j}ifxu,i_ll TETVE VAN A4 Sr ey A8 -

¥ &

X 9
VAR , PRI
Lzot JL. Z07
Icem) Nidcs (ryes]
PEsuws BEstiws T FT-.
AEsisesml B irigess eI
Iz 13 iV IFERY "
:.t-m..-!J 7" '..l:-lliv.l (LT
.‘ -

Lﬁs;iﬂda"'
L:.uw Kils plauiisus

r-—— Lmu AT
I [, Lisid Faif Bllcruse
[‘{‘uj_l Cicd Biisiuz s
| et Licd AU G d Riliciugs

C JL; Atz iy s/ unkiv

(SETE &

-, I
Vi
e
N

‘ IUIWAU.A! S ILGB
i
‘ Eile7ion b Bilw7.0
[{7 vy

"‘ " : oy =
m“,’ :r":;fr‘rl .nu; - Lu!n}

.
., -

(e /
/,/._—»/

r:.l A=MES ;:uu.u.»
i.z..l-l.. l l*- |
(= 2=BdSUF
'. 700) L

'-_w 155 ey
! Ny — - 3

—

- e

- .,(.;,:...-su-l

\ lum' l'iu’c,?', 1
X7 »3 r:m
l -f' - sy
U)"‘ s PREE N

4'1
7T TR
(L ZGT. ool
i 1GGE l
ALETE PiusLe

Iy

AR Lo

ra1vr .

1
l

'.l.'.a' iy

‘ Ml |
aiua ‘
! i 21

g -
Ry

20T
ice
LEUT 5)

S5 uf'
ey

.’-?—v‘
N oo i b

P
L}

. il 4

Routing algorithms

-

- : — “&““ s -
Ab—’;‘f’ - r ’ - - _‘-'Q'T‘-- .%Z
— e #1—4‘1“,“- Tr— ==
l' T GF {T s 26T (g Gr i paorta] i | | | FTGR
ace 11 dGE BN 4GE LodGeE | mIcamp | | mace ELGe
| UFTTIR }‘ [P GT | LETITIR _}*i SUMLIN | | BSLA LY [TS FEivuic
abas 08 P ETT Flisses Fisses %835 0o %bis 003 rey
| 2507 s f [reiry ! [y f Ui [rairy Be=id S35
FEatdad | T | ET T | FTpeeT. gy 2l uad 3.0 L rr5rT
* o | LY = iP
" : - i’ X - é;:;: ;u Eiimr , j " ’;;
ELr LS EC0] | M Crr ol r A 7 I peilg

Contents

© N O DN

Routing in General

Link state routing, OSPF Single Area
Dijkstra’s algorithm

Equal Cost Multipath

Topology Changes

Security of OSPF

OSPF, multiple areas

Other uses of Link State

Software Defined Networking (SDN)

Textbook

Section 5.1.1, The control plane -

RFC 2328

Reminder: the network layer offers

Forwarding (in the Data plane)
* when a packet arrives at a router’s input link, the router moves the packet to the
appropriate outgoing link
e based on:
- info in the packet header (e.g. dest IP address, BIER extension header, etc.)

- the router’s forwarding table (a.k.a. routing table)

Routing (in the Control plane)

» determines the entire route/path followed by each packet towards its destination
hence the entries of the forwarding tables and/or the information in extension header

« typically done by a routing algorithm

Routing protocols (or routing algorithms)

Why we need them?
* Forwarding tables are not easy to set manually (as we do in the lab)
- in a single domain, it is doable but also time-consuming and error-prone
- iIn the WAN, it is very hard to do:
« multiple domains should coordinate
» private topologies might need to be disclosed to other domains

* A routing protocol or algorithm
- allows routers to automatically compute the best path(s) to each destination

Many routing algorithms, but where do they differ?

Nature of “best” path — i.e. what is optimization objective of an algorithm?
 t0 use shortest path
10 use equal-cost multi-path
 t0 respect policies

e arbitrary
Scope of network — i.e. what is the underlying network? is topology info available?
« single domain —> intra-domain routing (main alg. is OSPF)

« multiple domains —> inter-domain routing (main alg. is BGP)
A domain is a network under the same administrative entity (e.g. a campus network, an enterprise network, or an ISP, etc.)
State location — i.e. where is the output (i.e. the routing information) finally stored?
* inside a local forwarding table
« directly into the packet headers

Taxonomy of routing protocols

Link State

* Each router maintains a local topology map of the entire network
- obtained by gossiping (= flooding information) with other routers
- every link on the map has a cost; e.g. cost(1 Gb/s link)=1; Cost(100 Mb/s link)=10

* computes shortest (min-cost) paths to each destination prefix based on map
* determines next hop to each prefix and populates its forwarding table

 Typically used for infra-domain routing (e.g. OSPF, |S-IS) and advanced
bridging methods (e.g. TRILL, SPB Shortest Path Bridging)

 Variants of the optimization objective exist:
- “shortest” may mean "min latency”, or “max available bit rate”, etc.

Taxonomy of routing protocols

Distance Vector
* No global map

« Each router initially knows only about neighbors:
- |.e., locally-attached networks, neighbor routers,
- and the costs of direct links to these
 then: it informs its neighbors about the estimated distances to all destinations it
knows of (= sends its distance vector);
learns new destinations and updates its distance vector using the vectors
received from neighbors (using the Bellman-Ford algorithm)

o finally: it determines next hops and populates its forwarding table

Distance Vector example — RIP

All link costs

A

net dist nxt

nl 1 nl, A
n4 1 nd ,A
D

net dist nxt

n3 1 n3,D
n4 1 n4d,D
m3 1 m3,D

=1

[] nl EI
nd n2
m2
Eﬂ n3 El___

m3

B

net dist nxt

nl 1 nl,B
n2 1 n2,B
C

net dist nxt

n2 1 n2,C
n3 1 n3,C
ml 1 ml,C
m2 1 m2,C

Distance Vector example — RIP

All link costs

A

net dist nxt

nl 1 nl, A
n4 1 nd ,A
D

net dist nxt

n3 1 n3,D
n4 1 n4d,D
m3 1 m3,D

m3

1

from A
nl 1
n4 1

nl

n3

m2

[a]

3
=

from
n3
n4
m3

B R RO

B

net dist nxt

nl 1 nl,B
n2 1 n2,B
n4 2 nl, A
C

net dist nxt

n2 1 n2,C
n3 1 n3,C
ml 1 ml,C
m2 1 m2,C
n4 2 n3,D
m3 2 n3,D

Distance Vector example — RIP

All link costs = 1 net dist nxt

a Bin1 1 ni1,B

n2 1 n2,B

net dist nxt n3 2 n2,C

nl 1 nl,A nd 2 nl,A

n4 1 n4 ,A m1 2 nz,C

m2 2 n2,C

m3 3 n2,C

A from C

[] nl II n2 1

n3 1

n4 n2 ml 1

n3 m2 m2 1

Eﬂ II n4 2

D C m3 2

- m3 ml‘ -

net dist nxt net dist nxt
n3 1 n3,D n2 1 n2,C
n4 1 nd4,D n3 1 n3,C
m3 1 m3,D ml 1 ml,C
m2 1 m2,C
n4 2 n3,D
m3 2 n3,D

Distance Vector example — RIP: convergence to optimal paths!

net dist nxt

nl
n2
n3
n4
ml
m2
m3

NWWwEFELMNMDDNDPR

nl, A
nl,B
n4,D
n4 A
n4,D
n4,D
n4,D

net dist nxt

nl
n2
n3
n4
ml
m2
m3

R NDMNNMNMEDND

n4 A
n3,C
n3,D
n4,D
n3,C
n3,C
m3,D

n4

nl

n3

m3

net dist nxt

nl 1 nl,B
n2 1 n2,B
n3 2 n2,C
n4 2 nl, A
ml 2 n2,C
m2 2 n2,C
m3 3 n2,C

net dist nxt

nl
n2
n3
ml
m2
n4
m3

NNRERRRN

n2,B
n2,C
n3,C
ml,C
m2,C
n3,D
n3,D

» Magical
this message-passing
method converges to
shortest paths!

e But, it may need
time to converge

» hence it is used in
small networks

Taxonomy of routing protocols
Path Vector

* Every router knows only:
- Its neighbors +
- explicit paths to all destinations

* computes the “best” path to each destination and populates forwarding table
« Optimization criterion is not cost

* Typically used for inter-domain routing, where it is hard to assign costs
- e.9. BGP computes domain-level paths
- and each router selects best path according to multiple criteria

Taxonomy of routing protocols

src dst RH

srcdst Routing Header AR4 |B payload
A R1/R2R4 B |payload

R2

_ / ... sro o

my— e A B| payload
srcdst RH

AR2| R4B payload

A

Source Routing— “strict”
« Source puts explicit paths into packet headers (path = sequence of all intermediate hops)

* In IPvB, routing header is an extension header—contains intermediate hops and ultimate destination;
destination IP address is next intermediate hop

 Intermediate routers are “dumb”: just remove themselves from header and forward pkts to next hop

* Used in ad-hoc networks, where route computation is done by a control application or by discovery:
e.g.: source discovers path by flooding explorer packets that accumulate the path followed

Taxonomy of routing protocols

srcdst RH
AR2| R5B |payload

A<

srcdst Routing Header

srcdst RH
AR5 |B payload

A R4 | R2 R5 B |payload | .« : R |
A B|payload

Source Routing— “loose”

» Forces some intermediate hops

« Assumes an underlying routing algorithm such as link-state routing, €.g., we know how to go from A to R4
 Allows fine grained control of traffic (traffic engineering, separation of customers)

Segment routing

» Generalizes loose source routing by allowing the routing header to contain processing instructions for the
intermediate hop; e.g., we can ask R4 to apply a security function (screening, traffic separation)

» Used notably in data centers

2. OSPF with a Single Area

Link-state routing algorithm

Every router has:
 an interface database (describing its physical connections, learnt by configuration)
» an adjacency database (describing the neighbors’ states, learnt by a hello protocol)
* a link state database (the topology map, learnt by flooding)

Hello protocol is a ping-style protocol:
« used to discover neighboring routers

« and to detect failures (e.g. if a neighbor does not respond after 3 times, it is
considered “dead”

Link State Database and LSAs

When two routers become neighbors, they first synchronize their link state databases:
Case 1: one router is new, hence copies what the other already knows
Case 2: existing routers connect, hence they merge their databases

Once synchronized, a router sends and accepts link state advertisements (LSAS):
« Every router sends an LSA with its attached networks and neighbor routers
* LSAs are flooded in the entire area and stored in each router’s link state database
« LSAs contains a sequence number and age

- Sequence number prevents loops;
only messages with new sequence numbers are accepted and re-flooded

- Age field is used to periodically resend LSA (e.g. every 30mins or 1h)
and to flush invalid LSAs

Toy example showing interface databases

At D
At E
At B Net Type cost Net Type cost
Net Type cost n6é p2p 10 n6 p2p 10
n3 Eth {stub, 03 n5 p2p 20 n7 p2p 100
n2 pg” 100 |®
n p2p 100 B D
E
'Stub” = n2 n4
non-transit network n5 n7
accessible via a
single router
A C
At A
nl
Net Type cost ALC Net Type cost
ni Eth 10 ni Eth 10

n2 p2p 100 nd p2p 100

Routers flood their LSAs throughout area

router LSA
originated by B
n3, Eth, stub:;
n2, p2p, 100, to A;
n4, p2p, 100, to C;
n3 neé

|®

B D

24
n% N n5 n7

nl

Following the path of L SAs and explaining what information they provide:
1, 2. B sends the LSA shown on the picture to A and C.

* The LSA describes all the networks attached to B and their costs, as well as the
adjacent routers.

o A"stub” network means non transit, i.e. there is no other router on this network. A
stub network can be reached by only a single router; so, all we need to know is
how to reach this router—there is no need to allocate a cost to a stub network.

3. C repeats the LSA (unmodified) to D.

4. C also repeats the LSA to n1. Since n1 is Ethernet, the LSA is multicast to all OSPF

routers on n1.
A receives the LSA but does not repeat the LSA on n1 because it received it on N

from C.
5. Drepeats LSA to E.

After Flooding

After convergence, all routers have received
all LSAs and store them in database.

'vDséi 'natd ! router LSA from B
§ —°°19 ! 13 Eth stub: All have the same database.
router G ¥ no"pop 100, to A;
o ~ n4, p2p, 100, to C n3 né
router LSA from A [®
n2, p2p, 100, to B;

1, eth, 10, DR=C B D

/
C nz/\/ 04 n5 n7
router LSATfom D /
n5, p2p, 20, to C;

ne, p2p, 10, to E; A C
router LSA from E
ne, p2p, 10, to D;

W CNLE nl

L n1,eth,0, A,C

Lin tae Data at all routers

* Ethernet LANs are treated in a special way.

A naive approach to support a LAN with a link-state routing protocol would be to consider that a LAN is equivalent to a full-mesh
of point-to-point links as if each router can directly reach any other router on the LAN. However, this approach has two important
drawbacks :

(a) Each router must exchange HELLOs and link state packets with all the other routers on the LAN. This increases the number
of OSPF packets that are sent and processed by each router.

(b) Remote routers, when looking at the topology distributed by OSPF, consider that there is a full-mesh of links between all the
LAN routers. Such a full-mesh implies a lot of redundancy in case of failure, while in practice the entire LAN may completely fail
(the switch may fail). In case of a failure of the entire LAN, all routers need to detect the failures and flood link state packets
before the LAN is completely removed from the OSPF topology by remote routers.

In order to avoid these issues, the routers elect a designated router per LAN (and a backup designated router).

The designated router “speaks for the switch” and sends a “network LSA” which gives the list of all routers connected to the
LAN.

Typically the designated router of a LAN is the oldest running router in it. E.g. in the previous slide assume that this is C.

* Every router that is connected to an Ethernet LAN floods a “router LSA” indicating its connection to this LAN.

* Router and Network LSAs are just 2 of the available types of LSA. At the time of writing this, there exist 11 types of LSAs. In
addition to router and network LSAs, the other types are used in the multi-area case (see later slide in this lecture) and with
external routes (see BGP lecture). There are also other types, called “opaque” that are used for purposes other than shortest
path routing: opaque LSAs are not used by Dijkstra’s algorithm. They can be used by OSPF extensions that make use of the link-
state database for other purposes (e.g. type 10 LSAs carry information about reservable bandwidth, to be used by QoS routing).

Toy example (cont’d): Router F boots

n'_3 ’Q—Gk
B D
L AN s E
n 4 > synchronization:
n> merge LSDB with
the one of E
A C F
\

nl \/

synchronization: E

copy LSDB from C

» F discovers neighbors with the hello protocol; assume F discovers C first (C is designated router for n1): F and C
establish adjacency (going through a sequence of 8 states, Down to Full). During this process, F and C synchronize

their Link State Data Bases (i.e. F copies its LSDB from C).
* When the state is Full, synchronization is complete and F can now flood a router LSA saying that it is attached to n1,
where C is the designated router; C (as designated router) also sends a network LSA to say that F is now on n1.

* Then a similar process occurs between F and E, but now the synchronization is very fast since F already has a
synchronized link-state database

router LSA from B Afte r FIOOd | ng

n3, Eth, stub;
n2, p2p, 100, to A; .
n4, p2p, 100, to C After convergence, all routers have received

router LSA from A . :
n2. p2p, 100, to B: all new and modified LSAs (in red).

ni, eth, 10, DR=C
router LSA from C

n4, p2p, 100, to B; n3 né

n5, p2p, 20, to D: [®
ni, eth, 10, DR=C

router LSA from F B D

n7. eth, 10: DR=E / o / =
n1, eth, 10, DR=C , AN

router LSA from D ng//\ / nd .
n5, p2p, 20, to C; ! nd n

ne, p2p, 10, to E; /
A

router LSA from E
ne, p2p, 10;

n7, eth, 10, DR=E
network LSA from C
ni, eth,0, A, C, F nl
network LSA from E

n7, eth, 0, E, F

Link State Database at all routers

From

router LSA from B
n3, Eth, stub;

n2, p2p, 100, to A;
n4, p2p, 100, to C
router LSA from A
n2, p2p, 100, to B;
ni, eth, 10, DR=C
router LSA from C
n4, p2p, 100, to B;
n5, p2p, 20, to D;
ni, eth, 10, DR=C
router LSA from F
n7, eth, 10; DR=E
ni, eth, 10, DR=C
router LSA from D
n5, p2p, 20, to C;
né, p2p, 10, to E;
router LSA from E
né, p2p, 10;

n7, eth, 10, DR=E

network LSA from C

ni, eth,0, A,C, F

network LSA from E

n7, eth, 0, E, F

* The link state database defines a directed graph, where:
« every router and every Ethernet network corresponds to a node in the graph

LSDB to Topology graph

N

né

-

F]

[n3)s

* |link costs

* link cost from network node to router node is O, by default (also O in the network LSA)

nl

point2point
link

= costs given in LS database

stub

network

/

10

broadcast
networks

Practical Aspects

OSPF packets are sent directly over IP (OSPF=protocol 89 (0x59)).

Reliable transmission is managed by OSPF with OSPF acknowledgements
and timers (like the stop and go protocol).

OSPFv2 supports IPv4 only
OSPFv3 supports IPv6 and dual-stack networks

OSPF routers are identified by a 32 bit number
OSPF areas are identified by a 32 bit number

3. Shortest paths are found with Dijkstra’s Algorithm

« Each router computes runs Dijkstra independently, based on local LSDB

- link state database (network graph) is same at all routers, but every router performs a
different computation, as it computes shortest paths starting from itself

- synchronization of LSDBs guarantees no persistent loops in the graph

* Each router computes one or several shortest paths to every other node

Dijkstra’s
Shortest

Path
Algorithm

The nodes are 0...N ;

the algorithm
computes shortest
paths from node 0.

c(i,j): cost of link (i, j).
V: set of nodes visited so far.
pred(i): estimated set of predecessors

of node i along a shortest path
(multiple shortest paths are possible).
m(j): estimated distance from node 0 to node j.

m0)=0; m@ii)=o00 Vi, V=0 ;pred(i) = Vi,
for k=0:N do
find 1€ V that minimizes m(i)
if m(i) is finite
add i toV
for all neighbors j &V of i
it m@i)+c(i,j) < m(j)
m(j) = m(i) + c(i, j)
pred(j) = {i}
else if m(i)+c(i,j) = m(j)
m(j) = m(i) + c(i, j)
pred(j) = pred(j)u (i}

At completion, m(i) is the true distance from 0 to i.

Dijkstra’s

mO0)=0; m@ii)=oc0 Vi#0; V=0 ;pred(i) =D Vi,

ShOrteSt for k=0:N do

Path find i€V that minimizes m(i)
. if m(i) is finite

Algorithm / A

for all neighbors j &V of i
it m(i)+c(i,) < m(j)

Builds the m(j) = m@i) + c(i, j)

shortest path pred(j) = {i}

tree from this node

0 all nodes. else if m(z)+c(z,j):m(])
m(j) = m(i) + (i, j)

pred(j) = pred(j) U {i}

Adds one node at a time to the set V of visited nodes, by picking the node that is
closest in the sense of the best estimation of the distance that we have at this time

A few notes:

There are multiple versions of Dijkstra’s algorithm. The presented version finds all shortest paths,
other versions find only one shortest path to every destination. The version presented is very
close to what is really implemented in OSPF (with a difference, next-hop versus pred(), see later).

The worst-case complexity of this version is O(Nz) where N is the number of nodes. More

efficient versions of the algorithm have a smaller complexity, O(NlogN + E) where E is the
number of links.

The algorithm adds nodes to the visited set by increasing distances from node 0. It is greedy in
the sense that at every step it adds one node to the set of visited nodes; the state of this node
(distance from node 0 and set of predecessors) is the final value and will not change in later
steps of the algorithm.

The last 3 lines of the pseudo code are for handling equal cost shortest paths. If one is interested
in finding only one shortest path per destination, these 3 lines are deleted.

Example: Dijkstra at A

Initially
100 100 20 10

Example: Dijkstra at A

After step 1

100 0

) .
A= (0

10

> - (0

(o]

20

@ 10

10

E

10

(F

10

red arrow from A to B means A € pred(B)

step 1:

i=A
V={(A}
m(B)=100
pred(B)={A}
m(C)=10
pred(C)={A}
m(F)=10
pred(F)={A}

Example: Dijkstra at A
After step 2

step 2:

i=C

V={A,C}
m(D)=30
pred(D)={C}

B, F unchanged

Example: Dijkstra at A
After step 3

100 30 20

step 3:

i=F
V={A,C,F}
m(E)=20
pred(E)={F}

At next step, which node will be added to the working set 17

100 30 20

B
D
E
. I don’t know

OO0 WP

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution: Dijkstra at A
After step 4

100 30 20

step 4: (Answer C)
I=E
V={A,C,E,F}

m() unchanged
pred(D)={C,E}

There are two equal-cost
paths to D, both are recorded.

Example: Dijkstra at A
After step 5

100 30 20
@ step 5:
A .
| o 1=D
V={A,C,D,E,F}

Example: Dijkstra at A
After step 6

100 30 20

@ step 6:

A _B
I 10 1=
V={A,B,C,D,E,F}

(E) thisis the final state

10

Path Computation

« pred(i) gives the set of predecessors of node i on all shortest paths from source to i
« Shortest paths can be computed backwards, using pred(), starting from destination

E.g., shortest paths from A

to D: 100
A-C-D
A-F-E-D
to E: T
100
A-F-E

The version of Dijkstra used in OSPF differs from is presented above in that pred() is not used. Instead, the next hop is directly computed during
the main loop of the algorithm. This is faster than computing the paths separately, but makes the algorithm more difficult to understand:

m0)=0; m(ii)=00 Vi#0;V=0 ;nextHopTo(i) = @ Vi,
for k=0:N do
find i € V that minimizes m(i)
if m(i) is finite
add i toV
for all neighbors j€V of i
it m(i)+c(i,j) <m(j)
m(j) = m(i) + c(i, j)
derive nextHopTo(j) from i
else if m(i)+c(i,j) = m())
m(j) = m@) + c(i,)
augment nextHopTo(j) from i
derive nextHopTo(j) from i:
ifi==0
nextHopTo(j) = {j} // j is directly connected to O
else
nextHopTo(j) = nextHopTo(i) // shortest path to j is via i
augment nextHopTo(j) from i:
ifi==0
nextHopTo(j) = {j} // j is directly connected to 0
else
nextHopTo(j) =nextH0pT0(j)UnextHopTo(i) // add shortest path to j via i

From shortest paths to Forwarding Table

Router A keeps in its forwarding table only the next-hop and the distance to
every destination (not the entire path):

At A

Dest Next- cost
hop

100

MmO O W
@
Q
-
o)
o

Bringing back the network nodes

in link state database of every router

point to point
link

In practice, OSPF adds to the graph the network
nodes, which makes the graph larger.

broadcast

network To optimize the computation:

- Stub networks are removed before
applying Dijkstra;

Routing table at A

Dest Next-hop cost - then, Dijkstra is run and the routing table

B On-link 100 contains costs and next hop to edge

C On-link 10 routers such as B;

n1 On-link 10 - then, stub networks such as n3 are added
D F 30 to the forwarding table one by one, using

D C 30 the information on how to reach the routers
n7 F 30 such as B that lead to the stub networks.

E F 20

On-link 10

n3 B 110

4. Equal Cost Multipath Routing table at A

Dest Next-hop cost

« OSPF supports multiple shortest paths B On-link 100
. C On-link 10

* [P allows to have multiple next-hops to the same . ol o
destination in the forwarding table D : 30

- good: it exploits the redundancy of paths '37 E zz

- bad: the number of multiple paths may be large e i -
so, typically we use a limit of multiple paths F On-link 10

n3 B 110

What should router A do when it has several packets to send to destination D ?
A. send them to next-hop F or C randomly with equal probability
B. choose one next-hop and send all packets to this next-hop
C. test the availability of the next-hop before sending

D. something else Go to web.speakup.info
or
E. | don't know download speakup app
Join room

46045

https://web.speakup.info/
https://web.speakup.info/

Solution: Equal Cost Multi-Path often uses
Per-Flow Load Balancing

It is better to use all available paths network (load balancing) = send to all next-hops with equal probability.

However, this may cause packet re-ordering, which is possible but not desirable as it reduces the
performance of TCP (TCP might think that a packet is lost when it is out of sequence). Therefore, an
alternative approach, called per-flow load balancing requires that packets of the same flow to be sent to the
same next-hop. The definition of a flow depends on the system: a flow is typically identified by the src/dest
IP addresses and, in some systems, by next header type and (if they exist), src/dest ports.

Per-flow load balancing is implemented by applying a hash function to the flow identifier m of each packet.
h:mw— h(m) € [0,1].

E.g., assume there are 2 possible next-hops for a packet. If A(m) < 0.5 the packet is sent to the first, else to
the second. The flow identifier (which, as stated above, is typically a 5-tuple of: src/dest |IP addresses, src/
dest ports, and transport-layer protocol) is the same for all packets of the same TCP connection; so these
packets will be sent to the same next-hop.

So, answers A and D |

5. OSPF’s reaction to changes in topology

« Changes to topology occur e.g. when routers or links fail or are rebooted

* The routers detect failures through:
- OSPF’s hello protocol (after several seconds, in general) or

- Bidirectional Forwarding Detection (BFD) protocol: hello protocol at the Ethernet layer
(fast: after 10 ms, independent of OSPF)

- directly because there might be no power on the cable

* |f a router detects a change in the state of a link or a neighboring router:
- it floods a new LSA with new sequence number and new (alive) neighbors
- neighbors propagate new LSA to the entire OSPF area

- all routers update their link-state database, re-compute shortest paths and routing
tables once they receive the new

= This takes some fime, hence may result in transient routing loops and packet drops

Link State Database and routing table at A Link State Database and routing table at B

_ lowweame et EXample e nane et
Al—|B _ Al—|B
B east on-link 10 at to A west on-link 10
C south on-link 10 D south on-link 10
C D D east B 20 C D C west A 20
D south C 20 C south D 20

A—><1B

Link State Database and routing table at C Link State Database and routing table at D

- . Dst i/f Nxthp cst Lo T Dst if Nxthp cst
A|l—|B A|l—|B
‘I‘ A north on-link 10 B north on-link 10
D east on-link 10 C west on-link 10
_ —I| D
< D B north A 20 c A north B 20
B east D 20 A west C 20

t,: Link A-B crashes

Link State Database and routing table at A Link State Database and routing table at B

. _ Dst if Nxthp cst Example _ _ Dst if Nxthp cst
A B Al—I|B
B south C 30 a‘t tl A west on-link 10
C south on-link 10 D south on-link 10
Cl—|b D east B 29 Cl—|Pb C west A 20
D south C 20 A B C south D 20
LSA from A

A to C, cost=10

Link State Database and routing table at C Link State Database and routing table at D

- . Dst i/f Nxthp cst T] Dst it Nxthp cst
Al—|B Al—I|B

—l_ A north on-link 10 B north on-link 10

D east on-link 10 C west on-link 10

< D B north A 20 c D A north B 20

B east D 20 A west C 20

t,: A detects failure first; declares B as invalid neighbor, declares link A-B as invalid, updates its link state database, sends a
new LSA to C, with origin A and recomputes its routing table.

A routing loop exists between A and C for destination B.

Traffic sent by B to A dies on the link, until B detects the failure. So, half of the traffic from D to A is also lost.

Link State Database and routing table at A Link State Database and routing table at B

_ lowweame et EXample e nane et
A B A|l—| B
B south C 30 at Z'2 A west on-link 10
C south on-link 10 D south on-link 10
Cl—|P D east B 29 c D C west A 20
D south C 20 A B C south D 20
Link State Database and routing table at C Link State Database and routing table at D
o . Dst i/f Nxthp cst Lo T Dst if Nxthp cst
A B . i —— LSA from A Al—|B
nort on-lin B north on-link 10
| Ato C, cost=10
D east on-link 10 C west on-link 10
C|—|D C|—|D
B neorth A 20 A north B 20
B east D 20 A west C 20

t,: C receives LSA from A, updates its link state database, forwards this LSA to D and recomputes routing table.
There is no routing loop but traffic sent by B to A dies on the link and half of the traffic from D to A is lost.

Link State Database and routing table at A Link State Database and routing table at B

e ame et Example marw e e
A B A B
B south C 30 at { 3 A south D 30
C south on-link 10 —l_ D south on-link 10
Cl—|P D east B 29 c D C west A 29
D south C 20 A B C south D 20
LSA from B LSA from A
Bto D, cost=10 Ato C, cost=10
Link State Database and routing table at C Link State Database and routing table at D
— — Dst i’f Nxthp cst]] Dst i/f Nxt hp cst
A B A B
A north on-link 10 B north on-link 10
D east on-link 10 C west on-link 10
Cl—I|D Cl—|D
B north A 20 A poerh B 20
B east D 20 A west C 20

t;: D receives LSA from C, updates its link state database, forwards this LSA to B and recomputes routing table. At about
the same time, B now also detects failure; declares A as invalid neighbor, declares link A-B as invalid, updates its link
state database, sends a new LSA to D, with origin B and recomputes routing table. All link state databases now have the
same contents and new routes are in place.

When a router crashes, how do other
distant routers in area detect the crash ?

Go to web.speakup.info or
download speakup app

Join room
46045

>

The immediate neighbors detect loss of adjacency and flood new
LSAs with the updated list of adjacent/neighbor routers

By the hello protocol
By timeout of LSAs stored in their link-state database

By absence of BFD (Bidirectional Forwarding Detection) messages
E. | don't know

O O W

https://web.speakup.info/
https://web.speakup.info/

Solution

Answer A, in principle.

Answer C is some rare cases possible, but normally neighbors
detect the failure well before the LSA ages out (1 hour by default)

With the hello protocol and BFD, only immediate neighbors detect
the loss of the crashed router.

6. Security of OSPF

Attacks against routing protocols
(1) send invalid routing information —> disrupt network operation
(2) send forged routing information —> change network paths
(3) denial of service attacks

OSPF security protects against (1) and (2) using authentication

OSPFv2 levels of authentication

type O: none

type 1: password sent in cleartext in all packets

type 2: authentication using MD5 (obsolete) or HMAC-SHA
type 3: similar to type 2 with some improvements (RFC 7474)

OSPFv3 uses IPSEC authentication
similar to type 2 and 3

OSPF Type 3 Authentication uses MAC tags with shared keys

OSPF message
(e.g. hello, update, ack) Secret key
(shared among all OSPF

routers on same link)

IP source address

Crypto Sequence
Number

—

¢ Cryptographic Hash Algo (e.g. SHA 256) §

digest (e.g. 256 bits) = MAC tag

» Digest is appended to OSPF message, and is used as a message authentication code (MAC tag)
» Secret key is shared and has a short lifetime:
- Neighbor routers have the same pre-installed keys (installation via an out-of-band mechanism)
- A key index in the authentication header of an OSPF message says which key is used
» Crypto Sequence Number is used to avoid replay attacks

- The crypto seq number is incremented for every OSPF packet. It contains a permanent “boot count” saved on
disk to avoid collision of numbers even after reboot, and it is large enough to never wrap around (in 101 years).

- Itis also appended to OSPF packet in cleartext (so that neighbor router can also compute the hash).

7. OSPF with Multiple Areas

Why? LSA flooding does not scale in very large networks

* OSPF uses multiple areas and a hierarchy of two routing levels
- a backbone area (area 0)
- several non backbone areas

 All inter-area traffic goes through backbone area O

area 0

Principles of OSPF Multi-Area Operation

1. Inside one area, link state is used. One Link State Database per area
(replicated in all routers of area)
2. Area border routers belong to both areas and have 2 link state databases (LSDBs):
e.g., X4 belongs to area 2 and 0—it has one LSDB for area 2 and one for area O

3. A border router injects aggregated distance (cost) information learnt from one area
into the other area, by using summary LSAs

area 0

Toy Example
Step

area 0

Al

10

10

area 1

A2

1

~—~ n2

area 2 link
state database

All routers in area 2 flood the LSAs originated by B1 and B2 and know of n1 and n2, directly
attached to B1 (resp. B2). This is the normal link state operation.

All routers in area 2 have the same link state database, shown above.

All routers in area 2, including X4 and X6 compute their distances to n1 and n2 (using Dijkstra).
X4: distance to n1 =10, to n2 =16
X6: distance ton1 =16, to n2 =10

area 0

Toy Example
Step2

10 area 1

10
- —

a2l

area 0 link state database

X4 and X6 each flood into area 0 a summary LSA indicating their distances to n1 and n2.
All routers in area O now have the same link state database, shown above.

All routers in area O, including X3 and X5 compute their distances to networks outside the area (such
as n1) using the Bellman-Ford formula. E.g.:
d(self,nl) = min {d(self, BR)+ d(BR,nl)},

BR € Area0
where BR is a border router.

area 0

Toy Example

Step2

(cont’d) m—10 ™
10 area l
T —

area 0 link state database

Router X3 computes:
d(X3, n1) = min{ d(X3,X4) + d(X4,n1),d(X3,X6) + d(X6,n1) | = min(23,28) = 23

d(X3,n2) = min{ d(X3,X4) + d(X4,n2),d(X3,X6) + d(X6,n2) } = min(29, 22) =22

The process can be used to compute not only the distance, but also the next hop:
- e.g. ton1, the min is for BR=X4, therefore the shortest path to n1 is via X4 and the next hop to n1 is the next hop to X4.
X3 updates its routing table and adds entries to n1 (and n2).

area O

Toy Example
Step 3
a1l 10
10 area l
area 1 link d 10
d;i§z§:e . AZ:::::::::;

X3 and X5 each flood into Area 1 a summary LSA indicating their distances to n1 and n2.
All routers in area 1 now have the same link state database, shown above.

All routers in area 1 compute their distances to networks outside the area (such as n1) using a similar
Bellman-Ford formula:

d(self,nl) = min d(self, BR) + d(BR, nl
() BReAreal{ () ()}

where BR is a border router. E.g. A1 finds that the distance to n1 is 33 and the shortest path is via X3.

area 0

Toy Example
Step 3

area 1 link
state
database

Go to web.speakup.info or
download speakup app

Join room
46045

d(self, nl) = min d(self, BR) + d(BR, nl
() BReAreal{ () ()}

When applying the Bellman-Ford formula to compute d(self, n1), how does a router such
as A1 know the values of d(self, BR) and d(BR, nl) ?

d(self, BR) from its routing table after applying Dijkstra and d(BR, nl) from the summary LSA received
d(BR, nl) from its routing table after applying Dijkstra and d(self, BR) from the summary LSA received
both from its routing table after applying Dijkstra

both from the summary LSA

| don’t know

mo o w >

https://web.speakup.info/
https://web.speakup.info/

Solution

All routers in area 1 have only
their routing tables from step 1 +
this information —>

The border routers are in area 1,
so A1 knows d(self, BR) from its
routing table (after applying
Dijkstra).

d(BR, n1) is known from a
summary-LSA, which is in the
link-state database of A1 (and of
all routers in area 1).

Answer A.

How many link state databases does router X3 have ?

area 0

Go to web.speakup.info or
download speakup app

Join room
46045

don’t know

https://web.speakup.info/
https://web.speakup.info/

Solution

Answer B.

X3 belongs to area 0 and
to area 1. It has one
link-state database

for each.

8. Other Uses of Link State Routing

LSAs can offer a “complete view” of the area at every node (e.g. topology with links, costs,
latencies, attached subnets, etc.). This can be used to provide advanced functions, e.q.:

source routing:

an edge router computes the entire path, not just the next-hop,
SO it can write an explicit path in an extension packet header

- Avoids transient loops / supports fast re-route after failure
- Used in deterministic networks (industrial applications)

multi-class routing:

« computes different routes for different types of services (e.g. voice, video)
based on different objectives (e.g. cost and latencies)

e uses the “differentiated-services” field in IP header to forward traffic

LS-bridging:
connects different layer-2 VLANs over IP instead of trunk cables

Example: LS bridging

Why? Say you want to bridge VLANs across a campus without direct cables.
One solution: use routers that also implement a layer-2 switch,

and tunnel (encapsulate) MAC packets in IP!

Problem: automatic creation of tunnels.

Can you imagine a solution using Link State Routing in R1, R2, ... 7

A. Routers R1, R2 ... discover
which VLAN is active on any of their
ports and put this information
in the link state database

B. Routers R1, R2 ... overhear all MAC
source addresses and put the
information in the link state database

C. Both of these solutions seem bad to me
D. | don’t know

Solution

B does not help since MAC addresses don'’t say in
which VLAN the machine is. Recall that even with VLAN MAC in IP tunnels
trunk ports we needed the VLAN tag (= information
about which VLAN a machine belongs to).

A is a feasible solution: routers can create VLAN tunnels
(MAC in IP]); and they can use the known topology and
an algorithm to create a spanning tree that spans all
routers that are attached to the same VLAN. They can
use also IP multicast (and BIER) to avoid unnecessary
packet replication.

* This is what Cisco’s TRILL does (with IS-IS instead
of OSPF).
* |EEE’s SPB is similar (with MAC in MAC

encapsulation); supports explicit routes with
802.1av for video networking in studios.

9. Routing in Software Defined Networks (SDNSs)

Why it exists? In principle, an IP router uses the destination address and longest prefix
match to decide where to send a packet.

Some networks want more control; e.g. handle mission-critical traffic with high priority;
ban non-HTTP traffic; send suspicious/DoS traffic to a scrubber for inspection (see figure)

From [S. Vissicchio et al., scrubber

“Central Control Over Distributed | router
Routing”, ACM Sigcomm 2015] souyrce

http:/fibbing.net

A sudden traffic surge is noticed

from A, D and E to F (red). D
The network operator would like
to divert all red traffic to scrubber fIOW D;

for inspection. Blue traffic should

not be modified.))
S2 Sa S3 destination

http://fibbing.net/

More control... how?

Deep packet inspection (DPI):

routers look not only at IP headers, but also ports and payload
—> classity traffic according to more fields

Per-flow forwarding: when a packet is to be forwarded, the router:
* looks for a match in a flow table, which has per-flow forwarding rules with priorities
* if one or several matches exist, it follows the rule with highest priority
* if no rule matches, it goes to the IP forwarding table and does longest prefix match

Same ideas can be used in switches (per flow tables then complement the MAC
forwarding table)

At R1: Which way will follow the packets from Lisa and Homer to

Enterprise server ?

Lisa:1, Homer: 1
Lisa:1, Homer: 2
Lisa:2, Homer: 1
Lisa:2, Homer: 2
None of above

| don’t know

nmmoow»

Go to web.speakup.info or
download speakup app

Join room
46045

Flow table at R1
Flow spec action prio
input=0; dest=B.D* output 2 50
dest=B.D.” drop 10
IP Forwarding table at R1 IP Forwarding table at R2
A.H1 * 1 *)
é-* 0 BD* 2
—3 B* 3
0 2 1 3
router router
Homer R1 R2 _
Enterprise
C.H1 >
3 \ \ server
3 B.D.H2
—= .
—\
—=
1 \ router | /2
R4
fo output
* 1

IP Forwarding table at R4 |B.* 2

https://web.speakup.info/
https://web.speakup.info/

Solution

Answer E

Packets from Lisa to enterprise server match the two flow rules; the

first one has higher priority and is applied. Packets are forwarded to port 2. Since
there is a match in flow table, the IP forwarding table is not used.

Packets from Homer to enterprise server match the second flow rule and are dropped
by R1.

The combined effect of the flow table and the IP forwarding table at R1 is such that
1. all traffic to B.D.* is killed except if arriving on input O

2. traffic to B.D.* that is not killed is forwarded to output 2

3. traffic to B.* and not B.D.* is forwarded to output 1

Software Defined Networking in practice

What ?

A central controller application
manages the flow tables in routers Central

and/or switches Listener Listener Listener controller
How ?

 The central controller decides rules A\
and communicates them to local Router/ Router/ — swllltt;rl
controllers on routers/switches switch switch B3

o " R1 R2/ o

* | ocal controllers, called “listeners

write the per-flow tables on routers

or switches
» Protocol between local controller = /
and central controller is e.g. Listeneré\ OUT
. switch
OpenFlow, over TCP connections —RT |
Where ?

Mainly in large data centers, also for
5G cellular.

Do we need OSPF (or another routing protocol)

if we have SDN ?

A.

B.

No because flow tables can
replace IP forwarding tables

Yes because flow tables
cannot replace IP forwarding
tables

. Yes because the central

controller needs a way to
communicate with local
controllers

| don’t know

Listener

uter)

Central
controller

switch

—R3_

Listener Listener
Router/ Router/
switch switch

R1 RZ/
Listener Router/
switch

Solution

Answer C

The central controller communicates with the local controllers in routers
over TCP connections. This needs that IP forwarding tables are functional,
which (in principle) requires OSPF or some other routing protocol.

But this common-sense observation may not always hold. Remember the
Facebook outage of Oct 4, 2021, where it seems that routers were
disconnected remotely and it was impossible to bring them back in.

Conclusion

Routing protocols automatically build connectivity and repair failures.
With link state routing (like OSPF):
- All routers compute their own link state database, replicated in all routers

 All routers compute their routing tables using Dijkstra and the link state
database

- Convergence after failure is fast (if detection is fast)

- Nonstandard cost definitions are possible; can be used for routing specific
flows in different ways

« Large domains must be split into areas

More control can be obtained by an outside application (SDN) at the expense
of losing the robustness of distributed protocols. SDN is used today primarily
with switches, but also with routers in some networks.

