
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 1 Modern Digital Communications
Assignment 1 September 9, 2024 (due Sept 17, 2024)

A MATLAB/Python Refresher and AM Signals

In this assignment we do some MATLAB/Python warm-up exercises and we demodulate an
AM (Amplitude Modulation) signal.

MATLAB Take advantage of the reference card that you find on the course webpage.1 Also,
take into account the style guidelines discussed in class. Unless otherwise instructed, in
this assignment you are allowed to use only standard MATLAB functions (as opposed to
toolboxes).

Python NumPy and SciPy provide most of the functions you need to use. We encourage you
to browse trough the documentation. The corresponding links are provided on the course
webpage. Note that for the second part of this assignment, all the functions you need to
implement are grouped under my_amPlay.py.

Exercise 1. Let s(t) be a baseband signal with support in the interval between 0 and d [seconds].
Let s consist of its samples taken every 1/fs seconds, with the first sample taken at t = 0.

1. Generate the vector t such that plot(t, s) produces a plot with the correct time scale
on the x-axis.

2. Let s_f be the DFT of s. Generate the vector f such that plot(f, fftshift(abs(s_f)))

produces a plot with the correct frequency scale on the x-axis.

3. MATLAB Implement the function my_tfplot. Keep this file somewhere safe, as it will be
used again in future assignments.

Python Implement the function my_utilMDC.tf_plot.

Figure 1 shows the output of the function2 when called like this:

[my_]tfplot(m, fs, 'm', 'A sinc signal')

(where m is the sinc signal shown in the figure).

0 0.01 0.02 0.03 0.04 0.05

t [s]

-0.5

0

0.5

1

m
(t

)

A sinc signal

-3000 -2000 -1000 0 1000 2000 3000

f [Hz]

0

0.5

1

1.5

|m
F
(f

)|

10 -3

Figure 1: Example output of the function [my_]tfplot.

1http://moodle.epfl.ch
2For testing purposes, on the course webpage we provide a function sincplot which produces Figure 1. We

also provide the solutions for each of the functions you have to implement. In order to test your implementation,
you can just replace [sol_]tfplot with your own version of [my_]tfplot. Note that in our implementation of
[my_]tfplot we have used a DFT size which is an integer power of 2 (the smallest integer power of 2 which is
larger than the required DFT size: in MATLAB, the command nextpow2 will compute this; in Python, you can
easily derive it).

http://moodle.epfl.ch


Exercise 2.

1. Write a function s = [my_]ammod(m, K, A, fc, fs) that modulates the signal m using
AM, where fc is the carrier frequency fc, K and A are constants as defined in class, and fs

is the sampling frequency.

2. In a new function [my_]test_am(), create the message signal

m(t) =
1

2
cos(2πfinfot),

and its corresponding AM signal, where finfo = 10 Hz, fc = 300 Hz, A = K = 1, and
fs = 4000 Hz. Let the duration of the signal be d = 1 s. Use [my_]tfplot to display
the message signal as well as the modulated signal. Do the plots correspond to your
expectations?

3. Write a function md = [my_]amdemod(s, fc, fs) that demodulates the AM signal s and
returns the message signal md, normalized to have values between −1 and 1. As before, fc
is the carrier frequency and fs is the sampling frequency. We recommend that you use the
averaging method discussed in class.

You might find useful the MATLAB function movmean. Alternatively, you can convolve your
signal with a box function of suitable width. You can use a moving average over 10 carrier
periods. Test your function by calling it from within [my_]test_am(). Plot the result
using [my_]tfplot and verify that the message signal has been correctly reconstructed.

4. Now modify the parameters of the message signal m(t) to produce a more audible signal,
and use sound to play both the original and the reconstructed message signal to verify
that they are the same. Note that we do not necessarily use the default sample rate of the
command sound (you should check the help page).

5. Once you feel confident that your code works and that you understand what is going on,
load the file am_data.mat which contains the samples of an AM signal, along with the
values of the carrier frequency fc and the sampling frequency fs.

Write a function my_play_am() that loads the signal from the file, demodulates it using
my_amdemod, downsamples3 the result by a factor 10 and plays it using sound (again, for
this command you should pay attention to the sampling rate).

As for the previous exercise, in order to help you with the implementation, we provide on the
course website the solutions of the functions you have to write.

MATLAB We provide you with a script named function_mapper, that you can use to choose
between your implementation and the solutions of my_ammod.m and my_amdemod.m. The
script function_mapper is called from within sol_test_am.m and sol_play_am.m. If you
wish to use it within your own scripts or functions, you need to include the command
function_mapper; in your code before calling hw1_ammod.m or hw1_amdemod.m.

Python You can implement the moving average function using for example numpy.convolve

in an appropriate way. If using playsound does not work, write the demodulated data to
a .wav file using scipy.io.wavfile.write and then play it with an audio player.

3cf. the MATLAB function downsample

2


