ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 13 Modern Digital Communications
Assignment 8 November 13, 2024 (due Nov 19, 2024)

GPS: Computing the Receiver Position

Start by downloading the code framework for this assignment from Moodle!. The archive
already contains the ephemerides and pseudoranges found as solution to the previous assignment;
you will need them for this assignment.

To get an overall idea of how the program works, read through the provided code before you
start writing your own code. At the same time, have a look at following graph that reflects the
program structure?

gpsConfig()
calcDeltaT()

rcvrpos () rotate_z()

o i
< mainFindPosition; —
__mainrindrosition;

calcE(Q)

satpos () /

solveRangeEquationsViaNewton ()

EXERCISE 1. As you have seen in class, the ephemeris data transmitted in the satellites’ bit
stream allows you to compute the satellite position at any time (within limits). In the notes, we
call t* the receiver time at which we want to determine the position. We arbitrarily choose t* to
be the moment when we start receiving the first subframe (first among all “visible” satellites).
With respect to this time, we need to know the times of flight up to a constant that we can
choose, but shall be the same for all satellites. (This part was done in the previous assignment.)
Finally we need to know the satellites positions at the time they emitted the signal received at
receiver time t*.

1. Complete calcE() that computes the eccentric anomaly E®) at GPS time t. It takes the
ephemeris data ephdata and the time ¢ as arguments. (Step 2 from the class notes.)

2. Complete calcDeltaT() that returns the satellite offset 6¢t(*) at any desired GPS time t.
(Step 3 from the class notes.)

3. If we know 6t*) and E(*®) for any GPS time ¢, we can determine the satellite position.

Complete satpos(), which takes the ephemeris data ephdata and the GPS time t as
arguments, and returns p(*)(¢,t), the satellite position at time ¢ in ECEF(t) coordinates.
(Step 4 from the class notes.)
Important Note: We have described v from ¥, and z, via v = tan™! Y= For this step, you
have to use the MATLAB function atan2(y_s,x_s) (mpmath.atan2 (y_ss,x_s) for Python)
and not atan(y_s/x_s). The reason for this is that tan(«) has the same value for o and
a+ 7. atan(y_s/x_s) will always return a value in (=7, 5), which may or may not be
the correct value. (It is the correct value iff x_s is positive.) atan2(y_s,x_s) will return
the correct value in (—m, 7).

4. Implement rotate_z(p, phi) that determines the new coordinates of a point p after a
rotation around the z axis by the angle phi (radians). You will need this function to relate
the coordinates in ECEF systems frozen at different times.

5. Complete the missing parts in rcvrpos().

At this point you may call mainFindPosition. You should obtain the following output:

1gpsPosition_assignment .zip
2Names ending by () denote functions, and names ending by ; denote scripts. The functions in italic font are
those that you will write as part of the assignment.



Receiver latitude : 46.518294
Receiver longitude : 6.562467
Receiver height : 484.440491

To find out where that is, you may use Google Maps:
http://maps.google.com/maps?q=46.518294,6.562467



