
TCP/IP NETWORKING

LAB EXERCISES (TP) 4
DYNAMIC ROUTING (OSPF) AND SDN BASICS

November 21st, 2024
Deadline: December 4th, 2024 at 23.59 PM

1 LAB ORGANIZATION AND INSTRUCTIONS

In this lab, you will learn how to configure the OSPF routing protocol, which typically runs inside the
network of an autonomous system (AS). The protocol automatically sets up network routes that ensure
shortest path between two points in the network with respect to a predefined metric (such as number of
hops). You will configure a fully functional network using “Cisco-like” emulated routers. You will learn
how to configure a network of routers. Optionally (bonus exercise), you can learn about software-defined
networking (SDN) and study how it can be used to create forwarding rules on switches. You are strongly
advised to do this part as it gives you a good idea of how enterprise networks are managed today.

For this lab, you will be using the same Mininet on the virtual machine provided on Moodle (see Lab 0 for
installation instructions if need be).

The lab is meant to be done sequentially. Random access might give you different answers. We advise you
to do a section in one sitting. Restarting Mininet within a section might make the analysis difficult.

2 FRROUTING: SOFTWARE ROUTING SUITE

The Internet core is run by powerful routers that can handle large amounts of traffic and are built by com-
panies such as Cisco, Huawei, or Juniper. Even in a large company, or in large university campuses (such
as EPFL), these routers are present. They use proprietary operating systems (such as Cisco IOS, or JunOS)
and can be accessed via control terminals tailored for network configuration, with commands that are quite
different from those you may encounter in a UNIX/Linux console. In this lab and in lab 6, we will give you
a flavour of router configuration.

Ideally, we would have liked to run Cisco IOS in a virtual environment. It is technically possible but not
legal, as Cisco or Juniper do not allow their OSs to be run on a device other than their routers. Therefore,
we will use FRR, a free software that implements and manages various IPv4 and IPv6 routing protocols. It
accepts similar commands to the ones in Cisco’s IOS.

1



2.1 WHAT IS FRR AND HOW DOES IT WORK?

FRR is a routing software suite that provides implementations of several routing protocols (namely OSPF,
RIP, and BGP-4) for Unix platforms. The architecture of FRR is shown in Figure 1.

UNIX Kernel routing table

Zebra

bgpd ospfd ospf6d

Figure 1: FRR Architecture

As depicted in the figure, it consists of a handful of processes that can be run in the background as daemons.
Three FRR processes (daemons) are important for executing this lab:

• zebra: is used to manage the network interfaces of a machine (in our case, each router will run in the
virtual machine). It allows you to configure them (using IPv4 and/or IPv6 addresses), to monitor their
states, and it provides a more detailed view of the routing tables than the route -n command. In a
way, zebra is a replacement for the Linux networking commands used during the first three labs (i.e.,
ifconfig, route, etc.).

• ospfd: handles OSPF version 2 implementation.
• ospf6d: handles OSPF routing for IPv6.

3 SCENARIO: A GAME OF ROUTERS

With the impending attack of the White Walkers on Westeros, all the kingdoms must unite in the fight for
the living. As the lands of men stretch from Winterfell in the North to Valyria down in the South, the
wise maesters at the Citadel have realized that their communication network with carrier ravens will not be
sufficient to communicate for large distances in short time.

After several sleepless nights in the Citadel, Maester Illyrio Pycell and his intern Samwell Tarly have de-
signed the communication mechanism, called TCP/IP. Together, they setup routers and switches at strategic
locations in Westeros as shown in Figure 2. There are a total of 5 routers r1-r5 placed at Winterfell, Braavos,
Valyria, Casterly Rock, and King’s Landing, respectively. Samwell has connected the routers through 7
switches as shown in the figure. He has also configured the routers with the IP addresses as shown in the
figure. Note that all IP Addresses for router rx end in x.

Sam’s configuration scripts are available in the lab folder. To be consistent with the paths in this document
and in the scripts, please place the uncompressed folder directly in the Desktop of the virtual machine and
be sure to name it lab4 (case-sensitive). Run lab4 network.py as root from a terminal of your virtual
machine, to recreate the established topology. See the output of the net command in the Mininet prompt
and verify whether the connections in the created network correspond to the ones of Figure 2. Use the
pingall command in the mininet prompt.

2



10.10.35.0/24
2001:1:0:35::/64

Figure 2: Networking in Westeros

Q1/ Answer to Lab 4 Part 1 Question 1 on Moodle

In the next section, your job is to help Sam with the configuration of the network so that all kingdoms can
talk to each other.

Each router is, in essence, a Linux machine, thus they can be configured the same way. This means that you
could reuse the same set of commands that you used for previous labs, e.g., to configure network interfaces,
to monitor their states, to inspect the contents of the routing tables, etc. However, instead of the set of Linux
networking commands, in this lab, you will be using the tool suite from FRR. Documentation can be found
on the FRRouting website (www.http://docs.frrouting.org).

4 HOST NETWORK CONFIGURATION WITH FRR

In principle, you could create a topology without FRR, launch a terminal window for each router, and
configure its network interfaces using the ip addr command (following the scheme shown in Figure 2).
However, in this lab, we will be using the zebra daemon instead.

Note: Never try to configure the network interfaces on a machine using both the ip addr command and
zebra daemon, as interaction between the two is not always clear and the outcome may be uncertain.

3



4.1 CONFIGURING INTERFACES USING CONFIGURATION FILES

Before running your topology script, a configuration file must be created and edited at least for the zebra
process. Script 1 is an example of such a file written for router r3. This file can be found among setup files
available on Moodle in the lab4/configs folder.

Script 1: Zebra configuration file for r3: zebra r3.cfg

1 hostname r3
2 password z e b r a
3 e n a b l e password z e b r a
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / z e b r a r 3 . l o g
6 debug z e b r a p a c k e t
7

8 i p f o r w a r d i n g
9 i pv6 f o r w a r d i n g

10

11 i n t e r f a c e r3−e t h 1
12 no shutdown
13 i p a d d r e s s 1 0 . 1 0 . 2 3 . 3 / 2 4
14 i pv6 a d d r e s s 2 0 0 1 : 1 : 0 : 2 3 : : 3 / 6 4
15

16 i n t e r f a c e r3−e t h 2
17 no shutdown
18 i p a d d r e s s 1 0 . 1 0 . 3 5 . 3 / 2 4
19 i pv6 a d d r e s s 2 0 0 1 : 1 : 0 : 3 5 : : 3 / 6 4

Let’s examine the content of this configuration file:

• !: the lines starting with ! are comments, they are ignored;
• enable password: this creates a password for “on the fly” configuration of the zebra process, in

this case the password is set to zebra;
• log file: Allows you to specify the file to which zebra related information is logged (adding,

deleting routes in principle). Make sure you write the full path to the file as it could prevent the
FRR service from starting;

• debug zebra packet: more detailed debugging, i.e., allows you to see when routes are added
or deleted from the routing table;

• ip forwarding: This instructs the zebra process to enable IPv4 routing on the router;
• ipv6 forwarding: This instructs the zebra process to enable IPv6 routing on the router;
• interface <interface name>: this command starts the interface configuration mode;
• ip address: assigns an IPv4 address to the selected interface;
• ipv6 address: assigns an IPv6 address to the selected interface;

We already created all the configuration scripts for the routers r3, r4, and r5, you can find them in the folder
we provided. You can now create the configuration scripts for the routers r1 and r2.
You should now have all the following files: zebra r1.cfg, zebra r2.cfg, zebra r3.cfg, zebra r4.cfg,
zebra r5.cfg. For consistency with the paths of the proposed commands and with the paths of the log
files, it is highly recommanded that you copy your lab4 folder to your Desktop. This folder contains the
configs folder, the topology script, an empty logs folder and an empty run folder. Each time you
launch the simulation, the logs and run folders must be empty and the configs folder must contain
only the .cfg files. The topology script erases the content of the logs and run before creating the topol-
ogy. If you wish to stop the mininet simulation, type exit in the mininet prompt and clear the cache with
the following command:
sudo mn -c.

4



Activate the zebra daemon at router r1 with the following command:

zebra -d -f /home/lca2/Desktop/lab4/configs/zebra r1.cfg -i
/home/lca2/Desktop/lab4/run/zebra r1.pid
-z /home/lca2/Desktop/lab4/run/frr r1.api -u root -k

Do the same for all routers.

This way, we have manually started the zebra daemon on each router. In order to prevent re-writing this
command at each router at each simulation, we advise you to update the python script that creates the net-
work topolgy Lab4 network.py in order to make the process start automatically at all routers. This can
be done by updating the script with commands as such:

<routerID>.cmd(’<command>’)

where <routerID> is r1, r2, r3, r4 or r5 and <command> is the command you would type on the router’s
terminal.

Check that zebra is running for all routers by checking the list of all running processes in the VM: you can
do so with the following command: ps -A, if you wish to restrict the list to only zebra processes type
the following: ps -aux | grep zebra. Observe that each process has a PID, if you wish to stop a
process, the command is: kill < PID >. If you want to stop all zebra processes, you can do so with the
following: kill $(ps -aux | pgrep zebra), pgrep directly extracts the PIDs. Note that processes
running for mininet entities such as r1, are in fact running on the VM, hence by terminating the mininet
simulation, processes don’t stop automatically. Make sure that you kill them all before launching new
simulations, you can add this command in the script to be executed at the beginning of each new simulation.

4.1.1 MONITORING MODE

In order to monitor the activity of a running process, e.g., zebra, you can enter the monitoring mode by
connecting to it using the following command in the terminal of a router.

telnet localhost zebra

The password is zebra. Let us see what information can be obtained now. To inspect the contents of the
IPv4 and IPv6 routing tables type show ip route and show ipv6 route respectively. At all times,
you can view the entire list of the commands at your disposal using list.

Q2/ Answer to Lab 4 Part 1 Question 2 on Moodle

Next, check the status of the network interfaces by typing show interface command.

To view the current running configuration, you need to first enable the configuration mode using

5



enable

The password for the configuration mode is zebra. Finally, inspect the running configuration of the router
r3 using the show running-config command and verify if it is the same as the one you used.

4.2 CONFIGURING OSPF

The ospfd process implements OSPFv2 that is defined in RFC 2328. Similar to the zebra process, the
ospfd process can be configured by editing a configuration file or “on the fly”. However, in this lab, we
will not configure it “on the fly”. Like the zebra configuration files, we are providing the “ready-to-use”
ospfd ri.cfg, i=3,4,5 configuration files. We give an example of ospfd r3.cfg configuration
file in Script 2.

Script 2: Ospfd configuration file for r3: ospfd r3.cfg

1 hostname r3
2 password o s p f d
3 e n a b l e password o s p f d
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / o s p f d r 3 . l o g
6

7 debug o s p f e v e n t
8 debug o s p f p a c k e t a l l
9

10 r o u t e r o s p f
11

12

13

14 ne twork 1 0 . 1 0 . 2 3 . 0 / 2 4 a r e a 0
15 ne twork 1 0 . 1 0 . 3 5 . 0 / 2 4 a r e a 0

Let’s have a closer look at the commands in the file above (you are already familiar with some of them):

• log file: Same as with zebra, it specifies the file to which the OSPF related information is
logged;

• debug ospf event: less detailed debugging, i.e., only the coarse events, such as sending and
receiving OSPF updates, can be seen;

• debug ospf packet all: more detailed debugging, i.e., allows you to see the content of the
sent and received OSPF updates;

• router ospf: enables the ospfd process;
• network: assigns an area to a particular network segment.

Using the example configuration file shown above and the address scheme of Figure 2, create the ospfd
configuration files for the routers r1 and r2 and place them in the same folder:
/home/lca2/Desktop/lab4/configs/.

In this section, you must have zebra running on all routers and ospfd running on all routers except r4.
In order to start the ospfd process at router r1 type the following command at r1’s terminal:

ospfd -d -f /home/lca2/Desktop/lab4/configs/ospfd r1.cfg -i
/home/lca2/Desktop/lab4/run/ospfd r1.pid
-z /home/lca2/Desktop/lab4/run/frr r1.api -u root

6



Again, make sure that all processes are running by checking the list of running processes.

IMPORTANT: OSPF takes some time to finish configuring all routers. Make sure you wait for some time
(up to a minute) every time you run ospfd.

Q3/ Answer to Lab 4 Part 1 Questions 3 on Moodle

Open wireshark on router r5. To do this: use the XTerm terminal corresponding to r5 (to open a new one
write “xterm r5” from the Mininet terminal).

Q4/ Answer to Lab 4 Part 1 Question 4 on Moodle

4.2.1 MONITORING COMMANDS

We have seen before that we can use command ip route show to display the IPv4 routing table. Now,
we will see how this information is stored and managed by OSPF. OSPF stores all information about the
networks it knows about in the OSPF database. An OSPF router also maintains a list of neighbours from
whom, it expects periodic updates called link state advertisements (LSAs).

We will start by inspecting the neighbors of r3. For this, you can enter the monitoring mode of the ospfd
daemon. This is done in the same way as for the zebra process (i.e., telnet localhost ospfd). The
password is ospfd. After that, you can display the content of the OSPF database using the command:

show ip ospf neighbor

Q5/ Answer to Lab 4 Part 2 Questions 1 and 2 on Moodle

Q6/ Answer to Lab4 Part 2 Questions 3 and 4 on Moodle

Next, we will look at the LSAs in the database of routers. For this, you can use the following set of
commands.

show ip ospf database
show ip ospf database network
show ip ospf database router
show ip ospf database self-originate

Q7/ Answer to Lab4 Part 2 Questions 5 to 8 on Moodle

Q8/ Answer to Lab4 Part 2 Question 9 on Moodle

7



Q9/ Answer to Lab4 Part 2 Question 10 on Moodle

Danny (h4) wants to see how far they are from Jorah (h2) and Tyrion (h3) currently travelling through
Valyria, accessible from network 10.10.35.0/24. From router r2, use the show ip ospf route com-
mand.

Q10/ Answer to Lab4 Part 2 Questions 11 and 12 on Moodle

Note that h2 and h3 are both on the Valyrian network and that h4 is on network 10.10.24.0/24, thus packets
between h4 and hosts from the Valyrian network should behave in a similar fashion.

Q11/ Answer to Lab4 Part 2 Questions 13 and 14 on Moodle

4.3 CONFIGURING OSPF6D

OSPF for IPv6 was defined in the RFC 2740 and is known as OSPFv3. It is an IPv6 reincarnation of the
OSPF protocol.

As multiple routing protocols can run in parallel on the majority of routers, FRR allows you to config-
ure OSPFv3 in parallel to OSPFv2. Just like zebra and ospfd processes, the ospf6d process can be
configured by editing a configuration file or via telnet.

As in the case of ospfd, we are providing the ospf6d configuration files for the routers r3, r4 and r5.
The configuration file of ospf6d is a little different from that of ospf. Below, we explain the file
ospf6d.conf on r3.

Script 3: Example of an ospf6d.conf file

1 hostname r3
2 password os p f 6d
3 e n a b l e password o sp f 6d
4

5 l o g f i l e / home / l c a 2 / Desktop / l a b 4 / l o g s / o s p f 6 d r 3 . l o g
6 debug o s p f 6 n e i g h b o r
7 debug o s p f 6 i n t e r f a c e
8

9 i n t e r f a c e r3−e t h 1
10 i pv6 o s p f 6 i n s t a n c e −i d 1
11

12 i n t e r f a c e r3−e t h 2
13 i pv6 o s p f 6 i n s t a n c e −i d 1
14

15 r o u t e r o s p f 6
16

17 i n t e r f a c e r3−e t h 1 a r e a 0 . 0 . 0 . 0
18 a r e a 0 . 0 . 0 . 0 r a n g e 2 0 0 1 : 1 : 0 : 2 3 : : / 6 4
19

20 i n t e r f a c e r3−e t h 2 a r e a 0 . 0 . 0 . 0
21 a r e a 0 . 0 . 0 . 0 r a n g e 2 0 0 1 : 1 : 0 : 3 5 : : / 6 4

To configure ospf6d, you need to first specify the interfaces on which you wish to enable OSPFv3. Then,
you need to configure the OSPF area and network those interfaces belong to. The commands are.

8



• interface <interface-name>: Enable OSPFv3 on this interface.
• interface <interface-name> area <A.B.C.D>: Assigns the interface to a given area.

Notice that although it is an IPv6 service, it uses a 32-bit area code that is represented in the dotted
decimal format.

• area <A.B.C.D> range <IPv6 network with mask>: Specifies which networks belong
to a given area.

The configuration scripts of r1 and r2 are left for you to create. You should place them in the same
folder as earlier /home/lca2/Desktop/lab4/configs/.

In this section, you must have zebra running on all routers, and ospfd and ospf6d running on all routers
except r4. In order to launch ospf6d on r1, you can type the following command at the terminal of the
router:

ospf6d -d -f /home/lca2/Desktop/lab4/configs/ospf6d r1.cfg -i
/home/lca2/Desktop/lab4/run/ospf6d r1.pid
-z /home/lca2/Desktop/lab4/run/frr r1.api -u root

Again, make sure that all processes are running by checking the list of running processes.

4.3.1 MONITORING COMMANDS

To inspect the ospf6d database, you should execute the command: telnet ::1 ospf6d. The pass-
word is ospf6d. To display the content of the OSPF routing table:

show ipv6 ospf6 route
show ipv6 ospf6 route detail

Now, explore by yourself the available monitoring commands. Recall that you can press ? at any time to
list the possible commands at an instant.

Q12/ Answer to Lab4 Part 2 Question 15 on Moodle

Hint: You can look at the official documentation (https://docs.frrouting.org/en/latest/
ospf6d.html).

5 OSPF PLAYGROUND

In this section you will be confronted with a number of situations that might arise in an OSPF network.
Answering the questions will allow you to better understand ospfd and ospf6d, and dynamic routing in
general. You can use two terminals, one for the FRR process commands and one for the Linux commands.
To have a second xterm window for xterm r1, you can type: xterm r1 in the mininet> prompt.

5.1 UNDERSTANDING NEIGHBORS IN OSPF

In this section, we will learn about how neighbors interact within OSPFv2 (ospfd).

9

https://docs.frrouting.org/en/latest/ospf6d.html
https://docs.frrouting.org/en/latest/ospf6d.html


Now, restart the Mininet network using the python lab4 network.py command. Don’t forget to
clear the mininet cache before restarting the network. If you did not enable the automatic start of zebra at
all routers, manually do so at all routers. Activate ospfd at all routers except r4.

The next couple of questions will require the comparison of the OSPF database on r1 before and after
launching the ospfd process on r4. Take a snapshot of the database for your reference. Specifically, show
ip ospf database, show ip ospf database router, and show ip ospf database network.
Now, we will see how OSPF routers are synchronised. Launch the ospfd and ospf6d processes on r4.
This will make r4 an OSPF router. Wait for a minute and answer the following questions.

Q13/ Answer to Lab4 Part 3.1 Question 1 on Moodle

Q14/ Answer to Lab4 Part 3.1 Question 2 on Moodle

5.2 MODIFIED LINK METRIC

OSPF works by constructing a shortest path tree. By default, in OSPFv3, the directly connected subnets are
treated as having the distance equal to 10. Each additional “hop” (router) adds 10 to this distance metric.
Nevertheless, ospf6d offer you the possibility to modify the metric of an arbitrary link, changing the
desirability of the routes that contain this link.

Dany (h4)is worried that a spy stationed on 10.10.12.0 is snooping on her communication with John (h1).
So, she orders that the (one way) IPv6 traffic from h4 to h1 to go via r5 instead of the direct route. To fulfill
this task, you need to modify the cost of the link between r1 and r2 so that the total cost of routing through
r2 → r5 → r4 → r1 is less than the direct route. The cost of an interface is set in the interface setup portion
of the router’s config file. Before setting a new cost, note down the existing cost (show ipv6 ospf interface
”iface name”), which we will revert to after answering the next question. The syntax for specifying cost is

ipv6 ospf6 cost x

Q15/ Answer to Lab4 Part 3.1 Question 4 on Moodle

5.3 BROKEN LINK

Dany’s dragon Drogon sometimes gets restless and burns things down. In one such incident, he burnt down
the link between SW4 and r1. To simulate the broken link between r1 and r4, shutdown the r1-eth2
interface on r1. Make sure you take a snapsot of the OSPF databases of router r2 before doing so, just as
you did in the Section 5.1. To shutdown the link, type on r1 the following commands:

telnet localhost zebra
enable
configure terminal
interface r1-eth2
shutdown

10



Note that it is convenient to use the “on the fly configuration” here. Wait for a minute and then answer the
following question.

Q16/ Answer to Lab4 Part 3.2 Question 1 on Moodle

The crash of an OSPF process also has a similar behaviour but on all interfaces instead of just one.

Q17/ Answer to Lab4 Part 3.2 Question 2 on Moodle

Q18/ Answer to Lab4 Part 3.2 Questions 3 and 4 on Moodle

6 BONUS: SOFTWARE DEFINED NETWORKING

Software defined networking (SDN) is an approach to TCP/IP networking that allows network administra-
tors to manage services through flexible interfaces provided by a control-layer. A typical SDN network
consists of routers or switches interconnected, each of them with a “listener” daemon running in which
they receive forwarding-decision rules, called flows, from one (or many) controller(s) using, for example,
the OpenFlow protocol. The network administrators make changes to the controller and these changes are
disseminated through the control-layer (typically another IP-based connection) so that appropriate rout-
ing/switching decisions can be applied.

The Mininet virtual environment used in this lab is compatible with SDN. In fact, the openVSwitch (OVS),
which is the switch we have been using so far in this lab, is a software listener switch that is controlled using
the OpenFlow protocol. The central controller that comes with Mininet has no special features or policies,
which make the openVSwitches used in the virtual environment, to behave as a basic L2-switch.

In order to explore SDN, we need a new controller. We will use the RYU controller 1, which is an open-
source controller written in Python. In the lab4/SDN folder, unzip the file ryu.zip where you will find
the source files of RYU. If you followed the path consistency instructions, the command

cd /home/lca2/Desktop/lab4/SDN && unzip ryu.zip

should unzip the folder. Otherwise, make sure the uncompressed folder is located in the SDN folder and
its name is ryu (case-sensitive). If you are using Minix, run the following command before proceeding
further:

pip3 install --ignore-installed PyYAML

Run the script install ryu.sh as root on your virtual machine to install RYU.

sudo ./install ryu.sh

1https://github.com/faucetsdn/ryu

11

https://github.com/faucetsdn/ryu


You can check if RYU is properly installed by trying out the command ryu-manager -h. It should
print the help menu without any errors. If instead it prints the error message "cannot import name
ALREADY HANDLED", then try downgrading the eventlet python package by typing on a terminal:

pip3 install eventlet==0.30.2

Please contact the TAs if you encounter another issue whith the installation of ryu.

In Mininet, the configuration changes for using an external controller are minimum. Basically we need to
call the RemoteController class by importing it from mininet.node, and then when we call the
constructor Mininet, we pass the attribute controller=RemoteController. With this configura-
tion, the switches will look on the VM’s loopback address (default port 6633) for the controller.

The topology for this section is composed of 5 switches and is depicted in Figure 3. The script lab4_sdn.py
(available on Moodle) has been created for you to match the topology described.

Figure 3: Lab 4 SDN topology

Q19/ Answer to Lab4 Part 4 Question 1 on Moodle

6.1 CONTROLLING THE OPENFLOW SWITCH IN STANDALONE MODE

The OVS switch comes with the ovs-ofctl utility, which uses the terminal prompt to send basic Open-
Flow messages, for basic configuration and retrieving important information such as installed flows, port
information, dump statistics, etc. To display a complete list of the commands (with a brief description of
what it does), type the ovs-ofctl -h command from a terminal prompt. Note that Mininet also comes
with a similar utility called dpctl, which has a short version of the ovs-ofctl utility. Unlike the latter,
dpctl is available through the mininet> prompt.

12



Let’s analyze the behavior of the OVS switch in the absence of the controller. Run the lab4_sdn.py
script. Now, from h2 try to make three pings to h1:

mininet>h2 ping -c 3 h1

The pings are unsuccessful as the switches in the network don’t know what to do with the incoming packet.
Now, let’s use the ovs-ofctl utility to help h2 and h1 communicate. From a new terminal prompt (from
Linux, not Mininet), type the following commands:

sudo ovs-ofctl add-flow SW2 in port=1,actions=output:2
sudo ovs-ofctl add-flow SW1 in port=2,actions=output:1

From the commands above:

• add-flow: refers to the command we are sending to the OVS switch, other options are del-flow,
dump-flows, dump-port, mod-port, etc.

• <switch>: refers to the OVS switch we would like to send the message to. By default it resolves
the names of the switches that are in the same machine, for others we need to specify IP address and
TCP port.

• in port=1: we tell the OVS switch on which port it should apply the flow to, in the inward direction.
• actions=output:3: we tell the OVS switch, what are we doing with packets matching the flow

statement. In this case, we just send it out through a particular interface. Other options include
flooding to all ports, setting a new next-hop, changing a particular field in the IP packet (priority,
TTL, flags), etc.

Q20/ Answer to Lab4 Part 4 Question 2 on Moodle

6.2 CONTROLLING THE OPENFLOW SWITCH USING RYU

Now it is time to use a remote controller. Before continuing, make sure you erase all flows you added by
issuing the command ovs-ofctl del-flows <switch> from a Linux’s terminal window (as root).

Stop the simulation in Mininet and start the RYU controller using a separate Linux’s terminal window:

sudo ryu-manager ryu.app.simple switch 13 ryu.app.ofctl rest

The above command runs the RYU controller with the simple_switch_13 applications. Leave it run-
ning on a separate terminal. Applications are “functionality add-ons” that are loaded onto the RYU con-
troller, as the controller itself doesn’t do much. In particular, the simple_switch application is the
same as the one that comes as default component in Mininet’s controller implementation, which makes the
OpenFlow switches to act as a “type” of layer-2 learning switch. The application learns MAC addresses,
and the flows it installs are exact-matches on as many fields as possible. Therefore, for different TCP/UDP
connections between two hosts, you will have different flows being installed.

We have also specified the use of application ofctl rest. This application is used by RYU to access
the flow tables of the switches. This allows RYU to write to the switches and read from them. The RYU
controller comes with a few other applications that are located in the

13



/home/lca2/Desktop/lab4/SDN/ryu/ryu/app folder.

For all cases, start the RYU controller first, and then start Mininet by running lab4_sdn.py. In this way,
you can see the progress of all logs from the switches in the RYU controller console, which will be helpful
to answer many questions in this section.

With the controller started, the OVS switches should now have automatic flows installed for every packet
and all hosts should be reachable. From the mininet> prompt, do a h4 ping -c 1 h5 command.

Q21/ Answer to Lab4 Part 4 Question 3 on Moodle

Use the ovs-ofctl show <switch> and ovs-ofctl dump-flows <switch> commands (from
Linux’s terminal) and notice the flows in the switches. Now, stop the RYU controller by using Ctrl + C
in the Linux terminal window. Next, let’s explore a different application.

Now, start the RYU controller using the following command:

sudo ryu-manager ryu.app.simple switch stp 13 ryu.app.ofctl rest

Wait around one minute and keep looking at the output from the RYU controller. Do pingall from the
Mininet prompt.

Does it work now? Use the ovs-ofctl show <switch> and ovs-ofctl dump-flows <switch>
commands (from Linux’s terminal) and try to discover how the simple switch stp component solves
the previous problem.

Q22/ Answer to Lab4 Part 4 Question 4 on Moodle

Q23/ Answer to Lab4 Part 4 Question 5 on Moodle

14


	Lab Organization and Instructions
	FRRouting: Software Routing Suite
	What is FRR and how does it work?

	Scenario: A Game of Routers
	Host network configuration with FRR
	Configuring interfaces using configuration files
	Monitoring Mode

	Configuring OSPF
	Monitoring commands

	Configuring OSPF6D
	Monitoring commands


	OSPF Playground
	Understanding neighbors in OSPF
	Modified link metric
	Broken link

	Bonus: Software Defined Networking
	Controlling the OpenFlow Switch in standalone mode
	Controlling the OpenFlow Switch using RYU




