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Reminder: the network layer offers
Forwarding
• when a packet arrives at a router’s input link, the router moves the packet to the 

appropriate outgoing link 
• based on: 

- info in the packet header (e.g. dest IP address, BIER extension header, etc.) 
- the router’s forwarding table (a.k.a. routing table) 

 
Routing 
• determines the entire route/path followed by each packet towards its destination 

hence the entries of the forwarding tables and/or the information in extension header 
• typically done by a routing algorithm

(in the Data plane)

(in the Control plane)



Routing protocols (or routing algorithms)
Why we need them?

• Forwarding tables are not easy to set manually (as we do in the lab)  
- in a single domain, it is doable but also time-consuming and error-prone 
- in the WAN, it is very hard to do: 

๏ multiple domains should coordinate  
๏ private topologies might need to be disclosed to other domains 

• A routing protocol or algorithm  
- allows routers to automatically compute the best path(s) to each destination



Many routing algorithms, but where do they differ?
Nature of “best” path — i.e. what is optimization objective of an algorithm?

• to use shortest path 
• to use equal-cost multi-path 
• to respect policies 
• arbitrary 

Scope of network — i.e. what is the underlying network? is topology info available?
• single domain      —> intra-domain routing (main alg. is OSPF) 
• multiple domains —> inter-domain routing (main alg. is BGP) 

A domain is a network under the same administrative entity (e.g. a campus network, an enterprise network, or an ISP, etc.) 

State location — i.e. where is the output (i.e. the routing information) finally stored?
• inside a local forwarding table  
• directly into the packet headers



Taxonomy of routing protocols
Link State
• Each router maintains a local topology map of the entire network 

- obtained by gossiping (= flooding information) with other routers 
- every link on the map has a cost; e.g. cost(1 Gb/s link)=1; Cost(100 Mb/s link)=10 

• computes shortest (min-cost) paths to each destination prefix based on map  
• determines next hop to each prefix and populates its forwarding table  

• Typically used for intra-domain routing (e.g. OSPF, IS-IS) and advanced 
bridging methods (e.g. TRILL, SPB Shortest Path Bridging) 

• Variants of the optimization objective exist:  
- “shortest” may mean “min latency”, or “max available bit rate”, etc.



Distance Vector
• No global map 
• Each router initially knows only about neighbors:  

- i.e., locally-attached networks, neighbor routers,  
- and the costs of direct links to these  

• then: it informs its neighbors about the estimated distances to all destinations it 
knows of (= sends its distance vector); 
learns new destinations and updates its distance vector using the vectors 
received from neighbors (using the Bellman-Ford algorithm) 

• finally: it determines next hops and populates its forwarding table

Taxonomy of routing protocols



Distance Vector example — RIP
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Distance Vector example — RIP: convergence to optimal paths!

• Magical:  
this message-passing 
method converges to 
shortest paths! 

• But, it may need  
time to converge

‣ hence it is used in  
small networks 



Taxonomy of routing protocols
Path Vector
• Every router knows only:  

- its neighbors +  
- explicit paths to all destinations 

• computes the “best” path to each destination and populates forwarding table 
• Optimization criterion is not cost 
• Typically used for inter-domain routing, where it is hard to assign costs 

- e.g. BGP computes domain-level paths 
- and each router selects best path according to multiple criteria



Source Routing—“strict”
• Source puts explicit paths into packet headers (path = sequence of all intermediate hops)  
• In IPv6, routing header is an extension header—contains intermediate hops and ultimate destination;  

destination IP address is next intermediate hop 
• Intermediate routers are “dumb”: just remove themselves from header and forward pkts to next hop 
• Used in ad-hoc networks, where route computation is done by a control application or by discovery: 

e.g.: source discovers path by flooding explorer packets that accumulate the path followed      
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Source Routing—“loose”
• Forces some intermediate hops 
• Assumes an underlying routing algorithm such as link-state routing, e.g., we know how to go from A to R4  
• Allows fine grained control of traffic (traffic engineering, separation of customers) 
Segment routing  
• Generalizes loose source routing by allowing the routing header to contain processing instructions for the 

intermediate hop; e.g., we can ask R4 to apply a security function (screening, traffic separation) 
• Used notably in data centers
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2. OSPF with a Single Area
Link-state routing algorithm  

Every router has: 
• an interface database (describing its physical connections, learnt by configuration) 
• an adjacency database (describing the neighbors’ states, learnt by a hello protocol) 
• a link state database (the topology map, learnt by flooding) 

Hello protocol is a ping-style protocol:  
• used to discover neighboring routers  
• and to detect failures (e.g. if a neighbor does not respond after 3 times, it is 

considered “dead”



Link State Database and LSAs
When two routers become neighbors, they first synchronize their link state databases: 

Case 1: one router is new, hence copies what the other already knows 
Case 2: existing routers connect, hence they merge their databases 

Once synchronized, a router sends and accepts link state advertisements (LSAs):
• Every router sends an LSA with its attached networks and neighbor routers 
• LSAs are flooded in the entire area and stored in each router’s link state database 
• LSAs contains a sequence number and age 

- Sequence number prevents loops; 
only messages with new sequence numbers are accepted and re-flooded  

- Age field is used to periodically resend LSA (e.g. every 30mins or 1h)  
and to flush invalid LSAs



Toy example showing interface databases

n1

 A 

 B 

n6

 D 
 E 

n4

n3

 C 

n5
n2

n7

Net Type cost
n3 Eth stub
n2 p2p 100
n4 p2p 100

At B

Net Type cost
n1 Eth 10
n2 p2p 100

At A
Net Type cost
n1 Eth 10
n4 p2p 100

At C

Net Type cost
n6 p2p 10
n5 p2p 20

At D

Net Type cost
n6 p2p 10
n7 p2p 100

At E

“stub” =  
non-transit network 
accessible via a 
single router



Routers flood their LSAs throughout area
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Following the path of LSAs and explaining what information they provide: 
1, 2. B sends the LSA shown on the picture to A and C.  

• The LSA describes all the networks attached to B and their costs, as well as the 
adjacent routers.  

• A“stub” network means non transit, i.e. there is no other router on this network. A 
stub network can be reached by only a single router; so, all we need to know is 
how to reach this router—there is no need to allocate a cost to a stub network. 

3. C repeats the LSA (unmodified) to D. 
4. C also repeats the LSA to n1. Since n1 is Ethernet, the LSA is multicast to all OSPF 

routers on n1.  
A receives the LSA but does not repeat the LSA on n1 because it received it on n1 
from C. 

5. D repeats LSA to E.



After Flooding
After convergence, all routers have received 

all LSAs and store them in database. 
All have the same database.
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Link State Database at all routers

Designated  
router C



• Ethernet LANs are treated in a special way.  
A naive approach to support a LAN with a link-state routing protocol would be to consider that a LAN is equivalent to a full-mesh 
of point-to-point links as if each router can directly reach any other router on the LAN. However, this approach has two important 
drawbacks : 
 (a) Each router must exchange HELLOs and link state packets with all the other routers on the LAN. This increases the number 
of OSPF packets that are sent and processed by each router. 
 (b) Remote routers, when looking at the topology distributed by OSPF, consider that there is a full-mesh of links between all the 
LAN routers. Such a full-mesh implies a lot of redundancy in case of failure, while in practice the entire LAN may completely fail 
(the switch may fail). In case of a failure of the entire LAN, all routers need to detect the failures and flood link state packets 
before the LAN is completely removed from the OSPF topology by remote routers. 

In order to avoid these issues, the routers elect a designated router per LAN (and a backup designated router).  
The designated router “speaks for the switch” and sends a “network LSA” which gives the list of all routers connected to the 
LAN. 
Typically the designated router of a LAN is the oldest running router in it. E.g. in the previous slide assume that this is C.  

• Every router that is connected to an Ethernet LAN floods a “router LSA” indicating its connection to this LAN.  

• Router and Network LSAs are just 2 of the available types of LSA. At the time of writing this, there exist 11 types of LSAs. In 
addition to router and network LSAs, the other types are used in the multi-area case (see later slide in this lecture) and with 
external routes (see BGP lecture). There are also other types, called “opaque” that are used for purposes other than shortest 
path routing: opaque LSAs are not used by Dijkstra’s algorithm. They can be used by OSPF extensions that make use of the link-
state database for other purposes (e.g. type 10 LSAs carry information about reservable bandwidth, to be used by QoS routing). 



Toy example (cont’d): Router F boots

• F discovers neighbors with the hello protocol; assume F discovers C first (C is designated router for n1): F and C 
establish adjacency (going through a sequence of 8 states, Down to Full). During this process, F and C synchronize 
their Link State Data Bases (i.e. F copies its LSDB from C).  

• When the state is Full, synchronization is complete and F can now flood a router LSA saying that it is attached to n1, 
where C is the designated router; C (as designated router) also sends a network LSA to say that F is now on n1. 

• Then a similar process occurs between F and E, but now the synchronization is very fast since F already has a 
synchronized link-state database
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After Flooding
After convergence, all routers have received 

all new and modified LSAs (in red).
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From LSDB to Topology graph

• The link state database defines a directed graph, where: 
• every router  and every Ethernet network corresponds to a node in the graph 
• link costs  = costs given in LS database 
• link cost from network node to router node is 0, by default (also 0 in the network LSA)
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Practical Aspects
OSPF packets are sent directly over IP (OSPF=protocol 89 (0x59)).  
Reliable transmission is managed by OSPF with OSPF acknowledgements 
and timers (like the stop and go protocol). 

OSPFv2 supports IPv4 only 
OSPFv3 supports IPv6 and dual-stack networks 

OSPF routers are identified by a 32 bit number 
OSPF areas are identified by a 32 bit number



3. Shortest paths are found with Dijkstra’s Algorithm

• Each router computes runs Dijkstra independently, based on local LSDB 
- link state database (network graph) is same at all routers, but every router performs a 

different computation, as it computes shortest paths starting from itself 
- synchronization of LSDBs guarantees no persistent loops in the graph 

• Each router computes one or several shortest paths to every other node



   

for  do 

	 find  that minimizes   

	 if  is finite  

	 	 add  to  
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𝑘 = 0:𝑁

i ∉ V 𝑚(𝑖)
𝑚(𝑖)

𝑖  𝑉
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𝑝𝑟𝑒𝑑(𝑗) = 𝑝𝑟𝑒𝑑(𝑗) ∪ {𝑖}

Dijkstra’s 
Shortest 
Path 
Algorithm
The nodes are 0…𝑁 ;  
the algorithm 
computes shortest 
paths from node 0. 
𝑐(𝑖,𝑗): cost of link (𝑖,𝑗).  

: set of nodes visited so far. 
𝑝𝑟𝑒𝑑(𝑖): estimated set of predecessors  
of node 𝑖 along a shortest path  
(multiple shortest paths are possible). 
𝑚(𝑗): estimated distance from node 0 to node 𝑗. 
At completion,  is the true distance from  to .

𝑉

𝑚(𝑖) 0 𝑖



   

for  do 
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Dijkstra’s 
Shortest 
Path 
Algorithm

Builds the 
shortest path 
tree from this node 
to all nodes. 

Adds one node at a time to the set  of visited nodes, by picking the node that is 
closest in the sense of the best estimation of the distance that we have at this time

𝑉



A few notes: 
There are multiple versions of Dijkstra’s algorithm. The presented version finds all shortest paths, 
other versions find only one shortest path to every destination. The version presented is very 
close to what is really implemented in OSPF (with a difference, next-hop versus pred(), see later). 

The worst-case complexity of this version is  where  is the number of nodes. More 
efficient versions of the algorithm have a smaller complexity,  where  is the 
number of links.  

The algorithm adds nodes to the visited set by increasing distances from node . It is greedy in 
the sense that at every step it adds one node to the set of visited nodes; the state of this node 
(distance from node  and set of predecessors) is the final value and will not change in later 
steps of the algorithm.  

The last 3 lines of the pseudo code are for handling equal cost shortest paths. If one is interested 
in finding only one shortest path per destination, these 3 lines are deleted.

𝑂(𝑁2) 𝑁 
𝑂(𝑁 log𝑁 + 𝐸) 𝐸 

0

0



Example: Dijkstra at A 
Initially
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Example: Dijkstra at A 
After step 1
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step 1: 
 i=A 
V={A} 
m(B)=100 
pred(B)={A} 
m(C)=10 
pred(C)={A} 
m(F)=10 
pred(F)={A}
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Example: Dijkstra at A 
After step 2
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step 2: 
 i=C 
V={A,C} 
m(D)=30 
pred(D)={C}
B, F unchanged
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Example: Dijkstra at A 
After step 3
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step 3: 
 i=F 
V={A,C,F} 
m(E)=20 
pred(E)={F}
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At next step, which node will be added to the working set ? 𝑉

A. B
B. D
C. E
D. I don’t know
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Solution: Dijkstra at A 
After step 4

A

B

C

D

F

E

100

10

10

10

10

10

100 20

step 4: 
 i=E 
V={A,C,E,F} 
m( ) unchanged 
pred(D)={C,E} 

There are two equal-cost 
paths to D, both are recorded.
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Example: Dijkstra at A 
After step 5
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step 5: 
 i=D 
V={A,C,D,E,F} 
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Example: Dijkstra at A 
After step 6
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step 6: 
 i=B 
V={A,B,C,D,E,F} 
  
this is the final state

0 10

100 30 20

10



Path Computation
•  gives the set of predecessors of node  on all shortest paths from source to 
• Shortest paths can be computed backwards, using pred(), starting from destination  

E.g., shortest paths from A 
to D:  
	 A-C-D 
	 A-F-E-D 
to E: 
	 A-F-E 
	  

𝑝𝑟𝑒𝑑(𝑖) 𝑖 𝑖



The version of Dijkstra used in OSPF differs from is presented above in that pred() is not used. Instead, the next hop is directly computed during 
the main loop of the algorithm. This is faster than computing the paths separately, but makes the algorithm more difficult to understand:

   

for  do 

	 find  that minimizes   

	 if  is finite  

	 	 add  to  

	 	 for all neighbors  of  

	 	 	 if  

	 	 	 	  

	 	 	 	 derive  from  

	 	 	 else if  

	 	 	 	  

	 	 	 	 augment  

derive  from : 

	 if 	 

	 	 		 //  is directly connected to  

	 else  
	 	 	 // shortest path to  is via  

augment  from : 

	 if 	 

	 	 		 //  is directly connected to  

	 else  
	 	 	 // add shortest path to  via 

𝑚(0) = 0;  𝑚(𝑖) = ∞ ∀ 𝑖 ≠ 0; 𝑉 = ∅  ; 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) = ∅ ∀𝑖;
𝑘 = 0:𝑁

𝑖 ∈ 𝑉 𝑚(𝑖)
𝑚(𝑖)

𝑖  𝑉
𝑗 ∈ 𝑉 𝑖

𝑚(𝑖) + 𝑐(𝑖, 𝑗) < 𝑚(𝑗)
𝑚(𝑗) = 𝑚(𝑖) + 𝑐(𝑖, 𝑗)

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖
𝑚(𝑖) + 𝑐(𝑖, 𝑗) = 𝑚(𝑗)
𝑚(𝑗) = 𝑚(𝑖) + 𝑐(𝑖, 𝑗)

 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) from 𝑖
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖

𝑖 = = 0
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = {𝑗} 𝑗 0

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) 𝑗 𝑖
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) 𝑖

𝑖 = = 0
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = {𝑗} 𝑗 0

𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) = 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑗) ∪ 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑇𝑜(𝑖) 𝑗 𝑖



From shortest paths to Forwarding Table
Router A keeps in its forwarding table only the next-hop and the distance to 
every destination (not the entire path):

Dest Next-
hop

cost

B B 100
C C 10
D C or F 30
E F 20
F F 10

At A



Bringing back the network nodes

In practice, OSPF adds to the graph the network 
nodes, which makes the graph larger.  

To optimize the computation:  
- stub networks are removed before 

applying Dijkstra; 
- then, Dijkstra is run and the routing table 

contains costs and next hop to edge 
routers such as B;  

- then, stub networks such as n3 are added 
to the forwarding table one by one, using 
the information on how to reach the routers 
such as B that lead to the stub networks.

in link state database of every router

Dest Next-hop cost

B On-link 100

C On-link 10

n1 On-link 10

D F 30

D C 30

n7 F 30

E F 20

F On-link 10

n3 B 110

Routing table at A



4. Equal Cost Multipath
• OSPF supports multiple shortest paths 
• IP allows to have multiple next-hops to the same 

destination in the forwarding table 
- good: it exploits the redundancy of paths  
- bad: the number of multiple paths may be large

so, typically we use a limit of multiple paths

What should router A do when it has several packets to send to destination D ? 
A. send them to next-hop F or C randomly with equal probability 
B. choose one next-hop and send all packets to this next-hop 
C. test the availability of the next-hop before sending 
D. something else 
E. I don’t know 
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Solution: Equal Cost Multi-Path often uses 
Per-Flow Load Balancing

It is better to use all available paths network (load balancing)  send to all next-hops with equal probability.  
However, this may cause packet re-ordering, which is possible but not desirable as it reduces the 
performance of TCP (TCP might think that a packet is lost when it is out of sequence). Therefore, an 
alternative approach, called per-flow load balancing requires that packets of the same flow to be sent to the 
same next-hop. The definition of a flow depends on the system: a flow is typically identified by the src/dest 
IP addresses and, in some systems, by next header type and (if they exist), src/dest ports.  

Per-flow load balancing is implemented by applying a hash function to the flow identifier  of each packet. 
.  

E.g., assume there are 2 possible next-hops for a packet. If  the packet is sent to the first, else to 
the second. The flow identifier (which, as stated above, is typically a 5-tuple of: src/dest IP addresses, src/
dest ports, and transport-layer protocol) is the same for all packets of the same TCP connection; so these 
packets will be sent to the same next-hop. 

So, answers A and D !

⇒

𝑚
h:𝑚 ↦ h(𝑚) ∈ [0,1]

h(𝑚) < 0.5



5. OSPF’s reaction to changes in topology
• Changes to topology occur e.g. when routers or links fail or are rebooted 

• The routers detect failures through: 
- OSPF’s hello protocol (after several seconds, in general) or  
- Bidirectional Forwarding Detection (BFD) protocol: hello protocol at the Ethernet layer 

(fast: after 10 ms, independent of OSPF) 
- directly because there might be no power on the cable  

• If a router detects a change in the state of a link or a neighboring router:  
- it floods a new LSA with new sequence number and new (alive) neighbors 
- neighbors propagate new LSA to the entire OSPF area 
- all routers update their link-state database, re-compute shortest paths and routing 

tables once they receive the new  
➡ This takes some time, hence may result in transient routing loops and packet drops



Example  
at 𝑡0

: Link A-B crashes𝑡0

Dst i/f Nxt hp cst

B east on-link 10

C south on-link 10

D east B 20

D south C 20

Link State Database and routing table at A

A B

C D

Link State Database and routing table at C

A B

C D

Link State Database and routing table at B

A B

C D

Link State Database and routing table at D

A B

C D

Dst i/f Nxt hp cst

A north on-link 10

D east on-link 10

B north A 20

B east D 20

Dst i/f Nxt hp cst

A west on-link 10

D south on-link 10

C west A 20

C south D 20

Dst i/f Nxt hp cst

B north on-link 10

C west on-link 10

A north B 20

A west C 20



: A detects failure first; declares B as invalid neighbor, declares link A-B as invalid, updates its link state database, sends a 
new LSA to C, with origin A and recomputes its routing table.  
A routing loop exists between A and C for destination B.  
Traffic sent by B to A dies on the link, until B detects the failure. So, half of the traffic from D to A is also lost.

𝑡1

Dst i/f Nxt hp cst

B south C 30

C south on-link 10

D east B 20

D south C 20

Link State Database and routing table at A

A B

C D

Link State Database and routing table at C

A B

C D

Link State Database and routing table at B

A B

C D

Link State Database and routing table at D

A B

C D

Dst i/f Nxt hp cst

A north on-link 10

D east on-link 10

B north A 20

B east D 20

Dst i/f Nxt hp cst

A west on-link 10

D south on-link 10

C west A 20

C south D 20

LSA from A 
A to C, cost=10

Dst i/f Nxt hp cst

B north on-link 10

C west on-link 10

A north B 20

A west C 20

Example  
at 𝑡1



: C receives LSA from A, updates its link state database, forwards this LSA to D and recomputes routing table.  
There is no routing loop but traffic sent by B to A dies on the link and half of the traffic from D to A is lost.
𝑡2

Dst i/f Nxt hp cst

B south C 30

C south on-link 10

D east B 20

D south C 20

Link State Database and routing table at A

A B

C D

Link State Database and routing table at C

Link State Database and routing table at B

A B

C D

Link State Database and routing table at D

A B

C D

Dst i/f Nxt hp cst

A north on-link 10

D east on-link 10

B north A 20

B east D 20

Dst i/f Nxt hp cst

A west on-link 10

D south on-link 10

C west A 20

C south D 20

A B

C D

LSA from A 
A to C, cost=10

Dst i/f Nxt hp cst

B north on-link 10

C west on-link 10

A north B 20

A west C 20

Example  
at 𝑡2



: D receives LSA from C, updates its link state database, forwards this LSA to B and recomputes routing table. At about 
the same time, B now also detects failure; declares A as invalid neighbor, declares link A-B as invalid, updates its link 
state database, sends a new LSA to D, with origin B and recomputes routing table. All link state databases now have the 
same contents and new routes are in place.

𝑡3

Dst i/f Nxt hp cst

B south C 30

C south on-link 10

D east B 20

D south C 20

Link State Database and routing table at A

A B

C D

Link State Database and routing table at C

Link State Database and routing table at B

A B

C D

Link State Database and routing table at D

A B

C D

Dst i/f Nxt hp cst

A north on-link 10

D east on-link 10

B north A 20

B east D 20

Dst i/f Nxt hp cst

A south D 30

D south on-link 10

C west A 20

C south D 20

A B

C D

LSA from B 
B to D, cost=10

LSA from A 
A to C, cost=10

Dst i/f Nxt hp cst

B north on-link 10

C west on-link 10

A north B 20

A west C 20

Example  
at 𝑡3



When a router crashes, how do other  
distant routers in area detect the crash ?

A. The immediate neighbors detect loss of adjacency and flood new 
LSAs with the updated list of adjacent/neighbor routers 

B. By the hello protocol 
C. By timeout of LSAs stored in their link-state database 
D. By absence of BFD (Bidirectional Forwarding Detection) messages 
E. I don’t know
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Solution
Answer A, in principle. 
Answer C is some rare cases possible, but normally neighbors 
detect the failure well before the LSA ages out (1 hour by default)  
With the hello protocol and BFD, only immediate neighbors detect 
the loss of the crashed router.



6. Security of OSPF
Attacks against routing protocols 

(1) send invalid routing information —> disrupt network operation 
(2) send forged routing information —> change network paths 
(3) denial of service attacks 

OSPF security protects against (1) and (2) using authentication  
OSPFv2 levels of authentication 

 	 type 0: none	  
	 type 1: password sent in cleartext in all packets 
	 type 2: authentication using MD5 (obsolete) or HMAC-SHA 

type 3: similar to type 2 with some improvements (RFC 7474)
OSPFv3 uses IPSEC authentication 

	 similar to type 2 and 3



OSPF Type 3 Authentication uses MAC tags with shared keys

• Digest is appended to OSPF message, and is used as a message authentication code (MAC tag)  
• Secret key is shared and has a short lifetime:  

- Neighbor routers have the same pre-installed keys (installation via an out-of-band mechanism)  
- A key index in the authentication header of an OSPF message says which key is used 

• Crypto Sequence Number is used to avoid replay attacks 
- The crypto seq number is incremented for every OSPF packet. It contains a permanent “boot count” saved on 

disk to avoid collision of numbers even after reboot, and it is large enough to never wrap around (in  years). 
- It is also appended to OSPF packet in cleartext (so that neighbor router can also compute the hash). 

1011

digest (e.g. 256 bits) = MAC tag

Cryptographic Hash Algo (e.g. SHA 256)

Secret key 
(shared among all OSPF 

routers on same link)
IP source address

OSPF message 
(e.g. hello, update, ack)

Crypto Sequence 
Number



7. OSPF with Multiple Areas
Why? LSA flooding does not scale in very large networks 

• OSPF uses multiple areas and a hierarchy of two routing levels 
- a backbone area (area 0)  
- several non backbone areas 

• All inter-area traffic goes through backbone area 0
area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1



Principles of OSPF Multi-Area Operation
1. Inside one area, link state is used. One Link State Database per area 

(replicated in all routers of area) 
2. Area border routers belong to both areas and have 2 link state databases (LSDBs): 

e.g., X4 belongs to area 2 and 0—it has one LSDB for area 2 and one for area 0 
3. A border router injects aggregated distance (cost) information learnt from one area 

into the other area, by using summary LSAs

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1



Toy Example  
Step1

All routers in area 2 flood the LSAs originated by B1 and B2 and know of n1 and n2, directly 
attached to B1 (resp. B2). This is the normal link state operation.  
All routers in area 2 have the same link state database, shown above. 
All routers in area 2, including X4 and X6 compute their distances to n1 and n2 (using Dijkstra).  
	 X4: distance to n1 =10, to n2 =16 
	 X6: distance to n1 =16, to n2 =10

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1

area 2 link 
state database

n1

n2



Toy Example  
Step2

X4 and X6 each flood into area 0 a summary LSA indicating their distances to n1 and n2.  
All routers in area 0 now have the same link state database, shown above. 
All routers in area 0, including X3 and X5 compute their distances to networks outside the area (such 
as n1) using the Bellman-Ford formula. E.g.: 

, 

where BR is a border router.

d(self, n1) = min
BR ∈ Area0

{d(self, BR) + d(BR, n1)}

area 0 link state database

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1

n1

n2

n1, d=10 
n2, d=16

n1, d=16 
n2, d=10



Toy Example  
Step2  
(cont’d)

Router X3 computes:  
 

 

The process can be used to compute not only the distance, but also the next hop:  
- e.g. to n1, the min is for BR=X4, therefore the shortest path to n1 is via X4 and the next hop to n1 is the next hop to X4.  

X3 updates its routing table and adds entries to n1 (and n2).

𝑑(𝑋3, 𝑛1) = min{𝑑(𝑋3,𝑋4) + 𝑑(𝑋4,𝑛1), 𝑑(𝑋3,𝑋6) + 𝑑(𝑋6,𝑛1)} = min( 23, 28) = 23

𝑑(𝑋3, 𝑛2) = min{𝑑(𝑋3,𝑋4) + 𝑑(𝑋4,𝑛2), 𝑑(𝑋3,𝑋6) + 𝑑(𝑋6,𝑛2)} = min( 29, 22) = 22

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1

area 0 link state database n1

n2

n1, d=10 
n2, d=16

n1, d=16 
n2, d=10



Toy Example  
Step 3

X3 and X5 each flood into Area 1 a summary LSA indicating their distances to n1 and n2.  
All routers in area 1 now have the same link state database, shown above. 
All routers in area 1 compute their distances to networks outside the area (such as n1) using a similar 
Bellman-Ford formula: 

 

where BR is a border router. E.g. A1 finds that the distance to n1 is 33 and the shortest path is via X3.

d(self, n1) = min
BR ∈ Area1

{d(self, BR) + d(BR, n1)}

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1

n1

n2

n1, d=10 
n2, d=16

n1, d=16 
n2, d=10

n1, d=23 
n2, d=22

n1, d=22 
n2, d=16

area 1 link 
state 

database



Toy Example  
Step 3

When applying the Bellman-Ford formula to compute , how does a router such 
as A1 know the values of  and  ?

𝑑(self,  𝑛1)
𝑑(self,  𝐵𝑅) 𝑑(𝐵𝑅,  𝑛1)

d(self, n1) = min
BR ∈ Area1

{d(self, BR) + d(BR, n1)}

A.  from its routing table after applying Dijkstra and  from the summary LSA received 
B.  from its routing table after applying Dijkstra and  from the summary LSA received 
C. both from its routing table after applying Dijkstra 
D. both from the summary LSA 
E. I don’t know

𝑑(self,  𝐵𝑅) 𝑑(𝐵𝑅,  𝑛1)
𝑑(𝐵𝑅,  𝑛1) 𝑑(self, 𝐵𝑅)
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Solution
All routers in area 1 have only 

their routing tables from step 1 + 
this information —>

The border routers are in area 1, 
so A1 knows d(self, BR) from its 

routing table (after applying 
Dijkstra). 

d(BR, n1) is known from a 
summary-LSA, which is in the 

link-state database of A1 (and of 
all routers in area 1). 

Answer A.

X3A1

area 1

X5
A2

6

10

10

10

n1, d=23 
n2, d=22

n1, d=22 
n2, d=16



How many link state databases does router X3 have ?

A. 1 
B. 2 
C. 3 
D. 0 
E. I don’t know

area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

10

10

6
6

6
1

6

6

10

10

10

Go to  web.speakup.info or 
download speakup app 

Join room 
46045

https://web.speakup.info/
https://web.speakup.info/


Solution
Answer B. 
X3 belongs to area 0 and  
to area 1. It has one 
link-state database 
for each. area 0

B1
X4

X1

X3A1

area 2area 1

X2

X6X5
B2A2

n1

n2

10

9

9

6
6

6
1

6

6

10

10

10

1

1

n1, d=10 
n2, d=16

n1, d=16 
n2, d=10

n1, d=23 
n2, d=22

n1, d=22 
n2, d=16



8. Other Uses of Link State Routing
LSAs can offer a “complete view” of the area at every node (e.g. topology with links, costs,  
latencies, attached subnets, etc.). This can be used to provide advanced functions, e.g.: 

source routing:  
an edge router computes the entire path, not just the next-hop,  
so it can write an explicit path in an extension packet header  

- Avoids transient loops / supports fast re-route after failure  
- Used in deterministic networks (industrial applications) 

multi-class routing:
• computes different routes for different types of services (e.g. voice, video)  

based on different objectives (e.g. cost and latencies) 
• uses the “differentiated-services” field in IP header to forward traffic 

LS-bridging:
connects different layer-2 VLANs over IP instead of trunk cables



Example: LS bridging
Why? Say you want to bridge VLANs across a campus without direct cables.  
One solution: use routers that also implement a layer-2 switch,  
and tunnel (encapsulate) MAC packets in IP!  
Problem: automatic creation of tunnels. 

Can you imagine a solution using Link State Routing in R1, R2, … ? 
A. Routers R1, R2 … discover  

which VLAN is active on any of their  
ports and put this information  
in the link state database 

B. Routers R1, R2 … overhear all MAC  
source addresses and put the  
information in the link state database 

C. Both of these solutions seem bad to me 
D. I don’t know

R1

R2

R3

R4

R6

R7

R5

VLAN2

VLAN2

VLAN2

VLAN1

VLAN1

VLAN1



Solution
B does not help since MAC addresses don’t say in 
which VLAN the machine is. Recall that even with VLAN 
trunk ports we needed the VLAN tag (= information 
about which VLAN a machine belongs to).  

A is a feasible solution: routers can create VLAN tunnels 
(MAC in IP !); and they can use the known topology and 
an algorithm to create a spanning tree that spans all 
routers that are attached to the same VLAN. They can 
use also IP multicast (and BIER) to avoid unnecessary 
packet replication. 

• This is what Cisco’s TRILL does (with IS-IS instead 
of OSPF). 

• IEEE’s SPB is similar (with MAC in MAC 
encapsulation); supports explicit routes with 
802.1av for video networking in studios.

MAC in IP tunnels



9. Routing in Software Defined Networks (SDNs)
Why it exists? In principle, an IP router uses the destination address and longest prefix 
match to decide where to send a packet. 
Some networks want more control; e.g. handle mission-critical traffic with high priority; 
ban non-HTTP traffic; send suspicious/DoS traffic to a scrubber for inspection (see figure)

From [S. Vissicchio et al., 
“Central Control Over Distributed 
Routing”, ACM Sigcomm 2015]
http://fibbing.net

A sudden traffic surge is noticed 
from A, D and E to F (red).  
The network operator would like 
to divert all red traffic to scrubber 
for inspection. Blue traffic should 
not be modified.

http://fibbing.net/


More control… how?
Deep packet inspection (DPI): 

routers look not only at IP headers, but also ports and payload  
 —> classify traffic according to more fields 

Per-flow forwarding: when a packet is to be forwarded, the router: 
• looks for a match in a flow table, which has per-flow forwarding rules with priorities 
• if one or several matches exist, it follows the rule with highest priority 
• if no rule matches, it goes to the IP forwarding table and does longest prefix match 

Same ideas can be used in switches (per flow tables then complement the MAC 
forwarding table)



At R1: Which way will follow the packets from Lisa and Homer to 
Enterprise server ? 

A. Lisa:1, Homer: 1 
B. Lisa:1, Homer: 2 
C. Lisa:2, Homer: 1 
D. Lisa:2, Homer: 2 
E. None of above 
F. I don’t know

router  
R1

router  
R2

router  
R4

Lisa 
A.H1

Enterprise  
server 
B.D.H2

2 1

2

21

3

to      output
 *        1 
A.*      0 
C.*      3

to         output
 *            2 
B.D.*      2 
B.*         3

to     output
*       1 
B.*    2 

30

IP Forwarding table at R1

IP Forwarding table at R4

Homer 
C.H1

1

IP Forwarding table at R2

Flow spec                          action          prio
input=0; dest=B.D*            output 2          50  
dest=B.D.*                           drop              10

Flow table at R1
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Solution
Answer E 
Packets from Lisa to enterprise server match the two flow rules; the 
first one has higher priority and is applied. Packets are forwarded to port 2. Since 
there is a match in flow table, the IP forwarding table is not used. 

Packets from Homer to enterprise server match the second flow rule and are dropped 
by R1. 

The combined effect of the flow table and the IP forwarding table at R1 is such that 
1. all traffic to B.D.* is killed except if arriving on input 0 
2. traffic to B.D.* that is not killed is forwarded to output 2 
3. traffic to B.* and not B.D.* is forwarded to output 1 

 



Software Defined Networking in practice
What ? 
A central controller application 
manages the flow tables in routers 
and/or switches 
How ?  

• The central controller decides rules 
and communicates them to local 
controllers on routers/switches 

• Local controllers, called “listeners” 
write the per-flow tables on routers 
or switches 

• Protocol between local controller 
and central controller is e.g. 
OpenFlow, over TCP connections 

Where ?  
Mainly in large data centers, also for 
5G cellular.
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Do we need OSPF (or another routing protocol) 
if we have SDN ?
A. No because flow tables can 

replace IP forwarding tables 
B. Yes because flow tables 

cannot replace IP forwarding 
tables  

C. Yes because the central 
controller needs a way to 
communicate with local 
controllers 

D. I don’t know
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Solution
Answer C 
The central controller communicates with the local controllers in routers 
over TCP connections. This needs that IP forwarding tables are functional, 
which (in principle) requires OSPF or some other routing protocol.  

But this common-sense observation may not always hold. Remember the 
Facebook outage of Oct 4, 2021, where it seems that routers were 
disconnected remotely and it was impossible to bring them back in.



Conclusion
Routing protocols automatically build connectivity and repair failures.  
With link state routing (like OSPF): 
• All routers compute their own link state database, replicated in all routers 
• All routers compute their routing tables using Dijkstra and the link state 

database 
• Convergence after failure is fast (if detection is fast) 
• Nonstandard cost definitions are possible; can be used for routing specific 

flows in different ways 
• Large domains must be split into areas 

More control can be obtained by an outside application (SDN) at the expense 
of losing the robustness of distributed protocols. SDN is used today primarily 
with switches, but also with routers in some networks.


