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Reminder: the network layer offers

Forwarding (in the Data plane)
* when a packet arrives at a router’s input link, the router moves the packet to the
appropriate outgoing link
e based on:
- info in the packet header (e.g. dest IP address, BIER extension header, etc.)

- the router’s forwarding table (a.k.a. routing table)

Routing (in the Control plane)

» determines the entire route/path followed by each packet towards its destination
hence the entries of the forwarding tables and/or the information in extension header

« typically done by a routing algorithm



Routing protocols (or routing algorithms)

Why we need them?
* Forwarding tables are not easy to set manually (as we do in the lab)
- in a single domain, it is doable but also time-consuming and error-prone
- iIn the WAN, it is very hard to do:
« multiple domains should coordinate
» private topologies might need to be disclosed to other domains

* A routing protocol or algorithm
- allows routers to automatically compute the best path(s) to each destination



Many routing algorithms, but where do they differ?

Nature of “best” path — i.e. what is optimization objective of an algorithm?
 t0 use shortest path
10 use equal-cost multi-path
 t0 respect policies

e arbitrary
Scope of network — i.e. what is the underlying network? is topology info available?
« single domain  —> intra-domain routing (main alg. is OSPF)

« multiple domains —> inter-domain routing (main alg. is BGP)
A domain is a network under the same administrative entity (e.g. a campus network, an enterprise network, or an ISP, etc.)
State location — i.e. where is the output (i.e. the routing information) finally stored?
* inside a local forwarding table
« directly into the packet headers



Taxonomy of routing protocols

Link State

* Each router maintains a local topology map of the entire network
- obtained by gossiping (= flooding information) with other routers
- every link on the map has a cost; e.g. cost(1 Gb/s link)=1; Cost(100 Mb/s link)=10

* computes shortest (min-cost) paths to each destination prefix based on map
* determines next hop to each prefix and populates its forwarding table

 Typically used for infra-domain routing (e.g. OSPF, |S-IS) and advanced
bridging methods (e.g. TRILL, SPB Shortest Path Bridging)

 Variants of the optimization objective exist:
- “shortest” may mean "min latency”, or “max available bit rate”, etc.



Taxonomy of routing protocols

Distance Vector
* No global map

« Each router initially knows only about neighbors:
- |.e., locally-attached networks, neighbor routers,
- and the costs of direct links to these
 then: it informs its neighbors about the estimated distances to all destinations it
knows of (= sends its distance vector);
learns new destinations and updates its distance vector using the vectors
received from neighbors (using the Bellman-Ford algorithm)

o finally: it determines next hops and populates its forwarding table



Distance Vector example — RIP

All link costs
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Distance Vector example — RIP

All link costs
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Distance Vector example — RIP

All link costs = 1 net dist nxt
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Distance Vector example — RIP: convergence to optimal paths!

net dist nxt
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» Magical
this message-passing
method converges to
shortest paths!

e But, it may need
time to converge

» hence it is used in
small networks



Taxonomy of routing protocols
Path Vector

* Every router knows only:
- Its neighbors +
- explicit paths to all destinations

* computes the “best” path to each destination and populates forwarding table
« Optimization criterion is not cost

* Typically used for inter-domain routing, where it is hard to assign costs
- e.9. BGP computes domain-level paths
- and each router selects best path according to multiple criteria



Taxonomy of routing protocols

src dst RH

srcdst  Routing Header AR4 |B payload
A R1/R2R4 B |payload

R2

_ / ............................................. sro o

my— e A B| payload
srcdst RH

AR2| R4B payload

A

Source Routing— “strict”
« Source puts explicit paths into packet headers (path = sequence of all intermediate hops)

* In IPvB, routing header is an extension header—contains intermediate hops and ultimate destination;
destination IP address is next intermediate hop

 Intermediate routers are “dumb”: just remove themselves from header and forward pkts to next hop

* Used in ad-hoc networks, where route computation is done by a control application or by discovery:
e.g.: source discovers path by flooding explorer packets that accumulate the path followed



Taxonomy of routing protocols

srcdst RH
AR2| R5B |payload

A<

srcdst  Routing Header

srcdst RH
AR5 |B payload

A R4 | R2 R5 B |payload | .« : R |
A B|payload

Source Routing— “loose”

» Forces some intermediate hops

« Assumes an underlying routing algorithm such as link-state routing, €.g., we know how to go from A to R4
 Allows fine grained control of traffic (traffic engineering, separation of customers)

Segment routing

» Generalizes loose source routing by allowing the routing header to contain processing instructions for the
intermediate hop; e.g., we can ask R4 to apply a security function (screening, traffic separation)

» Used notably in data centers



2. OSPF with a Single Area

Link-state routing algorithm

Every router has:
 an interface database (describing its physical connections, learnt by configuration)
» an adjacency database (describing the neighbors’ states, learnt by a hello protocol)
* a link state database (the topology map, learnt by flooding)

Hello protocol is a ping-style protocol:
« used to discover neighboring routers

« and to detect failures (e.g. if a neighbor does not respond after 3 times, it is
considered “dead”



Link State Database and LSAs

When two routers become neighbors, they first synchronize their link state databases:
Case 1: one router is new, hence copies what the other already knows
Case 2: existing routers connect, hence they merge their databases

Once synchronized, a router sends and accepts link state advertisements (LSAS):
« Every router sends an LSA with its attached networks and neighbor routers
* LSAs are flooded in the entire area and stored in each router’s link state database
« LSAs contains a sequence number and age

- Sequence number prevents loops;
only messages with new sequence numbers are accepted and re-flooded

- Age field is used to periodically resend LSA (e.g. every 30mins or 1h)
and to flush invalid LSAs



Toy example showing interface databases

At D
At E
At B Net Type cost Net Type cost
Net Type cost n6é p2p 10 n6 p2p 10
n3 Eth {stub, 03 n5 p2p 20 n7 p2p 100
n2  pg” 100 |®
n p2p 100 B D
E
'Stub” = n2 n4
non-transit network n5 n7
accessible via a
single router
A C
At A
nl
Net Type cost ALC Net Type cost
ni Eth 10 ni Eth 10

n2 p2p 100 nd p2p 100



Routers flood their LSAs throughout area

router LSA
originated by B
n3, Eth, stub:;
n2, p2p, 100, to A;
n4, p2p, 100, to C;
n3 neé

|®

B D

24
n% N n5 n7

nl




Following the path of L SAs and explaining what information they provide:
1, 2. B sends the LSA shown on the picture to A and C.

* The LSA describes all the networks attached to B and their costs, as well as the
adjacent routers.

o A"stub” network means non transit, i.e. there is no other router on this network. A
stub network can be reached by only a single router; so, all we need to know is
how to reach this router—there is no need to allocate a cost to a stub network.

3. C repeats the LSA (unmodified) to D.

4. C also repeats the LSA to n1. Since n1 is Ethernet, the LSA is multicast to all OSPF

routers on n1.
A receives the LSA but does not repeat the LSA on n1 because it received it on N

from C.
5. Drepeats LSA to E.




After Flooding

After convergence, all routers have received
all LSAs and store them in database.

'vDséi 'natd ! router LSA from B
§ —°°19 ! 13 Eth stub: All have the same database.
router G ¥ no"pop 100, to A;
o ~ n4, p2p, 100, to C n3 né
router LSA from A [®
n2, p2p, 100, to B;

1, eth, 10, DR=C B D

/
C nz/\/ 04 n5 n7
router LSATfom D /
n5, p2p, 20, to C;

ne, p2p, 10, to E; A C
router LSA from E
ne, p2p, 10, to D;

W CNLE nl

L n1,eth,0, A,C

Lin tae Data at all routers



* Ethernet LANs are treated in a special way.

A naive approach to support a LAN with a link-state routing protocol would be to consider that a LAN is equivalent to a full-mesh
of point-to-point links as if each router can directly reach any other router on the LAN. However, this approach has two important
drawbacks :

(a) Each router must exchange HELLOs and link state packets with all the other routers on the LAN. This increases the number
of OSPF packets that are sent and processed by each router.

(b) Remote routers, when looking at the topology distributed by OSPF, consider that there is a full-mesh of links between all the
LAN routers. Such a full-mesh implies a lot of redundancy in case of failure, while in practice the entire LAN may completely fail
(the switch may fail). In case of a failure of the entire LAN, all routers need to detect the failures and flood link state packets
before the LAN is completely removed from the OSPF topology by remote routers.

In order to avoid these issues, the routers elect a designated router per LAN (and a backup designated router).

The designated router “speaks for the switch” and sends a “network LSA” which gives the list of all routers connected to the
LAN.

Typically the designated router of a LAN is the oldest running router in it. E.g. in the previous slide assume that this is C.

* Every router that is connected to an Ethernet LAN floods a “router LSA” indicating its connection to this LAN.

* Router and Network LSAs are just 2 of the available types of LSA. At the time of writing this, there exist 11 types of LSAs. In
addition to router and network LSAs, the other types are used in the multi-area case (see later slide in this lecture) and with
external routes (see BGP lecture). There are also other types, called “opaque” that are used for purposes other than shortest
path routing: opaque LSAs are not used by Dijkstra’s algorithm. They can be used by OSPF extensions that make use of the link-
state database for other purposes (e.g. type 10 LSAs carry information about reservable bandwidth, to be used by QoS routing).



Toy example (cont’d): Router F boots

n3 ’Q&

B D

/ AN / E
n 4 synchronization:

n5 merge LSDB with
the one of E
A C F
N\

nl \/

synchronization: E

copy LSDB from C

» F discovers neighbors with the hello protocol; assume F discovers C first (C is designated router for n1): F
and C establish adjacency (going through a sequence of 8 states, Down to Full). During this process, F and
C synchronize their Link State Data Bases (i.e. F copies its LSDB from C).

* When the state is Full, synchronization is complete and F can now flood a router LSA saying that
it is attached to n1; C (as designated router) sends a network LSA to say that F is now on n1.

» Then a similar process occurs between F and E, but now the synchronization is very fast since F already has
a synchronized link-state database



router LSA from B Afte r FIOOd | ng

n3, Eth, stub;
n2, p2p, 100, to A; .
n4, p2p, 100, to C After convergence, all routers have received

router LSA from A . :
n2. p2p, 100, to B: all new and modified LSAs (in red).

ni, eth, 10, DR=C
router LSA from C

n4, p2p, 100, to B; n3 né

n5, p2p, 20, to D: [®
ni, eth, 10, DR=C

router LSA from F B D

n7. eth, 10: DR=E / o / =
n1, eth, 10, DR=C , AN

router LSA from D ng//\ / nd .
n5, p2p, 20, to C; ! nd n

ne, p2p, 10, to E; /
A

router LSA from E
ne, p2p, 10;

n7, eth, 10, DR=E
network LSA from C
ni, eth,0, A, C, F nl
network LSA from E

n7, eth, 0, E, F

Link State Database at all routers



Topology graph
* The link state database describes a directed graph, with
outgoing edge cost = cost given in LSA
* BEvery router or every Ethernet network corresponds to a node in the graph
» Cost from network node to router node is O, by default

stub network

point to point

link broadcast

network




Practical Aspects

OSPF packets are sent directly over IP (OSPF=protocol 89 (0x59)).

Reliable transmission is managed by OSPF with OSPF acknowledgements
and timers (like the stop and go protocol).

OSPFv2 supports IPv4 only
OSPFv3 supports IPv6 and dual-stack networks

OSPF routers are identified by a 32 bit number
OSPF areas are identified by a 32 bit number



3. Path Computation Uses Dijkstra’s Algorithm

* Performed at every router, based on link state database
* Router computes one or several shortest paths to every destination from itself

» Paths are computed independently at every node

- link state database (network graph) is same at all routers, but every router performs a
different computation, as it computes shortest paths starting from itself

- synchronization of databases guarantees no persistent loops in the graph



Dijkstra’s
Shortest

Path
Algorithm

The nodes are 0...N ;

the algorithm
computes shortest
paths from node 0.

c(i,j): cost of link (i, j).
V: set of nodes visited so far.
pred(i): estimated set of predecessors

of node i along a shortest path
(multiple shortest paths are possible).
m(j): estimated distance from node 0 to node j.

m0)=0; m@ii)=o00 Vi, V=0 ;pred(i) = Vi,
for k=0:N do
find 1€ V that minimizes m(i)
if m(i) is finite
add i toV
for all neighbors j &V of i
it m@i)+c(i,j) < m(j)
m(j) = m(i) + c(i, j)
pred(j) = {i}
else if m(i)+c(i,j) = m(j)
m(j) = m(i) + c(i, j)
pred(j) = pred(j)u (i}

At completion, m(i) is the true distance from 0 to i.




Dijkstra’s
Shortest
Path
Algorithm

Builds the
shortest path

tree from this node
to all nodes.

mO0)=0; m@ii)=oc0 Vi#0; V=0 ;pred(i) =D Vi,
for k=0:N do
find i€ V that minimizes m(i)

/ if m() is finite
add i toV

for all neighbors j&V of i
it m(i)+c(i, ) < m(j)
m(j) = m(i) + c(i, j)
pred(j) = {i}
else if m(i)+c(i,j) = m(j)
m(j) = m(i) + c(i, j)
pred(j) = pred(j) U {i}

Adds one node at a time to the working set V, by picking the node that is closest
in the sense of the best estimation of the distance that we have at this time



There are multiple versions of Dijkstra’s algorithm. The presented version finds all shortest
paths, other versions find only one shortest path to every destination. The version
presented is very close to what is really implemented in OSPF (with a difference, next-hop
versus pred(), see later).

The worst-case complexity of this version is O(NZ) where N is the number of nodes.

More efficient versions of the algorithm have a smaller complexity, O(NlogN + E) where
E s the number of links.

The algorithm adds nodes to the visited set by increasing distances from node 0. It is
greedy in the sense that at every step it adds one node to the set of visited nodes; the
state of this node (distance from node 0 and set of predecessors) is the final value and will
not change in later steps of the algorithm.

The last 3 lines are for handling equal cost shortest paths. If one is interested in finding
only one shortest path per destination, these 3 lines are deleted.



Example: Dijkstra at A

Initially
100 100 20 10




Example: Dijkstra at A

After step 1

100 0

) .
A= (0

10

> - (0

(o]

20

@ 10

10

E

10

(F

10

red arrow from A to B means A € pred(B)

step 1:

i=A
V={(A}
m(B)=100
pred(B)={A}
m(C)=10
pred(C)={A}
m(F)=10
pred(F)={A}



Example: Dijkstra at A
After step 2

step 2:

i=C

V={A,C}

B, F unchanged
m(D)=30
pred(D)={C}




Example: Dijkstra at A
After step 3

100 30 20

step 3:

i=F
V={A,C,F}
m(E)=20
pred(E)={F}




At next step, which node will be added to the working set 17

100 30 20

B
D
E
. I don’t know

OO0 WP

Go to web.speakup.info or
download speakup app

Join room
46045


https://web.speakup.info/
https://web.speakup.info/

Solution: Dijkstra at A
After step 4

100 30 20

step 4: (Answer C)
I=E

V={A,C,E,F}

m( ) unchanged
pred(D)={C,E}

There are two equal-cost
paths to D, both are
recorded.



Example: Dijkstra at A
After step 5

100 30 20
@ step 5:
A .
| o 1=D
V={A,C,D,E,F}




Example: Dijkstra at A
After step 6

100 30 20

@ step 6:

A _B
I 10 1=
V={A,B,C,D,E,F}

(E) thisis the final state

10



Path Computation

« pred(i) gives the set of predecessors of node i on all shortest paths from source to i
« Shortest paths can be computed backwards, using pred(), starting from destination

E.g., shortest paths from A

to D: 100
A-C-D
A-F-E-D
to E: T
100
A-F-E




The version of Dijkstra used in OSPF differs from is presented above in that pred() is not used. Instead, the next hop is directly computed during the main
loop of the algorithm. This is faster than computing the paths separately, but makes the algorithm more difficult to understand:

m@0)=0; m@ii)=00 Vi#0;V=0 ;nextHopTo(i) =@ Vi,
for Kk =0:N do
find i €V that minimizes m(i)
if m(@i) is finite
add i toV
for all neighbors j€V of i
it m@i)+c(i,j) < m(j)
m(j) = m(@i) + c(i, j)
derive nextHopTo(j) from i
else if m(i)+c(i,j) = m(j)
m(j) = m(i) + (i, j)
augment nextHopTo(j) from i

derive nextHopTo(j) from i:
ifi==
nextHopTo(j) = {j} // j is directly connected to 0
else
nextHopTo(j) = nextHopTo(i) // shortest path to j is via i
augment nextHopTo(j) from i:
if i==0
nextHopTo(j) = {j} // j is directly connected to 0O
else
nextHopTo(j) =nextH0pT0(j)UnextHopTo(i) // add shortest path to j via i



Forwarding Table

Router A keeps in its forwarding table the next-hop and the distance to every
destination (not the entire path):

At A
Dest Next-  cost 100
hop

B B 100

C C 10 T
D CorF 30 100
E F 20

F F 10




Bringing back the stub network nodes

in link state database of every router
Hmmﬁ

The previous slides showed a very simple graph.
In practice, OSPF adds to the graphs nodes to
networks, which makes the graph larger.

_ / 10
i o
To optimize the computation:
Routing table at A - Stub networks are removed before

Dest Next-hop cost applying Dijkstra;

B On-link 100 - then, Dijkstra is run and the routing table
C On-link 10 contains costs and next hop to edge

ni On-link 10 routers such as B;

D F 30 - then, stub networks such as n3 are

D C 30 added to the forwarding table one by one,
n7 F 30 using the information on how to reach the
E F 20 routers such as B that lead to the stub

On-link 10 networks.

n3 B 110



4. Equal Cost Multipath

Dest Next-hop cost

OSPF supports multiple shortest paths 8 B
« |P allows to have multiple next-hops to the same ncl Z:t 12
destination in the forwarding table D ] 30

» This is good as it allows to exploit the redundancy of - - .
paths that exist in many networks. E . 20

F On-link 10
n3 B 110

What should router A do when it has several packets to send to destination D ?
A. send them to next-hop F or C randomly with equal probability

B. choose one next-hop and send all packets to this next-hop

C. test the availability of the next-hop before sending

D. something else

E. | don't know



Solution: Equal Cost Multi-Path often uses
Per-Flow Load Balancing

It is better to use all available paths network (load balancing) = send to all next-hops with equal
probability.

However, this may cause packet re-ordering, which is possible but not desirable as it reduces the
performance of TCP (TCP might think that a packet is lost when it is out of sequence). Therefore,
an alternative approach, called per-flow load balancing requires that packets of the same flow are
sent to the same next-hop. The definition of a flow depends on the system: a flow is identified by
the source and destination addresses and, in some systems, by next header type and (if they
exist), source and destination ports.

Per-flow load balancing is implemented by applying a hash function h:m — h(m) € [0,1] to the flow
identifier m. Assume there are 2 possible next-hops. If h(m) < 0.5 the packet is sent to the first,
else to the second. The flow identifier (tuple of source and destination IP addresses and ports) is
the same for all packets of the same TCP connection, so they will be sent to the same next-hop.

Answers Aand D !



