
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 6 Modern Digital Communications
Assignment 4 October 2, 2024 (due Oct 8, 2024)

Symbol Synchronization

In Assignment 2 we implemented the building blocks of a basic communication system that
uses symbol-by-symbol on pulse train signaling, depicted in Figure 1, and saw how to evaluate
its performance in MATLAB/Python.

h(t) +

N(t)

ψ(t)

{sk}

s(t) =
∑

k skψ(t− kT )
hMF(t)

{Yk}

kT

Y (t)R(t)

ChannelTransmitter Receiver

Figure 1: Communication System of Interest (ψ is a Nyquist pulse)

In our simulations we assumed that the channel only adds white Gaussian noise to the input
signal and is, otherwise, perfect, i.e., h(t) = δ(t). In this case, choosing the matched filter impulse
response as hMF(t) = ψ∗(−t) guarantees that the T -spaced samples of the matched filter output
are ISI-free noisy versions of data symbols, i.e.,

Yk = sk + Zk, k ∈ Z , (1)

where Zk are i.i.d. zero-mean Gaussian noise samples with variance N0/2 in each real-valued
dimension.

This assumption on the channel is not realistic. Among many other impairments (that we
will see during this course), a channel always delays the transmitted signal by an amount that
is typically unknown to the receiver. Typically there is also an unknown offset between the
transmitter and the receiver’s clock. The result is that the receiver observes a noisy and time-
translated version of the transmitted signal:

R(t) = s(t− T0) +N(t),

and the time translation T0 is, a priori, unknown to the receiver.

Exercise 1.

1. Assume h(t) = δ(t−T0) in the communication system of Figure 1 and ψ is a Nyquist pulse.
Show that if instead of sampling the matched filter output at times t = kT , we sampled it
at t = kT + T0, the samples Yk = Y (kT + T0) will be ISI-free (as in Equation (1)).

Therefore, if the receiver knew the value of T0, it could easily synchronize with the trans-
mitter by offsetting the sampling time of the matched filter output. For this reason, the
problem of symbol synchronization is sometimes referred to as sampling-time offset correc-
tion.

2. For any pulse shape p(t), define its self-similarity function as

Rp(t) :=

∫
p(α+ t)p∗(α)dα.

(a) Show that Rp satisfies Hermitian symmetry, i.e., Rp(t) = R∗
p(−t).

(b) Use the Cauchy–Schwarz inequality1 to show that

|Rp(t)| ≤ Rp(0) = ‖p‖2.
1|〈u, v〉| ≤ ||u|| ||v|| with equality iff u and v are collinear.



Based on what we proved in Exercise 1 part 2, one way to estimate the channel delay, T0,
at the receiver is the following: Suppose we transmit a pulse p(t), known to the receiver. Then,
the receiver can compute

ρ(υ) := 〈R(t), p(t− υ)〉, (2)

where R(t) is the received signal. If we only transmitted p(t) (without any data signal) the
received signal would be R(t) = p(t− T0) +N(t). Accordingly,

ρ(υ) = Rp(υ − T0) +

∫
N(α)p∗(α− υ)dα .

For any given value of υ, the above integral yields a zero-mean circularly-symmetric complex
Gaussian random variable with variance ‖p‖2N0/2 in each dimension. Neglecting this noise term,
we can conclude that |ρ(υ)| is maximized at υ = T0. Therefore, the receiver can estimate T0 as

T̂0 = arg max
υ

∣∣〈R(t), p(t− υ)〉
∣∣. (3)

In practice, in order for this method to work, we need to take care of a few other details.

(i) First, we neglected the channel noise. If we want to be confident that even in presence of
noise the inner product 〈R(t), p(t − υ)〉 is maximized when υ is essentially T0, we have to
make sure that p has a sharp self-similarity function. This way, at υ 6= T0, the self-similarity
function Rp(υ − T0) is much smaller than Rp(0), so the noise term cannot help it exceed
Rp(0).

(ii) The pulse shape p(t) must satisfy certain spectral properties. We are going to transmit
this pulse through the channel that has a fixed bandwidth. In essence, for the same reasons
that we needed a pulse-shaping filter (to make sure the spectrum of transmitted signal lies
within the desired bandwidth) we have to make sure that the spectrum of p(t) also has the
same properties as that of ψ(t).

(iii) Finally, we need to take into account the fact that p(t) is not the only signal transmitted
through the channel. It is only a preamble to the actual data signal. The receiver needs
to use p(t) to estimate the channel delay T0 and then be able to decode the data symbols.
This means that the transmitted signal is p(t) followed by (a delayed) version of the data
signal. The following diagram helps to better understand the structure of the transmitted
signal:

Preamble p(t) Data
∑

k skψ(t− kT )

lT Variable Length

For notational convenience, we can still write

s(t) = p(t) +
∑
k

skψ(t− kT ), (4)

but we implicitly assume that sk = 0 for k ≤ l for some training period of l symbols. We
also use the short-hand notation

sdata(t) =
∑
k

skψ(t− kT ), (5)

to denote the ‘data’ component of the transmitted signal. Consequently,

R(t) = p(t− T0) + sdata(t− T0) +N(t), (6)

and, accordingly,

ρ(υ) = 〈R(t), p(t− υ)〉 = Rp(υ − T0) + 〈sdata(t− T0), p(t− υ)〉+ 〈N(t), p(t− υ)〉 (7)

So, we also need to ensure that the contribution of the second term (due to data symbols)
is negligible.

We will see how to design p(t) to ensure that the above requirements are met.

2



Exercise 2.

Download the MATLAB/Python files for this assignment from the course webpage. Read
through the script receiver_sync_script. This script simulates the transmission of 4-QAM
data symbols using root-raised-cosine pulses through our channel of interest, evaluates the
symbol-error rate, and plots the eye diagram and the constellation at the matched filter output.
The line

received = channel(samples, SNR_dB, Es, 8*SPS);

simulates the channel effects. The function channel() simulates an AWGN channel with given
SNR (SNR_dB) that delays the signal by a random amount. The max_delay parameter provides
an upper-bound on the delay. So the code line above limits the channel delay to at most eight
times the duration of one symbol.

If you run receiver_sync_script, you should see that we have a cloudy constellation at
the matched filter output, and the eyes are relatively closed at time t = 0. Instead, the maximal
vertical opening of the eye is at some other time instant. Symbol synchronization is the problem
of finding this time instant, at which the eye is sufficiently open. Note that we are experimenting
with a relatively high SNR (20 dB), and the relatively high symbol-error rate that you observe
is almost purely due to the ISI resulting from the timing offset between the receiver and the
transmitter. Indeed, setting max_delay=0 shows that the transmission is almost error-free when
there is no delay.

1. Implement my_estimateTau.m (for Python: my_utilPDC.my_estimateTau).

You can efficiently implement these functions using the convolution/correlation opera-
tors. Carefully read the documentation for the convolution/correlation routines you de-
cide to use, and make sure that your function correctly returns the value of υ for which
|〈R(t), p(t− υ)〉| is maximized, where R(t) is the received signal (whose samples are given
as the argument rx_signal) and p(t) is an arbitrary pulse shape (whose samples are passed
to the function via the argument preamble).

For MATLAB, instead of convolution, one could also use the function xcorr.

2. One way to choose p(t) is to set p(t) = s0ψ(t) for some arbitrary symbol s0 (which may or
may not come from the constellation of data symbols) and have a training period of l = 1
symbols. Note that this choice facilitates the implementation: the transmitter only needs
to send an agreed-upon symbol s0 at time zero (instead of data symbols). Also since p(t)
is the scaled version of the ψ(t), it automatically satisfies all the spectral properties we
need.

(a) Show that with this choice of p(t),

ρ(υ) = 〈R(t), p(t−υ)〉 = |s0|2Rψ(υ−T0)+
∑
k>0

sks
∗
0Rψ(υ−T0−kT )+ 〈N(t), p(t−υ)〉.

(8)

(b) Assuming ψ is a Nyquist pulse, show that

ρ(T0) = |s0|2Rψ(0) +

∫
N(α)s∗0ψ

∗(α− T0)dα.

This shows that, at least at υ = T0 the contribution of data symbols to the inner
product is zero.

(c) Check that ρ(T0 + nT ), ∀n > 0, takes a similar form.

(d) Using MATLAB/Python, plot the self-similarity function of the root-raised-cosine
pulse used in our communication system.

(e) If ψ has a sharp self-similarity function, for υ in vicinity of T0 the contribution of the
second term (summation) in (8) is still negligible. Thus, we can approximate

ρ(υ) ≈ |s0|2Rψ(υ − T0) +

∫
N(α)p∗(α− υ)dα, for υ in vicinity of T0.

So, ignoring the presence of noise, we can again say that υ = T0 is a local maximum
of ρ(υ). Therefore, we may hope that our estimation method still works.

To test this, uncomment the line

3



preamble_symbols = [1];

in the script receiver_sync_script. This will add the desired preamble signal (with
s0 = 1) to the data signal. Is the delay estimated correctly? Using the results obtained
in the previous questions, can you explain what is happening?
Hint: You may also want to plot the result of the convolution/correlation in the
function my_estimateTau.

3. To overcome the issues observed above, we need to make sure that the inner product
between the time-shifted preamble signal p(t − υ) and the “data” part of the signal is
negligible for all values of υ.

Consider the preamble signal constructed randomly as

p(t) =

l−1∑
i=0

Biψ(t− iT ) (9)

where Bi are independent and identically distributed BPSK symbols, with Pr{Bi = −1} =
Pr{Bi = +1} = 1/2. Note that with this choice we still guarantee that p(t) satisfies the
spectral properties we need.

(a) Compute the (random) self-similarity function of p, Rp and show that

E [Rp(t)] = lRψ(t).

(Note that the expectation is taken over the choice of symbols Bi.) Conclude that if
ψ has a sharp self-similarity function then on average this construction results in a
preamble p(t) that has a sharp self-similarity function as well.

(b) Let q(t) be any random process generated independently from p(t) (in particular it
can be the data signal sdata or the noise). Show that

E [〈q(t), p(t− υ)〉] = 0.

Thus, we have seen that such a randomly constructed preamble, on average, has all the
properties we desire. Let us also accept, without proof, that if l is large, the behaviour
of such a preamble is close to average. Therefore if we had been able to use such a truly
random preamble we would have had a good estimation of channel delay. The problem is
that the preamble has to be shared between the transmitter and the receiver, so it cannot
really be generated randomly. In contrast, we can use what is so called pseudo-noise (P/N)
sequence. A P/N sequence is generated deterministically by using Linear Feedback Shift
Registers (LFSR) but ‘looks’ like a pure random sequence. Therefore, the transmitter and
receiver can generate such sequences that look random locally, and be sure that they both
get the same sequence (by initializing the LFSRs in the same state).

We have generated2 one such sequence of length l = 127 for you that is stored in the
variable pn_seq when you run the script receiver_sync_script. To use a preamble
generated based on this sequence, uncomment the line

preamble_symbols = pn_seq;

in the script receiver_sync_script. Run the script with this preamble, and observe how
well the receiver estimates the channel delay and, as a result, the eyes will be centered. If
you have time, try to reduce the SNR and figure out up to what SNR the time estimator
still works well.

Exercise 3. We have seen in the previous exercise a pretty robust method for estimating the
channel delay. The core step of our estimator was computing the inner products between the
received signal and time-shifted copies of the preamble, and determining the time shift for which
the inner product is maximized. These inner products can be efficiently computed in software,
but this requires the receiver to have access to samples of the received signal (i.e., {R(nTs)})

2See help commsrc.pn to learn how to generate such sequences yourself in MATLAB.

4



and necessitates implementing the matched filtering as a digital filter. In some implementations,
the matched filter is still a part of the analog front-end and the digital block only receives the
samples of the matched filter output, namely {Y (nTs)}.

As computing the inner products 〈R(t), p(t − υ)〉 in the analog front-end is impractical, it
is natural to wonder if there is a way to estimate the channel delay using the matched filter’s
output samples? In this exercise we give an affirmative answer to this question.

We assume the preamble is in the form of

p(t) =

l−1∑
i=0

biψ(t− iT ).

We want to show that we can compute ρ(mTs) = 〈R(t), p(t−mTs)〉 using only the matched
filter output samples Y (nTs) and the {bi} sequence.

1. Show that the output of the matched filter is

Y (t) = 〈R(α), ψ(α− t)〉.

2. Compute ρ(υ) = 〈R(t), p(t− υ)〉 and show that

ρ(mTs) =
∑
k

b∗kY (mTs + kT ).

This shows that we can compute (the samples of) the inner product 〈R(t), p(t− υ)〉 using
the samples at the output of the matched filter.

5


