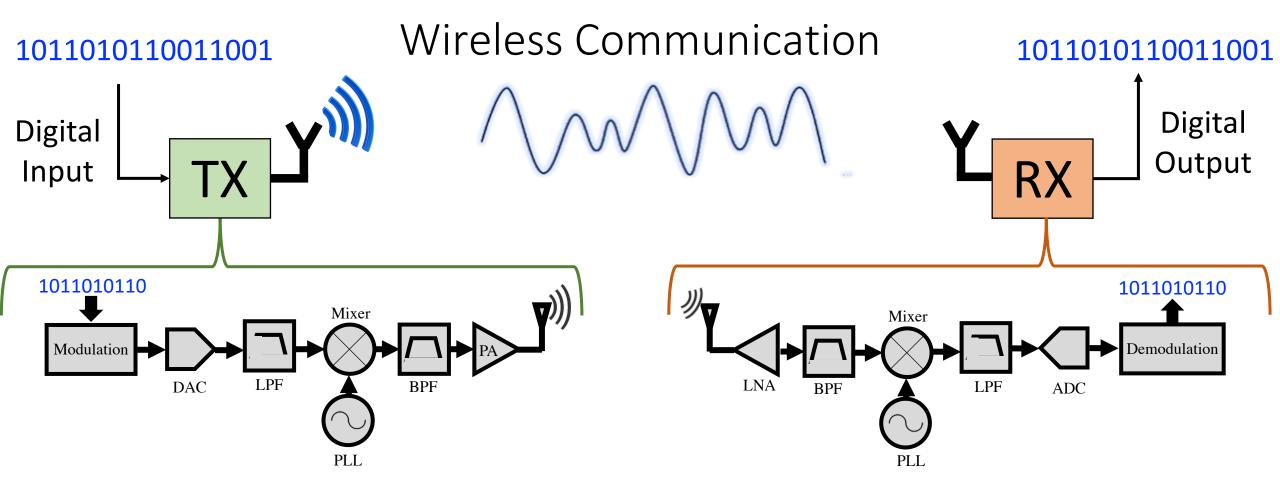
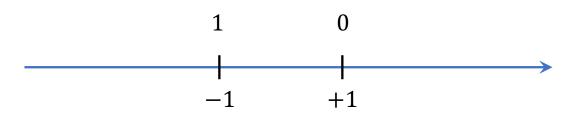
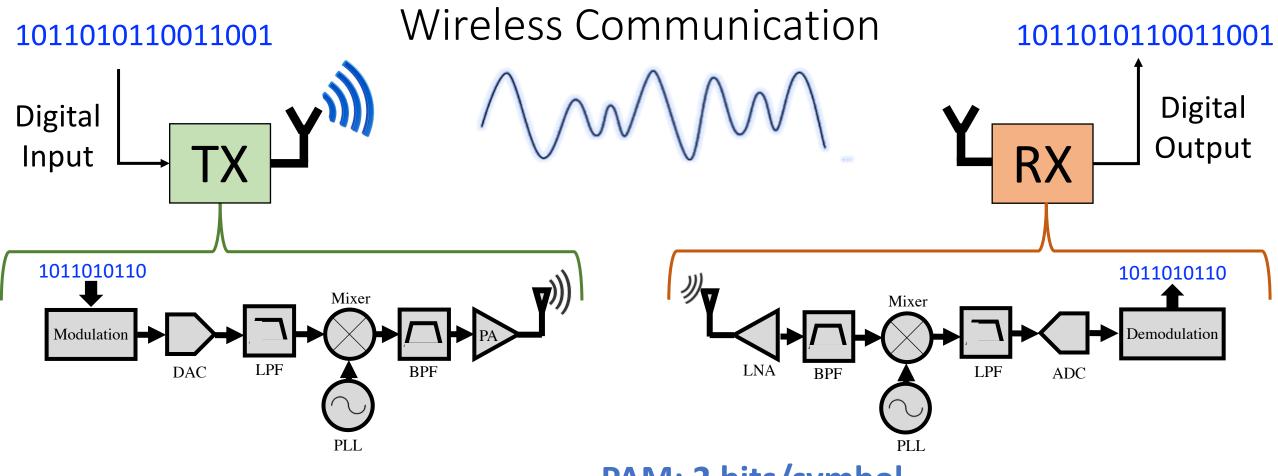

COM-405: Mobile Networks

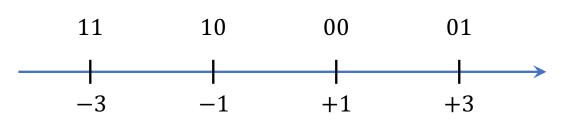

Lecture 2.0: Wireless Channel Haitham Hassanieh

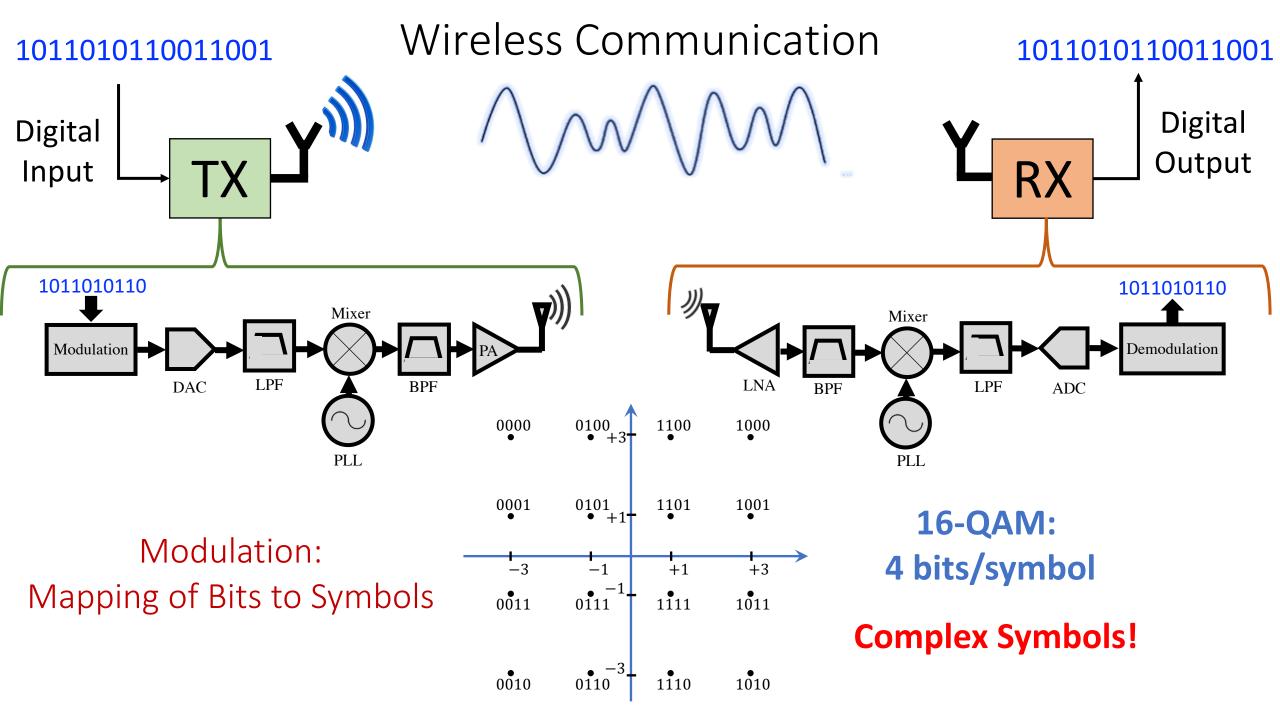


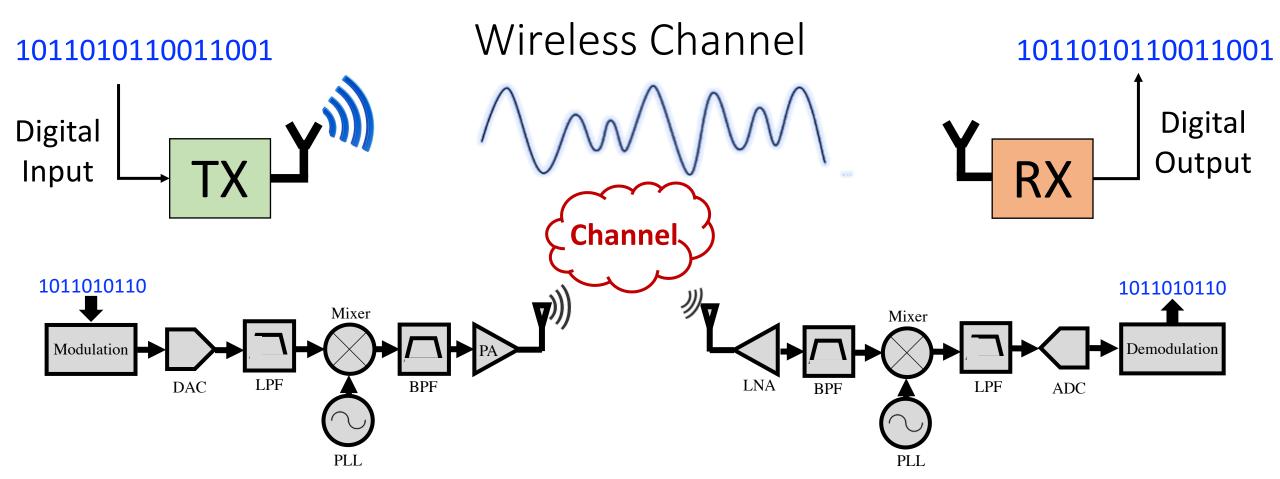


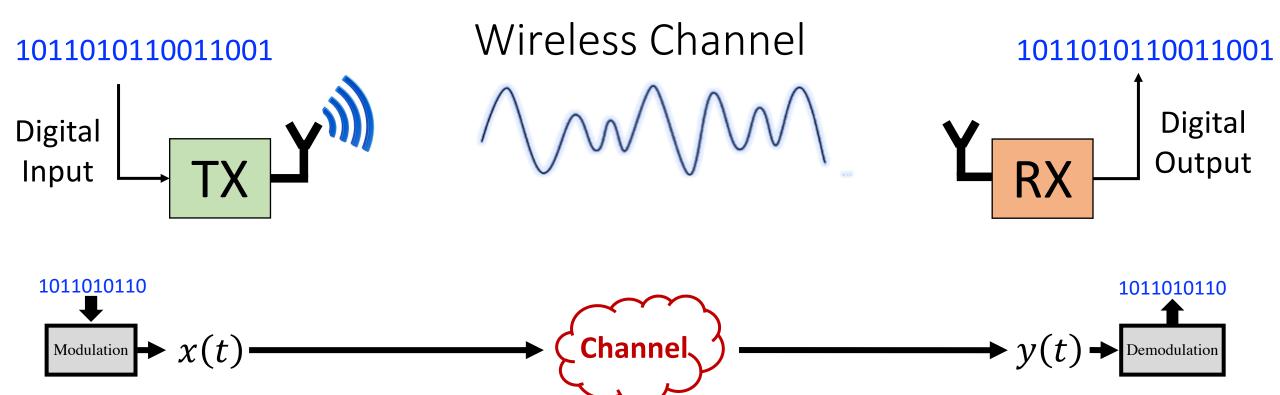
Modulation:

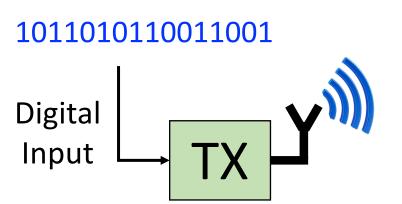
Mapping of Bits to Symbols

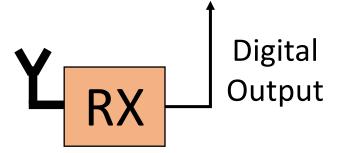

BPSK: 1 bits/symbol






PAM: 2 bits/symbol


Modulation: Mapping of Bits to Symbols



Wireless Channel

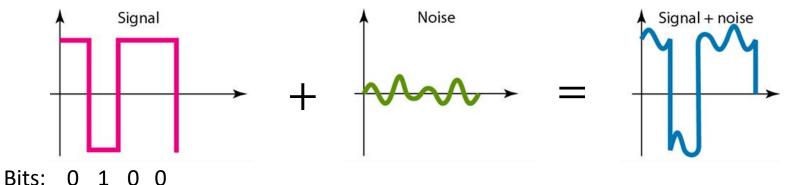
1011010110011001

$$y(t) = x(t) + v(t)$$

Channel adds noise (AWGN)!

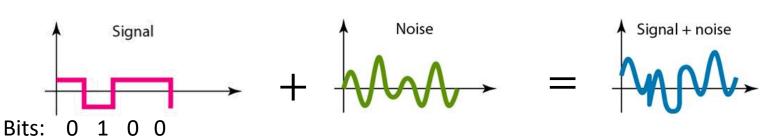
$$v(t) \sim N(0, \sigma)$$

Noise


Circuit Components and wireless channel add noise to the wireless signal.

Transmit Receive
$$x(t) \implies y(t) = x(t) + v(t)$$

v(t) is Additive White Gaussian Noise (AWGN)


Low noise is good

→ Can decode Bits correctly

High noise is bad

→ Cannot decode Bits correctly

Noise

Circuit Components and wireless channel add noise to the wireless signal.

Transmit Receive
$$x(t) \implies y(t) = x(t) + v(t)$$

v(t) is Additive White Gaussian Noise (AWGN)

Low noise is good → Can decode Bits correctly

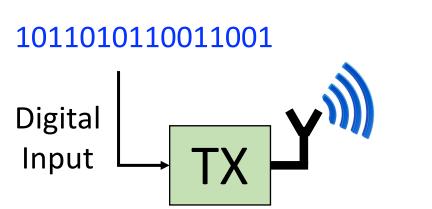
High noise is bad → Cannot decode Bits correctly

Signal-to-Noise Ratio (SNR)

$$SNR = \frac{Signal\ Power}{Noise\ Power} = \frac{E[|x(t)|^2]}{E[|v(t)|^2]} = \frac{E_s}{N_0}$$

Noise

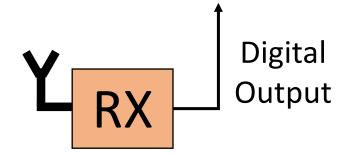
Circuit Components and wireless channel add noise to the wireless signal.


Transmit Receive
$$x(t) \Rightarrow y(t) = x(t) + v(t)$$

v(t) is Additive White Gaussian Noise (AWGN)

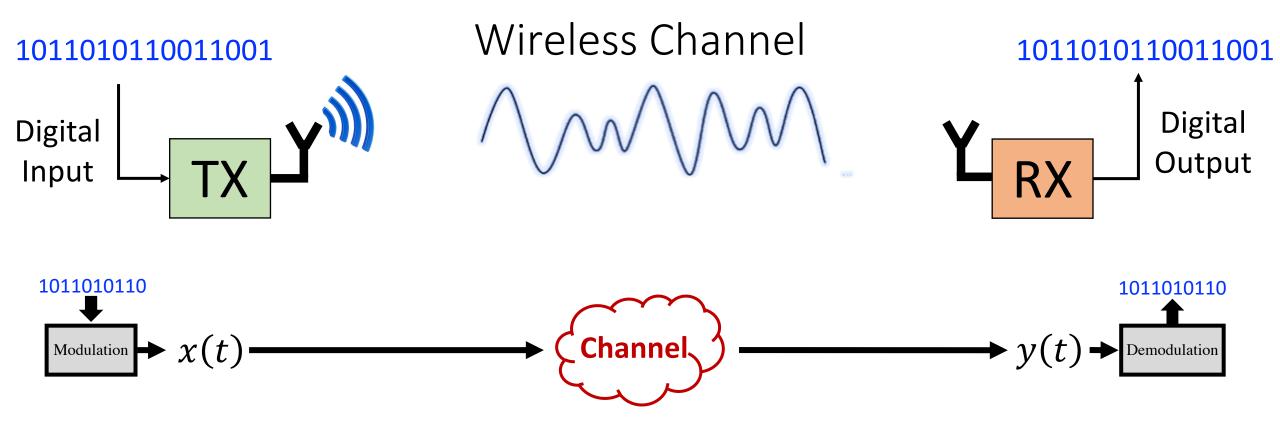
Signal-to-Noise Ratio (SNR)

$$SNR = \frac{Signal\ Power}{Noise\ Power} = \frac{E[|x(t)|^2]}{E[|v(t)|^2]} = \frac{E_s}{N_0}$$


We typically measure and report SNR in dB scale: $SNR_{dB} = 10 \log_{10} SNR$ e.g., if SNR = 100, then $SNR_{dB} = 20 \ dB$, if SNR = 2, then $SNR_{dB} \approx 3 \ dB$.

Wireless Channel

1011010110011001



$$y(t) = x(t - \tau) + v(t)$$

Channel delays the signal!

$$\tau = \frac{d}{c}$$

$$y(t) = \mathbf{h} x(t - \tau) + v(t)$$

Channel attenuates the signal (Pathloss)

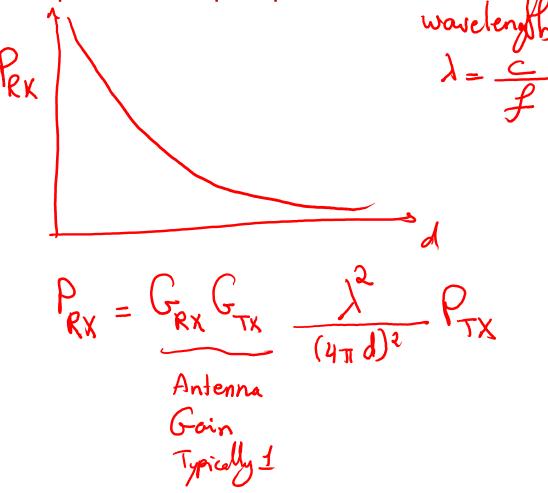
Given a distance d and frequency of operation f, the received signal power is proportional to:

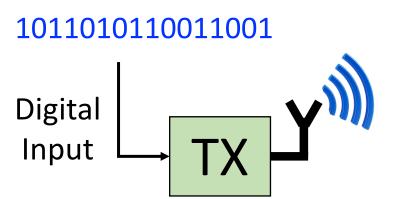
$$A. \propto d$$
, $\propto f$

B.
$$\propto 1/d$$
, $\propto 1/f$

$$C. \propto 1/d^2, \propto 1/f^2$$

$$D. \propto 1/d^2, \propto f^2$$

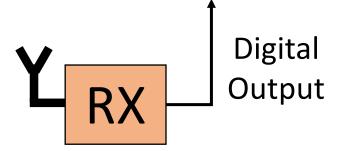

Given a distance d and frequency of operation f, the received signal power is proportional to:

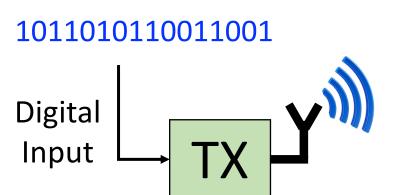

 $A \propto d \propto f$

B.
$$\propto 1/d$$
, $\propto 1/f$

$$C. \propto 1/d^2, \propto 1/f^2$$

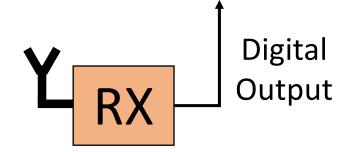
D.
$$\propto 1/d^2$$
, $\propto f^2$





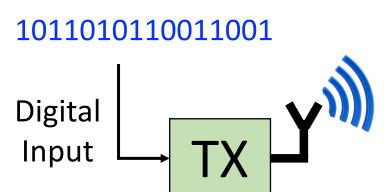
$$y(t) = \mathbf{h} x(t - \tau) + v(t)$$

Channel attenuates the signal (Pathloss)


$$P_{RX} = G_{TX}G_{RX}\frac{\lambda^2}{(4\pi d)^2}P_{TX} \quad \Longrightarrow \quad |h| \propto \frac{\lambda}{d}$$

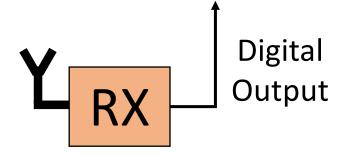
Wireless Channel

1011010110011001



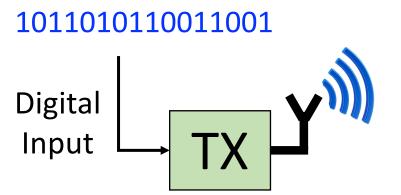
$$y(t) = \mathbf{h} x(t - \tau) + v(t)$$

Channel rotates the signal (Adds Phase)

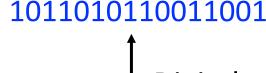

$$h \propto \frac{\lambda}{d} e^{j\phi} \rightarrow \phi = 2\pi \frac{d}{\lambda}$$

Wireless Channel

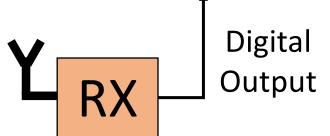
1011010110011001

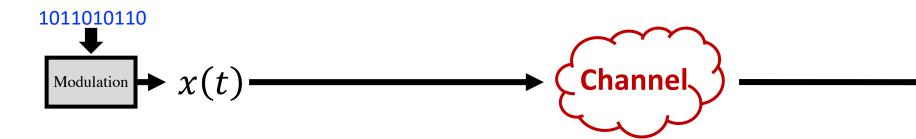


$$y(t) = h x(t - \tau) + v(t)$$


$$x(t) \times e^{-j2\pi f_C t} \Rightarrow |h| x(t-\tau) e^{-j2\pi f_C (t-\tau)} \Rightarrow \times e^{j2\pi f_C t} \Rightarrow |h| x(t-\tau) e^{j2\pi f_C \tau}$$

$$h \propto \frac{\lambda}{d} e^{j\phi} \rightarrow \phi = 2\pi f_c \tau = 2\pi \frac{c}{\lambda} \frac{d}{c} = 2\pi \frac{d}{\lambda} \rightarrow h \propto \frac{\lambda}{d} e^{j2\pi d/\lambda}$$



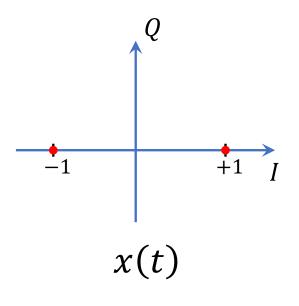


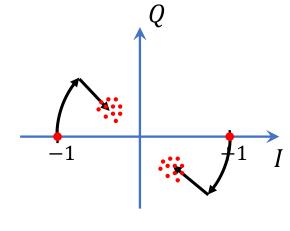
1011010110

$$y(t) = \mathbf{h} x(t - \tau) + v(t)$$

Channel:

- Adds Noise
- Delays the Signal
- Attenuates the Signal
- Rotates the Phase of the Signal

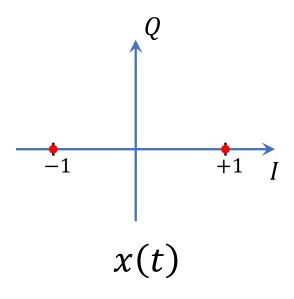

$$h \propto \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

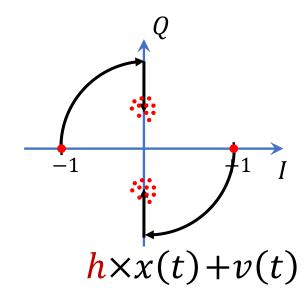

The Channel

Consider BPSK Modulation.

$$0 \rightarrow -1$$

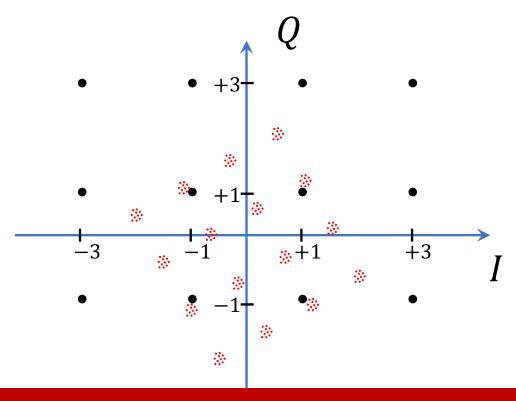
$$1 \rightarrow +1$$


$$h \times x(t) + v(t)$$


The Channel

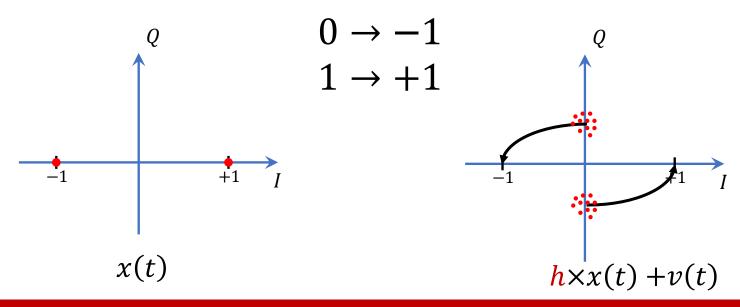
Consider BPSK Modulation.

$$0 \rightarrow -1$$


$$1 \rightarrow +1$$

The Channel

Consider QAM Modulation


Demodulating correctly requires COHERENCE! i.e., Need to estimate & correct for the channel h

Channel Estimation & Correction

Channel Estimation & Correction

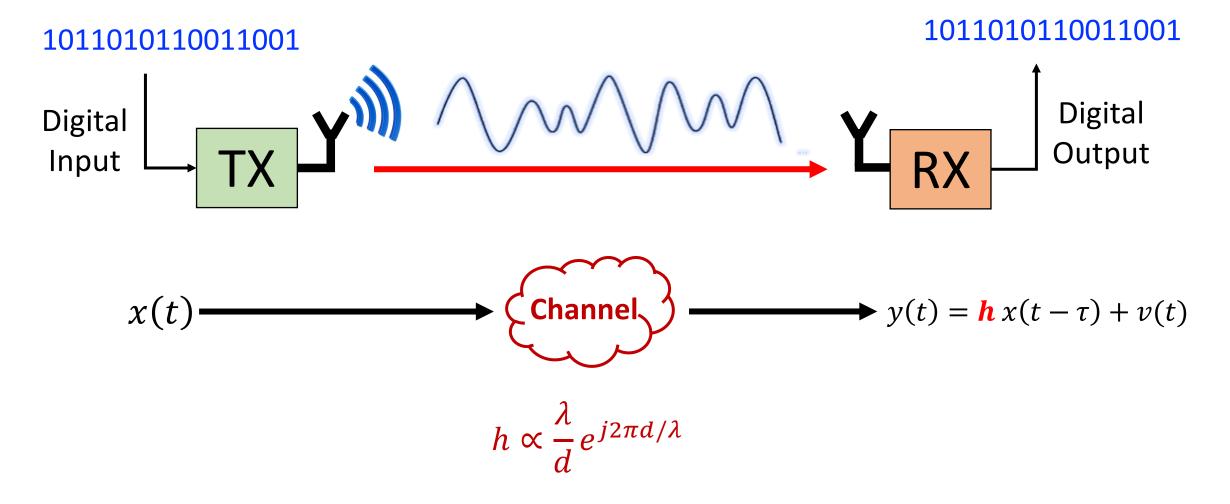
Consider BPSK Modulation.

Send Training Sequence (Preamble Bits): Known Bits

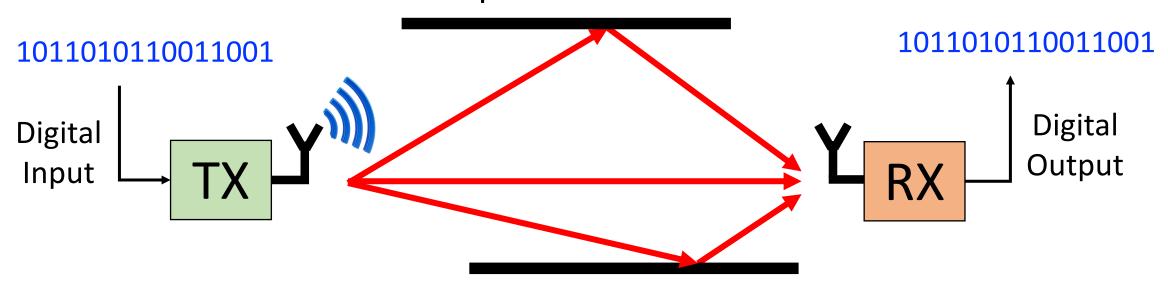
$$x(0) = 1 \longrightarrow y(0) = h + v(0)$$

$$x(1) = 1 \longrightarrow y(1) = h + v(1)$$

$$x(2) = -1 \longrightarrow y(2) = -h + v(2)$$


$$\vdots$$

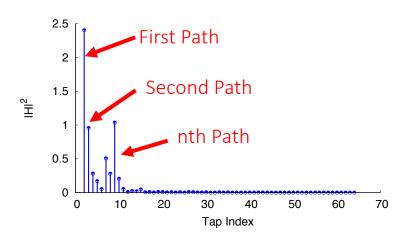
$$C$$


Estimate channel:
$$\tilde{h} = \frac{1}{K} \sum_{k=1}^{\infty} \frac{y(k)}{x(k)}$$

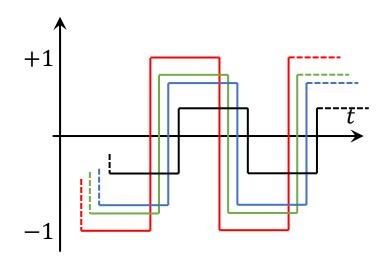
Correct channel:
$$\tilde{x}(t) = \frac{y(t)}{\tilde{h}}$$

Single Path Channel

Assumes single path!


Multipath Propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

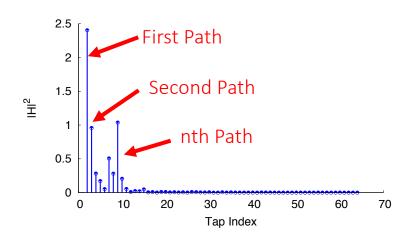
$$y(t) = \alpha_1 e^{\phi_1} x(t - \tau_1) + \alpha_2 e^{\phi_2} x(t - \tau_2) + \alpha_3 e^{\phi_3} x(t - \tau_3) \cdots$$


$$y(t) = \sum_{k} \alpha_k e^{\phi_k} x(t - \tau_k) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

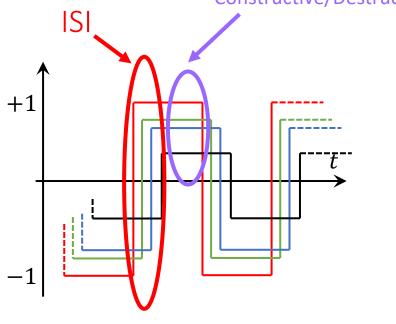
h(t) is channel impulse response.

$$y(t) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Multi-tap Channel


ISI: Inter-Symbol-Interference

Symbols arriving along late paths interfere with following symbols.


h(t) is channel impulse response.

Paths sum with different phases:
Constructive/Destructive

$$y(t) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Multi-tap Channel

ISI: Inter-Symbol-Interference

Symbols arriving along late paths interfere with following symbols.

Channel Fading

Symbols arriving along different paths sum up destructively

h(t) is channel impulse response.

$$y(t) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Channel Fading: Symbols arriving along different paths sum up destructively

Example 2 paths with distance d_1 and d_2

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

$$= \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} \left(1 + \frac{d_1}{d_2} e^{j2\pi (d_2 - d_1)/\lambda} \right) \quad \frac{d_1}{d_2} \approx 1$$

if
$$\frac{d_2 - d_1}{\lambda} \approx \frac{1}{2} \rightarrow h = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} (1 + e^{j\pi}) = 0$$
 Destructive Interference!

Channel Fading: Symbols arriving along different paths sum up destructively

Suppose the 2 paths have distance $d_1 = 1m$, $d_2 = 1.06m$:

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

Compute h if the signal is transmitted at 2.5 GHz and 5 GHz. How much will power of the receiver signal differ if it is transmitted at 5 GHz instead of 2.5 GHz?

$$A. - 6 dB$$

Channel Fading: Symbols arriving along different paths sum up destructively

Suppose the 2 paths have distance $d_1 = 1m$, $d_2 = 1.06m$:

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

Compute h if the signal is transmitted at 2.5 GHz and 5 GHz. How much will power of the receiver signal differ if it is transmitted at 5 GHz instead of 2.5 GHz?

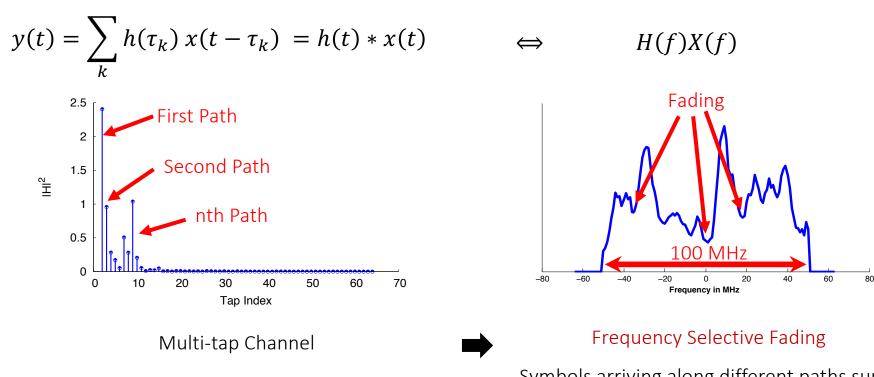
$$A. - 6 dB$$

Channel Fading: Symbols arriving along different paths sum up destructively

Suppose the 2 paths have distance $d_1 = 1m$, $d_2 = 1.06m$:

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

Compute h if the signal is transmitted at 2.5 GHz and 5 GHz. How much will power of the receiver signal differ if it is transmitted at 5 GHz instead of 2.5 GHz?


$$@f_1 = 2.5 GHz \ (\lambda = 12 \ cm): |h| = |0.12 \ e^{j\frac{2\pi}{3}} + 0.113 \ e^{j\frac{5\pi}{3}}| \approx 0.0068$$

$$@f_2 = 5 GHz \ (\lambda = 6 \ cm): |h| = |0.06 \ e^{j\frac{4\pi}{3}} + 0.056 \ e^{j\frac{4\pi}{3}}| \approx 0.116$$
(24.6dB)

Frequency Selective Fading

Multi-tap Channel

h(t) is channel impulse response.

ISI: Inter-Symbol-Interference

Symbols arriving along late paths interfere with following symbols.

Symbols arriving along different paths sum up destructively

Problematic in Wideband Channel!

Narrowband Channel

Narrowband Channel

$$y(t) = \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t) + h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x(t) + h(t) * x(t)$$

$$= \sum_{k} h(\tau_{k}) x$$

Narrowband Channel

$$y(t) = \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

$$= \sum_{k} h(\tau_{k}) x(t - \tau_{k}) = h(t) * x(t) \iff H(f)X(f)$$

h(t) is channel impulse response.

$$y(t) = \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t) = h(t) \Rightarrow h(t) \Rightarrow$$

h(t) is channel impulse response.

$$y(t) = \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$= \sum_{k} h(\tau_k) \ x(t) = h(t) \Rightarrow h(t) \Rightarrow$$

h(t) is channel impulse response.

$$y(t) = \sum_{k} h(\tau_k) \ x(t - \tau_k) = h(t) * x(t) \qquad \Leftrightarrow \qquad H(f)X(f)$$

$$\stackrel{2.5}{=} 1$$

$$0.5$$

$$0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70$$

$$\text{Tap Index}$$

$$\text{Symbol time: } T \propto \frac{1}{\text{Bandwidth}} \gg \tau_k$$
Flat Channel

$$y(t) = \sum_{k} h(\tau_k) x(t - \tau_k) \approx \sum_{k} h(\tau_k) x(t) = \left(\sum_{k} h(\tau_k)\right) x(t) = hx(t)$$

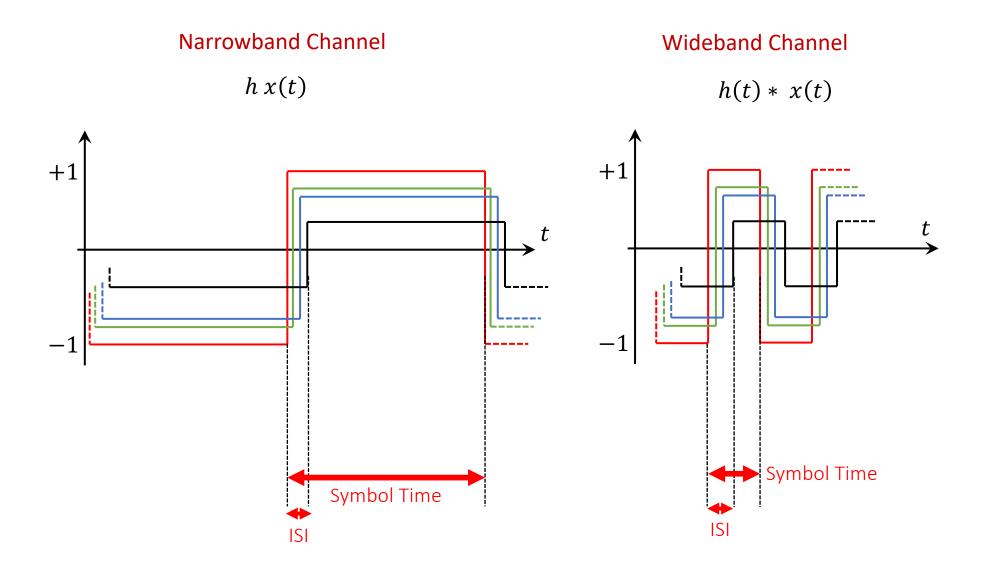
Narrowband Channel is Approximated by a Single Tap Channel

h(t) is channel impulse response.

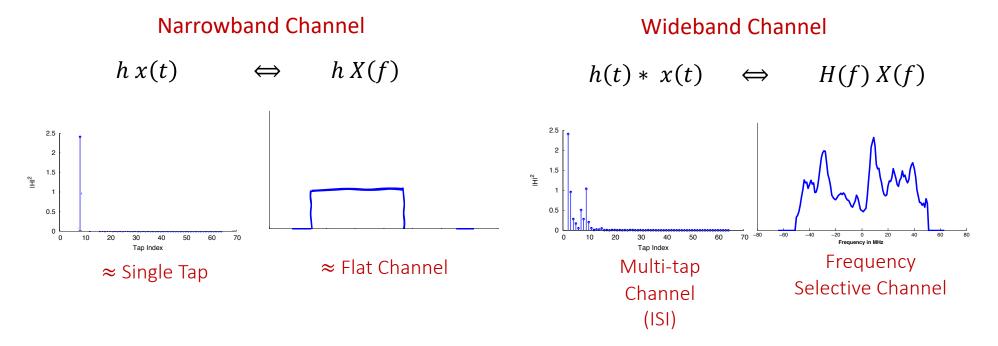
$$y(t) = \sum_{k} h(\tau_{k}) x(t) = h x(t) \qquad \Leftrightarrow \qquad h X(f)$$

$$\stackrel{2.5}{=} 1$$

$$0.5$$

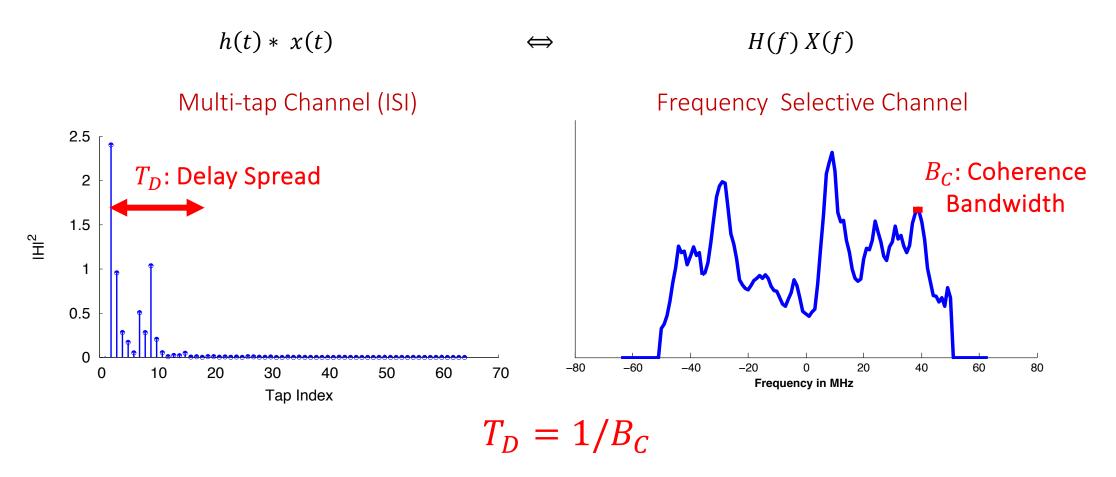

$$0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70$$

$$\text{Tap Index} \qquad \text{Narrowband}$$
Symbol time: $T \propto \frac{1}{\text{Bandwidth}} \gg \tau_{k}$
Flat Channel


$$y(t) = \sum_{k} h(\tau_k) x(t - \tau_k) \approx \sum_{k} h(\tau_k) x(t) = \left(\sum_{k} h(\tau_k)\right) x(t) = hx(t)$$

Narrowband Channel is Approximated by a Single Tap Channel

Narrowband vs. Wideband Channel


Narrowband vs. Wideband Channel

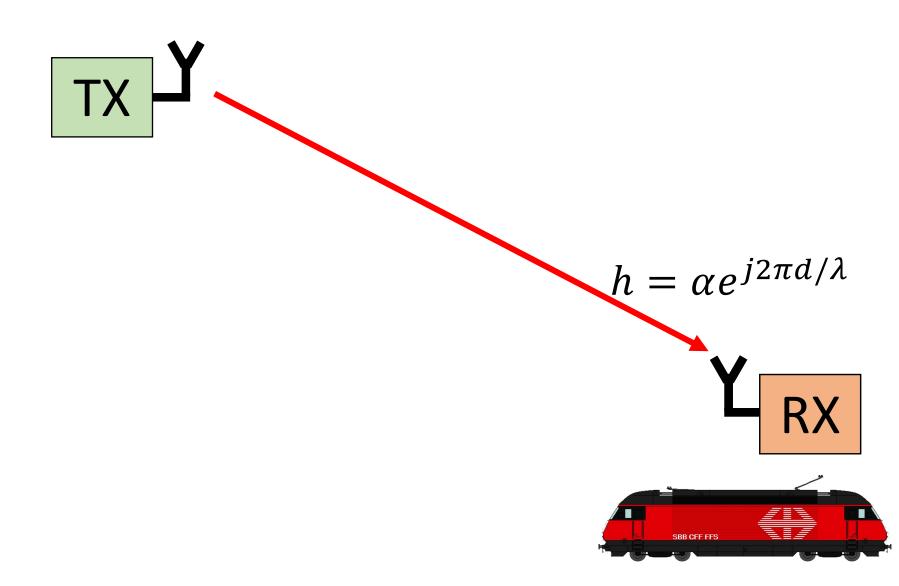
Need to correct for ISI to be able to decode correctly!

Estimating and Correcting for multi-tap channel is hard

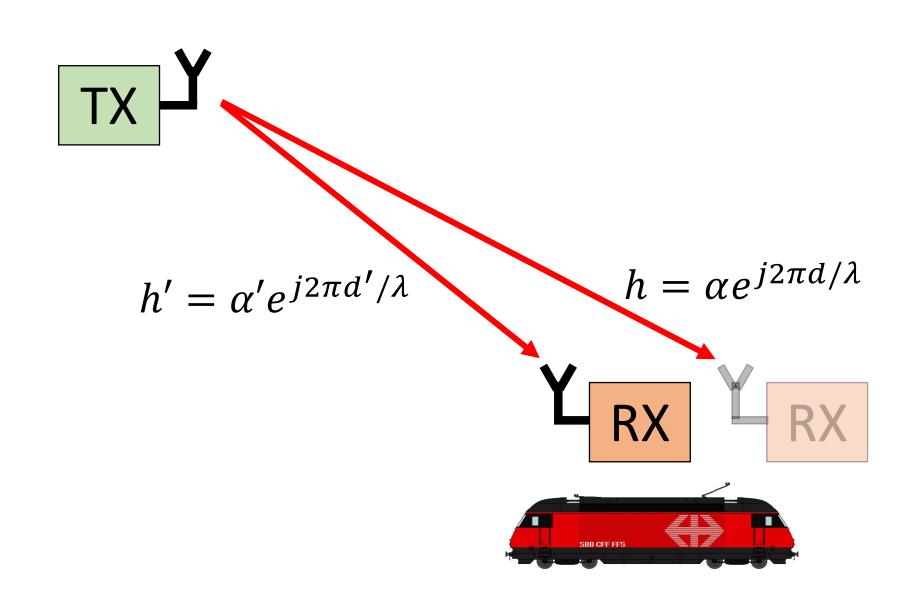
Multipath Wideband Channel

Delay Spread: Spread of the channel in time i.e. time delay between first and last path received above noise floor

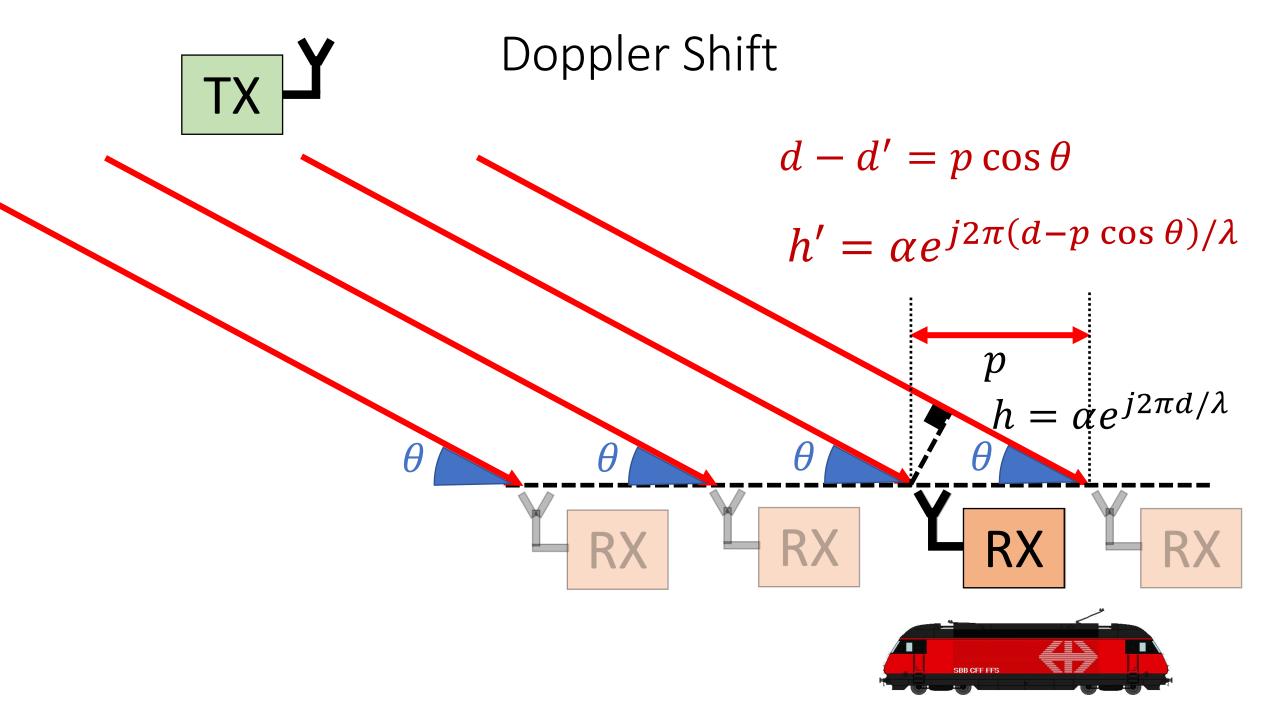
Coherence Bandwidth: region where the channel frequency response is flat (coherent).

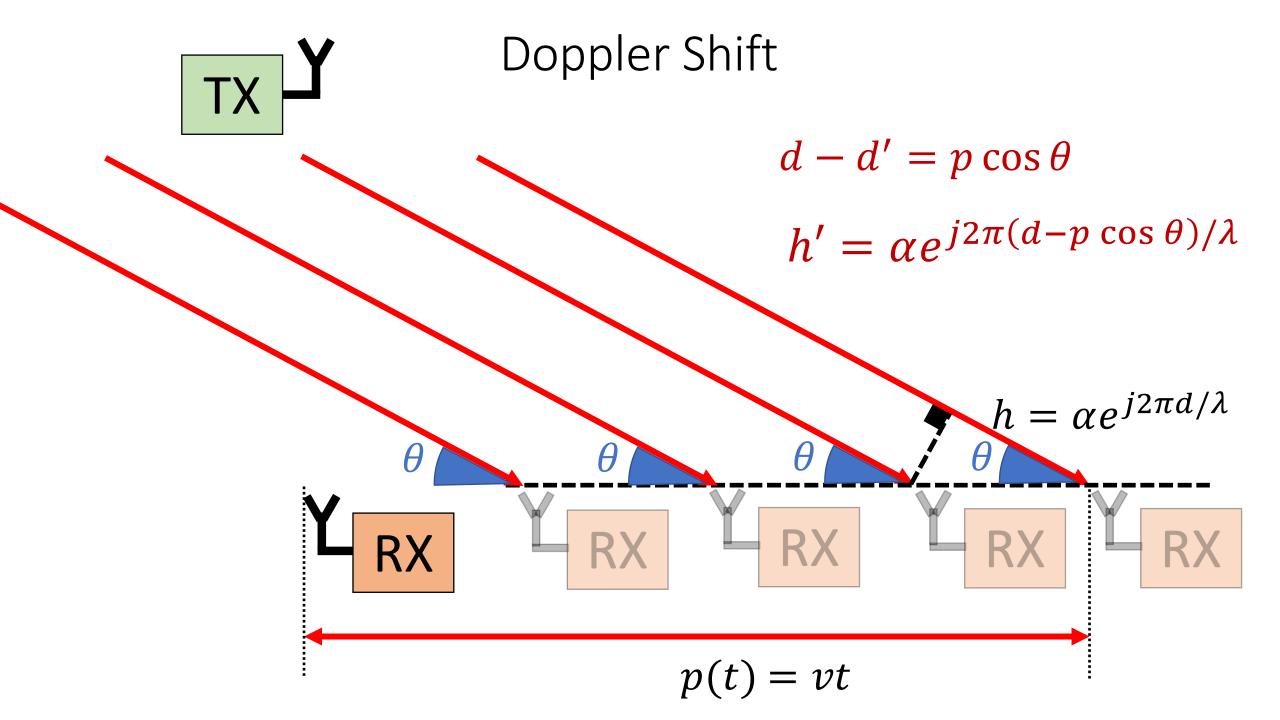

So far, considered only static channels, i.e. the channel does not change. But the channel h(t) cannot be the same forever

Reasons why h(t) changes:


- Environment changes:
 - Reflectors move
 - People moving around
- Transmitter or Receiver Moves:
 - Reflectors move
 - People moving around

Doppler Spread/Shift

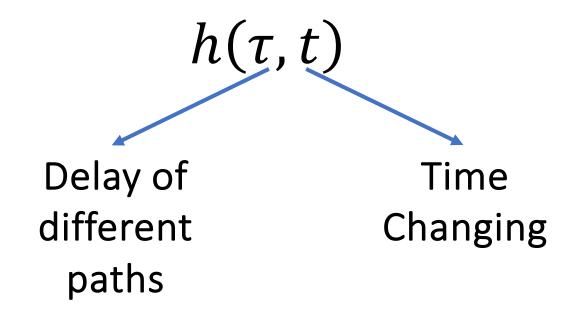

Doppler Shift



Doppler Shift

Doppler Shift $d - d' = p \cos \theta$ $h' = \alpha e^{j2\pi(d-p\cos\theta)/\lambda}$ $h' = \alpha e^{j2\pi d'/\lambda}$

Doppler Shift


$$h' = \alpha e^{j2\pi(d-vt\cos\theta)/\lambda}$$

$$= \alpha e^{j2\pi d/\lambda} e^{-j2\pi(v\cos\theta/\lambda)t}$$

$$= he^{-j2\pi\Delta ft}$$

Doppler Shift: Frequency shift caused by the movement in TX/RX or reflectors

$$B_D = \frac{v \cos \theta}{\lambda}$$

 $h(\tau,0)$: Channel Impulse Response at Time t=0.

h(0,t): Channel of the first path over time.

h(t): Channel Impulse Response of static channel.

$$h(\tau,t)$$

Delay of different paths Delay Spread

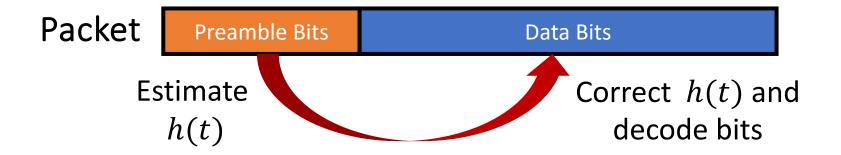
$$T_D = \Delta \tau$$

Coherence Bandwidth

$$B_C = 1/T_D$$

Time Changing

Doppler Spread


$$B_D = \Delta f$$

Coherence Time

$$T_C = 1/B_D$$

Channel Coherence Time: Time period over which we can assume the channel is static.

Assumption: Channel Coherence Time >> Time to transmit packet

Preamble Bits Data Bits

- + Lower Overhead → higher throughput
- Risk of channel changing → Cannot decode bits