ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 9 Modern Digital Communications
Assignment 6 October 16, 2024 (due Oct 29, 2024)

GPS Signal Decoding

The goal of this assignment is to decode the bits sent by the visible satellites. The code
framework is the same as for the previous assignment, available on the course webpage (you do
not need to download it again). The list of visible satellites and their parameters (tau, doppler)
are read from the file data/foundSat.mat. For each visible satellite, the sequence of bits that
you are supposed to obtain can be found in files data/bitsNN-short.mat, where NN is satellite
number, so you can check if your implementation is working as expected.

You can evaluate your code by running decodeSatellites. For Python, this is located
within mainProduceBits. Make sure that the line calling decodeSatellites is uncommented.

EXERCISE 1. Your task is to implement the different functions called by decodeSatellites():

e Implement findFirstBit () which finds the sample index corresponding to the beginning
of the first complete bit in the received signal. Make your implementation according to
the provided header.

Hint. If you determine that a bit starts at position tau, this is not necessarily the beginning
of the first bit. The beginning of the first bit is tau modulo gpsc.spb.

e Notice that in decodeSatellites() we define the parameter numberOfBitsPerBlock ...
= 5. This is the number of bits during which we consider that our estimates of 7 and
v reliable. For longer bit-sequences we need to update these estimates to track their
evolution: adjustTauAndDoppler () takes care of this. Once you have read its body and
understand its behaviour, your task is to write its two subfunctions adjustTau() and
adjustDoppler (). Make your implementation according to the provided headers.

Hint. Finding the polynomial coefficients can be done with:

MATLAB the backslash operator (help mldivide)
Python numpy.linalg.lstsq()

At this point we are almost in the PDC scenario (the Doppler and the delay are accounted for),
with the difference that the antipodal constellation is rotated by an unknown phase. The func-
tions doInnerProductsBitByBit() and innerProductsToBits() generate sufficient statistics
and decode the bits, respectively.

e Implement doInnerProductsBitByBit () according to the provided header.
Notice that when we call doInnerProductsBitByBit, the variable nBits is set to numberOfBitsPerBlock.

e Implement innerProductsToBits (), whose purpose is to obtain hard decisions about the
bits, starting from the sufficient statistics computed by doInnerProductsBitByBit().

Notice that the inner products returned by doInnerProductsBitByBit () cannot be used
directly to make the hard decisions since we have not corrected the phase ¢g. Instead

of estimating the phase and correcting it, follow the other approach discussed in class,
where we decide that two successive bits take the same value if two consecutive elements

of bitwiseInnerProductResults have essentially the same phase. If their phase differs
essentially by 7w, we declare that there is a bit change.

For the first bit, we arbitrarily decide that it is a 1. We will flip all the bits at a later point if
necessary. The argument bitwiseInnerProductResults passed to the innerProductsToBits
is the entire vector of inner products, not just the inner products that correspond to nBits.



