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ISI and Eye Diagram

As we discussed in class, it is often desirable to communicate via a unit-norm pulse ψ(t) that is
orthogonal to its T -spaced shifts, i.e.,

〈ψ(t), ψ(t− kT )〉 = 1{k = 0}. (1)

Signalling via such pulses, called hereafter Nyquist pulses, has several advantages: As the data
symbols will be the coefficients of the orthonormal expansion of the transmitted waveform, the
transmitter can generate the discrete-time samples of the output signal by using a single shaping
filter. At the receiver, a single matched filter does all the job required for projecting the received
signal onto the basis vectors and computing the sufficient statistics for decision.

Given a Nyquist pulse ψ(t), the transmitter converts the data symbols {sk} to the transmitted
signal

s(t) =
∑
k

skψ(t− kT ). (2)

If R(t) = s(t)+N(t) is the (noisy) received version of s(t), the sufficient statistics for deciding the
data symbol sequence is formed by projecting R(t) onto the space spanned by {ψ(t− kT )}k∈Z.
That is, to compute

yk = 〈R(t), ψ(t− kT )〉 = (R ? hMF)(kT ),

where hMF(t) = ψ∗(−t) is the matched-filter impulse response.1 Observe that by signaling via
Nyquist pulses, we are able to form the decision statistics by sampling the output of a single
matched filter. The samples are taken at integer multiples of T .

Nyquist’s theorem translates the orthogonality condition (1) to the equivalent frequency-
domain as

l. i.m.

∞∑
k=−∞

∣∣∣ψF(f − k

T

)∣∣∣2 = T, f ∈ R. (3)

Note that l. i.m. stands for limit in mean-squared error. Roughly speaking, it means that the
summation on the left-hand-side of (3) should be equal to the constant function T , except
possibly at some isolated points. In all practical applications, ψF is a smooth function and we
ignore the l. i.m. in (3).

Nyquist criterion allows us to design a Nyquist pulse ψ(t) (satisfying (1)) in the frequency
domain so as to achieve a desired power spectral density (PSD).

A popular family of Nyquist pulses is the root-raised-cosine family, defined as:
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where β ∈ (0, 1) is called the roll-off factor.
Even if ψ(t) is a Nyquist pulse, the sampled output of the matched filter can contain inter-

ference from other symbols, known as the inter-symbol interference (ISI). There are three main
reasons for ISI. First, if ψ(t) is a band-limited pulse then it has infinite support in time domain.
Therefore, it has to be truncated to be usable in practice. A truncated version of ψ(t) may not
be a Nyquist pulse anymore. The second reason for ISI is sampling-time offset: due to a small
clock offset, the receiver may sample the output of the matched filter at time t = kT + t0 with
t0 6= 0. Finally, the system may suffer from ISI if the channel is not transparent to the input
signal, i.e., if its frequency response is not constant over the bandwidth of s(t).

1We use ? to denote convolution: (x ? y)(t) :=
∫
x(τ)y(t− τ) dτ.



Exercise 1. Consider the communication system of Figure 1. As we discussed above, the
transmitter converts the sequence of data symbols {sk} to the transmitted signal s(t) as in
(2). Before adding white Gaussian noise N(t) to s(t), the channel filters the transmitted signal.
The latter models the non-ideal behavior of the channel. The receiver, as before, filters the
received signal with the matched filter hMF(t) and samples the matched filter output at times
t = kT, k ∈ Z to form observables for decoding the data sequence {sk}. N(t) is assumed to be
AWGN with zero mean and variance N0

2 per real-valued dimension.

h(t) +

N(t)

ψ(t)

{sk}

s(t) =
∑

k skψ(t− kT )
hMF(t)

{Yk}

kT

Y (t)R(t)
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Figure 1: Communication System of Interest

1. Show that R(t) has the form R(t) = s̃(t) +N(t) where

s̃(t) =
∑
k

skφ(t− kT ), and φ(t) = ψ(t) ? h(t).

2. As a consequence, the receiver can assume the following equivalent system:

+

N(t)

φ(t){sk}
s̃(t) =

∑
k skφ(t− kT )

hMF(t) {Yk}
kT

Y (t)R(t)

Show that the sampled matched-filter output takes the form

Yk = l0sk +
∑
j 6=0

ljsk−j + Zk (4)

where Zk is additive Gaussian noise.

The term,
∑
j 6=0 ljsk−j , is known as ISI (inter-symbol interference). Derive an expression

for the ISI coefficient, lj , in terms of

ρφ,ψ(t) =

∫
φ(α+ t)ψ∗(α)dα.

Recall that hMF(t) = ψ∗(−t). As a sanity check, verify that if ψ(t) is a Nyquist pulse with
bandwidth B and the channel is an ideal low-pass filter with bandwidth greater than B,
your expression for lj yields lj = 1{j = 0}.

3. Show that if ψ(t) is a Nyquist pulse, the noise sequence {Zk} in (4) is i.i.d.

Exercise 2. In Exercise 1 we have seen that having a non-transparent channel response h(t)
results in the ISI. In this exercise, we investigate the effect of a sampling-time offset. Consider
again the system of Figure 1, and now assume that the output of the matched filter is sampled
at time kT + t0 for some arbitrary value of t0, i.e., Yk = Y (kT + t0).

1. Argue that the system with sampling-time offset (i.e., t0 6= 0) and channel response h(t)
is equivalent to an offset-free system with channel response h(t+ t0).

2. Using your results from part 2 of Exercise 1, give an expression for the ISI coefficients
in the presence of sampling-time offset, when the channel has an ideal impulse response,
h(t) = δ(t).
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3. Recall from the class that ψ(t) = 1/
√
T sinc(t/T ) is a Nyquist pulse. Observe also that

it is the minimum-bandwidth Nyquist pulse (for a given symbol period T ). However,
sinc(·) turns out to be a bad choice from the perspective of the sensitivity of the system to
sampling-time offset. Let us see why. For simplicity assume T = 1, hence ψ(t) = sinc(t).
Assume also that the channel had an ideal impulse response.

(a) Compute the ISI coefficients lj as a function of t0 when ψ(t) = sinc(t).

(b) Show that with this choice of ψ(t) the ISI can, in principle, be unbounded.

Hint. For arbitrary constants c and d, the sum
∑n
j=1

c
j+d grows without bound as n

increases.

Exercise 3. The eye diagram is a powerful tool to visualize if there is ISI in the system and how
critical it is. It is obtained as follows: Suppose Y (t) is the matched filter output when s(t) is the
transmitted signal corresponding to a sequence of random data symbols as in (2) (see Figure 1).
If we plot Y (t− kT ) for t ∈ [−T, T ] and various integers k ∈ Z on the same axes, we obtain the
eye diagram.

In this exercise we write a function to plot the eye diagram and use it to see the effects of
ISI in a communication system.

1. Implement my_eyediagram (for Python: my_utilPDC.my_eyediagram).

Given the discrete-time samples of the matched filter output y, sampled at the rate Fs

samples per second, the function plots the traces of Y (t − iT ), t ∈ [−T, T ], for different
values of i. Note that each trace corresponds to 2*T*Fs samples. If the number of samples
in y is not an integer multiple of 2*T*Fs, the function should ignore the extra samples.
The horizontal axes must be labeled in the range [−T, T ].

Hint. The function plot(t,z) (matplotlib.pyplot.plot(t, z) for Python) accepts a
vector t and a matrix z.

You will use the function my_eyediagram in the next part of the exercise. For now, to
test your function, we provide a data file, mf_output.mat, that contains the discrete time
output of the matched filter sampled at a rate of Fs = 5000 samples per second with the
symbol period T = 0.01 second. The signal is obtained by transmitting random BPSK
data symbols via the pulse ψ(t) = 1√

T
sinc(t/T ) truncated to length 20. The transmission

has taken place over a noiseless ideal channel.

If you run your function with the input from the file, i.e., execute
>> load('mf_output.mat'); my_eyediagram(y,Fs,T)

or my_plot_eye_diagram.py for Python, you should get the eye diagram of Figure 2. By
looking at Figure 2, determine whether there is ISI in the system.
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Figure 2: The Eye Diagram for sinc

In the remainder of this exercise we would like to investigate the effect of truncating the pulse.
We do so using the eye diagram.
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2. Modify the script my_errorRatesScript which you wrote in Assignment 2 such that it
transmits 500 BPSK symbols. The transmission should take place over an ideal noiseless
channel. The idea is to use this modified script to investigate the ISI caused from truncating
root-raised-cosine pulses with different roll-off factors. Specifically, consider root-raised-
cosine pulses with roll-off factors2 β = 0, 0.3, 0.9 and examine two truncated versions of
each pulse, one truncated to length 6T , and the other one to 20T . Assume that the data
rate is R = 100 symbols/sec and the sampling frequency is Fs = 5000 Hz. For each of the
RRC pulses above, plot them in the time and frequency domain, using the function tfplot

which you wrote in Assignment 1. Then, use my_eyediagram to plot the eye diagram at
the output of the matched filter.

For which values of β and truncation lengths is the ISI evident?

Exercise 4. In this exercise we see how the eye diagram can help us in assessing the performance
of a communication system.

1. Modify the script my_errorRatesScript which you wrote in Assignment 2 such that it
uses a 4-QAM constellation and a root-raised-cosine filter with roll-off factor β = 0.22.
Truncate the root-raised-cosine pulse to length 16T . Use a symbol rate of 1 symbol per
second and upsampling factor of 50. Using your script, simulate the transmission of 104

4-QAM symbols over the channel with Es/N0 = 10 dB. Your script should also

• do a scatter plot of the transmitted symbols,

• do a scatter plot of the sampled MF outputs,

• plot the eye diagram at the matched filter output.

Observe that, as the signal of interest is now complex, you actually need to generate two
separate eye diagrams for the real (in-phase) and imaginary (quadrature) components of
the signal.

Repeat the same experiment for signal-to-noise ratios of Es/N0 = 15 dB and Es/N0 =
20 dB. Do you see a correlation between the shape of the eye and the size of the ‘clouds’
in the received symbols constellation?

2. Now suppose, besides adding noise to the transmitted signal, the channel delays the signal
by d samples. (This can also model the offset in the sampling clock of the receiver, as you
have shown in Exercise 2, assuming that the offset is a multiple of sampling period.) This
delay can easily be modeled by inserting d zeros in front of the transmitted signal (before
adding noise).

What is the effect of the delay on the eye diagram of our system? Try a small value, like
d = 1 and a relatively larger one, like d = 8 and see what happens to the eye. (For this
experiment we fix the signal-to-noise ratio to Es/N0 = 15 dB.)

3. Repeat the same experiment as in part 2 but now with a root-raised-cosine pulse with
roll-off factor β = 0.9. What difference do you observe?

2It is obvious that a root-raised-cosine pulse with roll-off factor β = 0 is sinc(·)
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