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Reminder: the network layer offers
Forwarding
• when a packet arrives at a router’s input link, the router moves the packet to the 

appropriate outgoing link 
• based on: 

- info in the packet header (e.g. dest IP address, BIER extension header, etc.) 
- the router’s forwarding table (a.k.a. routing table) 

 
Routing 
• determines the entire route/path followed by each packet towards its destination 

hence the entries of the forwarding tables and/or the information in extension header 
• typically done by a routing algorithm

(in the Data plane)

(in the Control plane)



Routing protocols (or routing algorithms)
Why we need them?

• Forwarding tables are not easy to set manually (as we do in the lab)  
- in a single domain, it is doable but also time-consuming and error-prone 
- in the WAN, it is very hard to do: 

๏ multiple domains should coordinate  
๏ private topologies might need to be disclosed to other domains 

• A routing protocol or algorithm  
- allows routers to automatically compute the best path(s) to each destination



Many routing algorithms, but where do they differ?
Nature of “best” path — i.e. what is optimization objective of an algorithm?

• to use shortest path 
• to use equal-cost multi-path 
• to respect policies 
• arbitrary 

Scope of network — i.e. what is the underlying network? is topology info available?
• single domain      —> intra-domain routing (main alg. is OSPF) 
• multiple domains —> inter-domain routing (main alg. is BGP) 

A domain is a network under the same administrative entity (e.g. a campus network, an enterprise network, or an ISP, etc.) 

State location — i.e. where is the output (i.e. the routing information) finally stored?
• inside a local forwarding table  
• directly into the packet headers



Taxonomy of routing protocols
Link State
• Each router maintains a local topology map of the entire network 

- obtained by gossiping (= flooding information) with other routers 
- every link on the map has a cost; e.g. cost(1 Gb/s link)=1; Cost(100 Mb/s link)=10 

• computes shortest (min-cost) paths to each destination prefix based on map  
• determines next hop to each prefix and populates its forwarding table  

• Typically used for intra-domain routing (e.g. OSPF, IS-IS) and advanced 
bridging methods (e.g. TRILL, SPB Shortest Path Bridging) 

• Variants of the optimization objective exist:  
- “shortest” may mean “min latency”, or “max available bit rate”, etc.



Distance Vector
• No global map 
• Each router initially knows only about neighbors:  

- i.e., locally-attached networks, neighbor routers,  
- and the costs of direct links to these  

• then: it informs its neighbors about the estimated distances to all destinations it 
knows of (= sends its distance vector); 
learns new destinations and updates its distance vector using the vectors 
received from neighbors (using the Bellman-Ford algorithm) 

• finally: it determines next hops and populates its forwarding table

Taxonomy of routing protocols



Distance Vector example — RIP
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Distance Vector example — RIP: convergence to optimal paths!

• Magical:  
this message-passing 
method converges to 
shortest paths! 

• But, it may need  
time to converge

‣ hence it is used in  
small networks 



Taxonomy of routing protocols
Path Vector
• Every router knows only:  

- its neighbors +  
- explicit paths to all destinations 

• computes the “best” path to each destination and populates forwarding table 
• Optimization criterion is not cost 
• Typically used for inter-domain routing, where it is hard to assign costs 

- e.g. BGP computes domain-level paths 
- and each router selects best path according to multiple criteria



Source Routing—“strict”
• Source puts explicit paths into packet headers (path = sequence of all intermediate hops)  
• In IPv6, routing header is an extension header—contains intermediate hops and ultimate destination;  

destination IP address is next intermediate hop 
• Intermediate routers are “dumb”: just remove themselves from header and forward pkts to next hop 
• Used in ad-hoc networks, where route computation is done by a control application or by discovery: 

e.g.: source discovers path by flooding explorer packets that accumulate the path followed      
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Taxonomy of routing protocols



Source Routing—“loose”
• Forces some intermediate hops 
• Assumes an underlying routing algorithm such as link-state routing, e.g., we know how to go from A to R4  
• Allows fine grained control of traffic (traffic engineering, separation of customers) 
Segment routing  
• Generalizes loose source routing by allowing the routing header to contain processing instructions for the 

intermediate hop; e.g., we can ask R4 to apply a security function (screening, traffic separation) 
• Used notably in data centers
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2. OSPF with a Single Area
Link-state routing algorithm  

Every router has: 
• an interface database (describing its physical connections, learnt by configuration) 
• an adjacency database (describing the neighbors’ states, learnt by a hello protocol) 
• a link state database (the topology map, learnt by flooding) 

Hello protocol is a ping-style protocol:  
• used to discover neighboring routers  
• and to detect failures (e.g. if a neighbor does not respond after 3 times, it is 

considered “dead”



Link State Database and LSAs
When two routers become neighbors, they first synchronize their link state databases: 

Case 1: one router is new, hence copies what the other already knows 
Case 2: existing routers connect, hence they merge their databases 

Once synchronized, a router sends and accepts link state advertisements (LSAs):
• Every router sends an LSA with its attached networks and neighbor routers 
• LSAs are flooded in the entire area and stored in each router’s link state database 
• LSAs contains a sequence number and age 

- Sequence number prevents loops; 
only messages with new sequence numbers are accepted and re-flooded  

- Age field is used to periodically resend LSA (e.g. every 30mins or 1h)  
and to flush invalid LSAs



Toy example showing interface databases
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Routers flood their LSAs throughout area
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Following the path of LSAs and explaining what information they provide: 
1, 2. B sends the LSA shown on the picture to A and C.  

• The LSA describes all the networks attached to B and their costs, as well as the 
adjacent routers.  

• A“stub” network means non transit, i.e. there is no other router on this network. A 
stub network can be reached by only a single router; so, all we need to know is 
how to reach this router—there is no need to allocate a cost to a stub network. 

3. C repeats the LSA (unmodified) to D. 
4. C also repeats the LSA to n1. Since n1 is Ethernet, the LSA is multicast to all OSPF 

routers on n1.  
A receives the LSA but does not repeat the LSA on n1 because it received it on n1 
from C. 

5. D repeats LSA to E.



After Flooding
After convergence, all routers have received 

all LSAs and store them in database. 
All have the same database.
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n2 n7

router LSA from B 
n3, Eth, stub; 
n2, p2p, 100, to A;  
n4, p2p, 100, to C  
router LSA from A  
n2, p2p, 100, to B; 
n1, eth, 10, DR=C 
router LSA from C  
n4, p2p, 100, to B; 
n5, p2p, 20, to D;  
n1, eth, 10, DR=C 
router LSA from D  
n5, p2p, 20, to C;  
n6, p2p, 10, to E; 
router LSA from E 
n6, p2p, 10, to D;  
n7, eth, stub 
network LSA from C 
n1, eth, 0,  A, C

Link State Database at all routers

Designated  
router C



• Ethernet LANs are treated in a special way.  
A naive approach to support a LAN with a link-state routing protocol would be to consider that a LAN is equivalent to a full-mesh 
of point-to-point links as if each router can directly reach any other router on the LAN. However, this approach has two important 
drawbacks : 
 (a) Each router must exchange HELLOs and link state packets with all the other routers on the LAN. This increases the number 
of OSPF packets that are sent and processed by each router. 
 (b) Remote routers, when looking at the topology distributed by OSPF, consider that there is a full-mesh of links between all the 
LAN routers. Such a full-mesh implies a lot of redundancy in case of failure, while in practice the entire LAN may completely fail 
(the switch may fail). In case of a failure of the entire LAN, all routers need to detect the failures and flood link state packets 
before the LAN is completely removed from the OSPF topology by remote routers. 

In order to avoid these issues, the routers elect a designated router per LAN (and a backup designated router).  
The designated router “speaks for the switch” and sends a “network LSA” which gives the list of all routers connected to the 
LAN. 
Typically the designated router of a LAN is the oldest running router in it. E.g. in the previous slide assume that this is C.  

• Every router that is connected to an Ethernet LAN floods a “router LSA” indicating its connection to this LAN.  

• Router and Network LSAs are just 2 of the available types of LSA. At the time of writing this, there exist 11 types of LSAs. In 
addition to router and network LSAs, the other types are used in the multi-area case (see later slide in this lecture) and with 
external routes (see BGP lecture). There are also other types, called “opaque” that are used for purposes other than shortest 
path routing: opaque LSAs are not used by Dijkstra’s algorithm. They can be used by OSPF extensions that make use of the link-
state database for other purposes (e.g. type 10 LSAs carry information about reservable bandwidth, to be used by QoS routing). 



Toy example (cont’d): Router F boots

• F discovers neighbors with the hello protocol; assume F discovers C first (C is designated router for n1): F 
and C establish adjacency (going through a sequence of 8 states, Down to Full). During this process, F and 
C synchronize their Link State Data Bases (i.e. F copies its LSDB from C).  

• When the state is Full, synchronization is complete and F can now flood a router LSA saying that 
it is attached to n1; C (as designated router) sends a network LSA to say that F is now on n1. 

• Then a similar process occurs between F and E, but now the synchronization is very fast since F already has 
a synchronized link-state database
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After Flooding
After convergence, all routers have received 

all new and modified LSAs (in red).
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Link State Database at all routers



Topology graph
• The link state database describes a directed graph, with 
outgoing edge cost = cost given in LSA 

• Every router or every Ethernet network corresponds to a node in the graph 
• Cost from network node to router node is 0, by default
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Practical Aspects
OSPF packets are sent directly over IP (OSPF=protocol 89 (0x59)).  
Reliable transmission is managed by OSPF with OSPF acknowledgements 
and timers (like the stop and go protocol). 

OSPFv2 supports IPv4 only 
OSPFv3 supports IPv6 and dual-stack networks 

OSPF routers are identified by a 32 bit number 
OSPF areas are identified by a 32 bit number



3. Path Computation Uses Dijkstra’s Algorithm
• Performed at every router, based on link state database 

• Router computes one or several shortest paths to every destination from itself 
  
• Paths are computed independently at every node 

- link state database (network graph) is same at all routers, but every router performs a 
different computation, as it computes shortest paths starting from itself 

- synchronization of databases guarantees no persistent loops in the graph



   

for  do 

 find  that minimizes   

 if  is finite  
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𝑚(𝑖) + 𝑐(𝑖, 𝑗) < 𝑚(𝑗)
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𝑝𝑟𝑒𝑑(𝑗) = 𝑝𝑟𝑒𝑑(𝑗) ∪ {𝑖}

Dijkstra’s 
Shortest 
Path 
Algorithm
The nodes are 0…𝑁 ;  
the algorithm 
computes shortest 
paths from node 0. 𝑐(𝑖,𝑗): cost of link (𝑖,𝑗).  

: set of nodes visited so far. 𝑝𝑟𝑒𝑑(𝑖): estimated set of predecessors  
of node 𝑖 along a shortest path  
(multiple shortest paths are possible). 𝑚(𝑗): estimated distance from node 0 to node 𝑗. 
At completion,  is the true distance from  to .

𝑉

𝑚(𝑖) 0 𝑖
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Dijkstra’s 
Shortest 
Path 
Algorithm

Builds the 
shortest path 
tree from this node 
to all nodes. 

Adds one node at a time to the working set , by picking the node that is closest 
in the sense of the best estimation of the distance that we have at this time 

𝑉



There are multiple versions of Dijkstra’s algorithm. The presented version finds all shortest 
paths, other versions find only one shortest path to every destination. The version 
presented is very close to what is really implemented in OSPF (with a difference, next-hop 
versus pred(), see later). 

The worst-case complexity of this version is  where  is the number of nodes. 
More efficient versions of the algorithm have a smaller complexity,  where 

 is the number of links.  

The algorithm adds nodes to the visited set by increasing distances from node . It is 
greedy in the sense that at every step it adds one node to the set of visited nodes; the 
state of this node (distance from node  and set of predecessors) is the final value and will 
not change in later steps of the algorithm.  

The last 3 lines are for handling equal cost shortest paths. If one is interested in finding 
only one shortest path per destination, these 3 lines are deleted.

𝑂(𝑁2) 𝑁 
𝑂(𝑁 log𝑁 + 𝐸)

𝐸 

0

0



Example: Dijkstra at A  
Initially
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Example: Dijkstra at A  
After step 1
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step 1: 
 i=A 
V={A} 
m(B)=100 
pred(B)={A} 
m(C)=10 
pred(C)={A} 
m(F)=10 
pred(F)={A}
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Example: Dijkstra at A  
After step 2
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step 2: 
 i=C 
V={A,C} 
B, F unchanged 
m(D)=30 
pred(D)={C}
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Example: Dijkstra at A  
After step 3

A

B

C

D

F

E

100

10

10

10

10

10

100 20

step 3: 
 i=F 
V={A,C,F} 
m(E)=20 
pred(E)={F}
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At next step, which node will be added to the working set ? 𝑉

A. B
B. D
C. E
D. I don’t know
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Solution: Dijkstra at A  
After step 4
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step 4: 
 i=E 
V={A,C,E,F} 
m( ) unchanged 
pred(D)={C,E} 

There are two equal-cost 
paths to D, both are 
recorded.
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(Answer C)



Example: Dijkstra at A  
After step 5
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step 5: 
 i=D 
V={A,C,D,E,F} 
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Example: Dijkstra at A  
After step 6
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step 6: 
 i=B 
V={A,B,C,D,E,F} 
  
this is the final state
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Path Computation
•  gives the set of predecessors of node  on all shortest paths from source to 
• Shortest paths can be computed backwards, using pred(), starting from destination  

E.g., shortest paths from A 
to D:  
 A-C-D 
 A-F-E-D 
to E: 
 A-F-E 
  

𝑝𝑟𝑒𝑑(𝑖) 𝑖 𝑖



The version of Dijkstra used in OSPF differs from is presented above in that pred() is not used. Instead, the next hop is directly computed during the main 
loop of the algorithm. This is faster than computing the paths separately, but makes the algorithm more difficult to understand:

   

for  do 

 find  that minimizes   

 if  is finite  

  add  to  

  for all neighbors  of  

   if  

     

    derive  from  

   else if  

     

    augment  

derive  from : 

 if   
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 else  
   // shortest path to  is via  

augment  from : 

 if   

    //  is directly connected to  

 else  
   // add shortest path to  via 

𝑚(0) = 0;  𝑚(𝑖) = ∞ ∀ 𝑖 ≠ 0; 𝑉 = ∅  ; 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) = ∅ ∀𝑖;
𝑘 = 0:𝑁

𝑖 ∈ 𝑉 𝑚(𝑖)
𝑚(𝑖)

𝑖  𝑉
𝑗 ∈ 𝑉 𝑖

𝑚(𝑖) + 𝑐(𝑖, 𝑗) < 𝑚(𝑗)
𝑚(𝑗) = 𝑚(𝑖) + 𝑐(𝑖, 𝑗)

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖
𝑚(𝑖) + 𝑐(𝑖, 𝑗) = 𝑚(𝑗)
𝑚(𝑗) = 𝑚(𝑖) + 𝑐(𝑖, 𝑗)

 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) from 𝑖

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖
𝑖 = = 0

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = {𝑗} 𝑗 0

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) 𝑗 𝑖
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖

𝑖 = = 0
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = {𝑗} 𝑗 0

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) ∪ 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) 𝑗 𝑖



Forwarding Table
Router A keeps in its forwarding table the next-hop and the distance to every 
destination (not the entire path):

Dest Next-
hop

cost

B B 100
C C 10
D C or F 30
E F 20
F F 10

At A



Bringing back the stub network nodes

The previous slides showed a very simple graph. 
In practice, OSPF adds to the graphs nodes to 
networks, which makes the graph larger.  

To optimize the computation:  
- stub networks are removed before 

applying Dijkstra; 
- then, Dijkstra is run and the routing table 

contains costs and next hop to edge 
routers such as B;  

- then, stub networks such as n3 are 
added to the forwarding table one by one, 
using the information on how to reach the 
routers such as B that lead to the stub 
networks.

in link state database of every router

Dest Next-hop cost

B On-link 100
C On-link 10
n1 On-link 10
D F 30
D C 30
n7 F 30
E F 20
F On-link 10
n3 B 110

Routing table at A



4. Equal Cost Multipath
OSPF supports multiple shortest paths 
• IP allows to have multiple next-hops to the same 

destination in the forwarding table 
• This is good as it allows to exploit the redundancy of 

paths that exist in many networks.

What should router A do when it has several packets to send to destination D ? 
A. send them to next-hop F or C randomly with equal probability 
B. choose one next-hop and send all packets to this next-hop 
C. test the availability of the next-hop before sending 
D. something else 
E. I don’t know 



Solution: Equal Cost Multi-Path often uses 
Per-Flow Load Balancing

It is better to use all available paths network (load balancing)  send to all next-hops with equal 
probability. 
However, this may cause packet re-ordering, which is possible but not desirable as it reduces the 
performance of TCP (TCP might think that a packet is lost when it is out of sequence). Therefore, 
an alternative approach, called per-flow load balancing requires that packets of the same flow  are 
sent to the same next-hop. The definition of a flow depends on the system: a flow is identified by 
the source and destination addresses and, in some systems, by next header type and (if they 
exist), source and destination ports. 
Per-flow load balancing is implemented by applying a hash function  to the flow 
identifier . Assume there are 2 possible next-hops. If  the packet is sent to the first, 
else to the second. The flow identifier (tuple of source and destination IP addresses and ports) is 
the same for all packets of the same TCP connection, so they will be sent to the same next-hop.
Answers A and D !

⇒

h:𝑚 ↦ h(𝑚) ∈ [0,1]
𝑚 h(𝑚) < 0.5


