you when grading.

• Bad style −→ bad (or not so good) grade :(

Recommended reading / reference:

• Ed Overman, ”A MATLAB Tutorial”, Department of Mathematics,

Ohio State University.

Available on Moodle.

Go through this tutorial as deeply as you think you need as part of the

homework assignment.

−→ Questions?

23


