ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 10 Modern Digital Communications
Assignment 7 October 30, 2024 (due Nov 12, 2024)

GPS Subframe Detection and Ephemeris Data Extraction

The goal of this assignment is to extract the ephemeris data from the received bits and to
compute the pseudorange.

Start by downloading the code framework for this assignment from Moodle!. Extract the
archive into a directory of your choice (but do not mix them with the files of the previous
assignment). The archive file contains the complete decoded bit sequences and corresponding
tau sequences for all visible satellites.

NOTES

e To get an overall idea of how the program works, read through the provided code before
you start writing your own code. Especially, go over the code of getSubframes. Note that
the sequence of bits is read from files bitsXX-long.mat in the data/ directory, where XX
is the satellite number. At the same time, have a look at the following graph which reflects
the program structure?

gpsConfig()
/ getSubframes () removeE‘XcessB'lts O
establishParity()
bits2subframes ()

o ——
< mainProduceEphemerides;

- - e

readEphemeris ()

computePseudorange ()

e You can test your implementation by running mainProduceEphemerides.

e All the functions that you write must be saved in the ephemerides/ directory. In Python,
they are located within utilGpsEphemerides.py.

e As in the previous assignments, we provide the solutions for every function that you
should write. You can use these solutions to test a whole working system, maybe just
substituting one function at a time with your implementation. For MATLAB, the script
function_mapper is used to select for each function whether to use the provided solution
or your own implementation.

EXERCISE 1. getSubframes() takes as argument a sequence of decoded bits (i.e., the output
saved to disk by decodeSatellites() from the previous assignment) and returns the subframes
and their IDs. computePseudorange() determines the pseudorange expressed in meters. Your
task is to complete the following four functions seen in class.

(a) removeExcessBits(): takes a sequence of +1s as returned by decodeSatellites(). To
complete the function, you must find the position of the subframes in this sequence (by
looking for the occurrences of the preamble), and strip off the bits corresponding to incom-
plete subframes at the beginning and end of the sequence.

removeExcessBits() also performs the conversion from the {1,—1} representation to a
{0, 1} representation of the bits. This conversion depends on the sign of the preamble found
in the data; recall that when decoding the data, we arbitrarily locked the first bit to 1 or —1,
so the decoded bits could all be inverted. Once you find the preambles (or their inverses),
you know if you need to invert the mapping or not.

The function also returns the number of bits that were removed from the beginning of the
input sequence.

1File gpsEphemerides_assignment.zip
2Names ending with () denote functions, and names ending by ; denote scripts. The functions in italic font
are those that you will write as part of the assignment.



Hints.

e The preamble is stored in gpsc.preamble as a sequence of Os and 1s.

e [t is not enough to just find one preamble: the preamble is 8 bits long and it is not
unlikely that this 8-bit sequence is also present somewhere in the middle of the data
sequence. You should use the fact that there is one preamble in every subframe (every
300 bits).

e The result of the correlation operation are real numbers and it can have multiple max-
ima. If you want to compare two values returned by the correlation, you should first
round them.

(b) establishParity(): implements the GPS parity check algorithm as seen in class and returns
the processed subframe sequence. We provide a skeleton for the function and ask you to
complete the missing parts.

(c) bits2subframes(): returns a matrix having as its columns the subframes extracted from
the parity-checked bits. The function should return the IDs of the subframes as well, so you
need to analyze the subframe ID field (stored in left-MSB binary form in bits 50 to 52 of
each subframe). Provided that we have enough bits, the output matrix should contain the
subframes with ID 1,2,3, in that order (it might contain additional subframes and the first
column is not necessarily subframe 1). These are the subframes that we use to obtain the
ephemerides.

(d) computePseudorange(): computes the pseudorange expressed in meters for a given satellite.
It has the following input arguments: the sequence of tau values; the index in the vector of
received samples that corresponds to the time ¢t* at which the position (of the receiver) is to
be computed; the index of the first bit of the first subframe of that satellite (as returned by
removeExcessBits()).



