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MIMO Communications

In this assignment we consider a communication system with multiple transmitter and mul-
tiple receiver antennas (a MIMO system) and in this context, we compare the LS approximation
to the LMMSE estimate of the transmitted signal.

If there is a single path between the transmitter and the receiver, the inputs and the outputs
of the symbol-level channels in such a system will be related as

y[n] = H[n]x[n] + z[n]. (1)

In the above,

• x[n] =
[
x1[n] x2[n] · · · xt[n]

]T
is the vector of t transmitter antenna inputs;

• H[n] =


H11[n] H12[n] · · · H1t[n]
H21[n] H22[n] · · · H2t[n]

...
...

. . .
...

Hr1[n] Hr2[n] · · · Hrt[n]

 is the r × t channel matrix, which in general can

be time dependent and consists of i.i.d. circularly-symmetric complex Gaussian entries.

• y[n] =
[
y1[n] y2[n] · · · yr[n]

]T
is the vector of r receiver antenna outputs; and

• z[n] =
[
z1[n] z2[n] · · · zr[n]

]T
is the vector of r i.i.d. white Gaussian noise samples.

Usually, the transmitter has no knowledge about the channel matrix H[n], but we assume
that the receiver knows it. Indeed, as you have seen in the previous asignments, the receiver
can estimate the channel matrix with the help of a training sequence. If the channel changes
with time, the channel estimation can be performed periodically, assuming the channel remains
constant during the interval in between two channel estimations. For simplicity, we assume
throughout this assignment that the receiver knows the exact channel matrix H[n].

The transmitter sends out data symbols from a constellation (e.g. 4-QAM constellation) over
its t antennas. Our goal is to develop a receiver that decodes the transmitted symbols x[n] with
low error probability, upon observing the received symbols y[n].

Download the code framework for this assignment1 from the course webpage. Read through
the function mimo_channel(). This function simulates the channel described in Equation (1).
It generates a new channel matrix each time it is called, and returns it as a second output
argument. This is useful because we are not going to implement channel estimation; instead we
use the exact channel matrix returned by the channel simulator.

As in the previous assignments, we provide the solutions for every function that you should
write. You can use these solutions to test a whole working system, maybe just substituting one
function at a time with your implementation. For MATLAB, the script function_mapper is used
to select for each function whether to use the provided solution or your own implementation.
For Python, the functions that you need to write are grouped under my_utilMIMO.py.

Exercise 1. In principle, given the channel matrix H[n], we can formulate a decision problem
using the signal model (1), and derive the optimal decoder for deciding on the information
symbols x[n]. However this would be impractical: First, the computational complexity of the
decoder can be high. Assume data symbols x1[n], x2[n], . . . , xt[n] are chosen from an M -ary
constellation. Then the observable y[n] will be the noisy version of a “super-symbol” H[n]x[n]
that can take M t different possible values. This means instead of an M -ary decision rule, the
decoder has to implement a much more complex M t-ary decision. Second, this decision rule
depends on the channel, which varies over time.

In practice, to decode we often follow a two-step approach: we first equalize the ‘mixing’
effect of the channel and create a new set of observables ỹ[n] ∈ Ct obtained from y[n] in such
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a way that ỹi[n] is a noisy version of xi[n], i = 1, 2, . . . , t. Then we feed the equalized symbols
to a standard M -ary decoder to decode each of the t components independently. This way, we
bring down the complexity from one M t-ary decision to t M -ary decisions.

An easy-to-implement equalizer is simply a linear equalizer that multiplies the received sym-
bols with a matrix B[n] ∈ Ct×r (called the equalization matrix), to obtain

ỹ[n] = B[n]y[n]. (2)

A first attempt would be to choose B[n] so that ỹ[n] is the LS approximation of x[n]. We know
that in that case, B[n] = (H†[n]H[n])−1H†[n] which is the Moore-Penrose inverse of H[n] (also
called pseudoinverse).

If we assume for simplicity that r = t and the channel matrix is invertible, the previous
expression simplifies to B[n] = H−1[n], where we have used the fact that (AB)−1 = B−1A−1

where A and B are non-singular square matrices. In this case, we obtain

ỹ[n] = x[n] + v[n]

where v[n] = H−1[n]z[n]. This method is called zero-forcing, as it ‘forges’ t effective channels
through the MIMO channel such that on each channel the effect of other transmitted symbols
is zeroed out. Observe also that v[n] does not have independent components anymore, so per-
forming a component-wise minimum-distance decoding on ỹ[n] is not optimal. Nevertheless,
as the optimal decision rule will (again) depend on H[n], we accept to use the sub-optimal
component-wise minimum-distance decoding.

1. Implement zeroForcing_equalizer(). As it is clear from the comments, the function
implements a zero-forcing equalizer as we discussed above. Recall that to solve y = Ax,
you can use the backslash operator (see mldivide for MATLAB, and numpy.linalg.lstsq

for Python). This is much faster than computing the matrix inverse. The advantage of
using this operator is that it automatically computes the pseudoinverse if A is not invertible.

Once you have implemented your function, open the script mimo_performance and set the
flag test_zf = true. Now you can run this script to simulate the performance of your
communication system at different signal-to-noise ratios. Note that you can control how
many different channel realizations are generated per signal-to-noise ratio, and the duration
(in terms of number of symbols) over which the channel is constant through parameters
trials_per_snr and symbols_per_trial, respectively. The script then plots the symbol
error rate and the effective signal-to-noise ratio after equalization (noise after equalization
is v[n] = B[n]z[n]).

Look at the plot of effective signal-to-noise ratio versus channel signal-to-noise ratio. What
can you conclude?

2. As you have probably discovered, the problem with zero-forcing equalization is noise am-
plification. Let us go through a more concrete example here. For simplicity, let us drop
the time indices in this part.

Derive the expression for the covariance matrix of v = H−1z,

Σv = E
[
vv†

]
in terms of H and Σz, assuming z ∼ NC(0, σ2I2).

Suppose

H =

[
1 e0.001j

e0.001j 1

]
.

Use MATLAB/Python to evaluate Σv. How do var(v1) and var(v2) compare to σ2?

Exercise 2. In order to mitigate the noise-amplification problem of the zero-forcing equalizer,
we can choose B[n] so that ỹ[n] is a Linear Minimum Mean Square Estimate (LMMSE) of x[n].

1. Find the matrix B such that By is the LMMSE of x, where y = Hx + z. Assume that
z ∼ NC(0, σ2Ir), E

[
xx†

]
= It, and x and z are statistically independent.

2. Using the results of part 1, implement lmmse_equalizer(). Then set the flag test_lmmse ...

= true in mimo_performance. Run the script again to compare the performance of differ-
ent equalizers.
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You should see that the LMMSE equalizer results in considerably higher signal-to-noise
ratio at the decoder input, hence a lower symbol error rate. Also observe that the symbol
error rate for the LMMSE receiver decays almost as the inverse of the signal-to-noise ratio.
This is what we actually expect from a fading channel.
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