ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15 Midterm Information Theory and Coding Nov. 1, 2022

4 problems, 70 points 180 minutes 1 sheet (2 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (10 points) Suppose U_1, U_2, \ldots and V_1, V_2, \ldots are two stochastic processes defined on the same finite alphabet \mathcal{U} , with entropy rates H_U and H_V respectively. Let $p_i = \Pr(U_i \neq V_i)$.

- (a) (2 pts) Show that $\frac{1}{n}H(U^nV^n) \le \frac{1}{n}H(U^n) + \frac{1}{n}\sum_{i=1}^n H(V_i|U_i)$.
- (b) (4 pts) Show that $\frac{1}{n} \sum_{i=1}^{n} H(V_i|U_i) \le h_2 \left(\frac{1}{n} \sum_{i=1}^{n} p_i\right) + \left(\frac{1}{n} \sum_{i=1}^{n} p_i\right) \log(|\mathcal{U}| 1).$
- (c) (4 pts) Show that $|H_U H_V| \le h_2(p) + p \log(|\mathcal{U}| 1)$, where $p = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n p_i$. (Assume that the limit exists.)

PROBLEM 2. (20 points) Let \mathcal{U} be a finite alphabet. Write $|\mathcal{U}|$ in its binary expansion, $|\mathcal{U}| = \sum_{j=0}^{\infty} m_j 2^j$, with $m_j \in \{0,1\}$. Let $J = \{j : m_j = 1\}$, so that $|\mathcal{U}| = \sum_{j \in J} 2^j$. (E.g., with $|\mathcal{U}| = 13 = 8 + 4 + 1$, $J = \{0,2,3\}$.)

- (a) (4 pts) Show that there exists an injective function $c: \mathcal{U} \to \{0,1\}^*$ such that $|\{u \in \mathcal{U} : \text{length}(c(u)) = j\}| = 2^j$ for $j \in J$. (With the example above, 8 elements of \mathcal{U} get a three-bit representation by c, 4 elements get a two-bit representation, and one element gets a null representation.)
- (b) (4 pts) With c as in (a) and U uniformly distributed on \mathcal{U} , let W=c(U) and $L=\operatorname{length}(W)$, so that $W=X_1X_2\ldots X_L$ is a random binary sequence of (random) length L. Show that, conditioned on $L=i,\,X_1,\ldots,X_i$ are i.i.d. with $\Pr(X_1=1|L=i)=\frac{1}{2}$.
- (c) (4 pts) Show that $H(W|L) = \mathbb{E}[L]$.
- (d) (4 pts) Show that $H(L) \leq \log (1 + \log |\mathcal{U}|)$. [Hint: L can take values only in the set J.]
- (e) (4 pts) Show that $\mathbb{E}[L] \ge \log |\mathcal{U}| \log (1 + \log |\mathcal{U}|)$. [Hint: use the chain rule for H(WL).]

PROBLEM 3. (20 points) Suppose U and V are random variables on the same finite alphabet \mathcal{U} with probability distributions p_U and p_V respectively.

(a) (4 pts) Show that for any non-negative function $f: \mathcal{U} \to [0, \infty)$

$$\mathbb{E}[\log f(U)] - D(p_U || p_V) \le \log \mathbb{E}[f(V)].$$

[Hint: We have shown in class for any probability distribution $p = (p_1, \ldots, p_K)$ and non-negative (x_1, \ldots, x_K) we have $\sum_i p_i \log x_i \leq \log(\sum_i p_i x_i)$.]

(b) (4 pts) For given p_U and p_V find an f for which the inequality in part (a) is an equality, and thus show that

$$D(p_U || p_V) = \max_{f} \left\{ \mathbb{E}[\log f(U)] - \log \mathbb{E}[f(V)] \right\}$$

where the maximization is taken over all non-negative functions defined on \mathcal{U} .

(c) (4 pts) Suppose $\tilde{\mathcal{U}}$ is a finite set, and $g:\mathcal{U}\to\tilde{\mathcal{U}}$ is a (deterministic) function. Let $\tilde{U}=g(U)$ and $\tilde{V}=g(V)$. Let $p_{\tilde{U}}$ and $p_{\tilde{V}}$ be their distributions. Show that

$$D(p_{\tilde{U}}||p_{\tilde{V}}) \le D(p_U||p_V).$$

[Hint: Note that for any non-negative function \tilde{f} on $\tilde{\mathcal{U}}$, $f(u) = \tilde{f}(g(u))$ is a non-negative function on \mathcal{U} .]

Suppose X and Y are random variables defined on the same finite set \mathcal{X} with joint distribution p_{XY} . Let X', Y' be random variables with joint distribution $p_X p_Y$. (I.e., X' and Y' are independent with the same marginal distributions as X and Y.) Let $p_e = \Pr(X \neq Y)$ and $q_e = \Pr(X' \neq Y')$.

(d) (4 pts) Show that

$$I(X;Y) \ge p_e \log \frac{p_e}{q_e} + (1 - p_e) \log \frac{1 - p_e}{1 - q_e}$$

[Hint: Both sides of the inequality are divergences.]

(e) (4 pts) Suppose now that X is uniformly distributed on \mathcal{X} . Use (d) to find an upper bound on H(X|Y) in terms of p_e . [Hint: First find q_e .]

PROBLEM 4. (20 points) For an encoder $c: \mathcal{U}^* \to \{0,1\}^*$, we define the compressibility of the sequence as

$$\rho_c(u^{\infty}) := \lim_{n \to \infty} \frac{1}{n} \operatorname{length}(c(u^n)).$$

We also define the finite state compressibility of a sequence as the smallest $\rho_{c_M}(u^{\infty})$, where c_M gives the output of an information lossless finite state machine M,

$$\rho_{FSM-IL}(u^{\infty}) := \inf_{c_M: M \text{ is FSM-IL}} \rho_{c_M}(u^{\infty}).$$

Let $\mathcal{U} = \{a, b\}$. Consider the sequence $u^{\infty} = abaaabbabbaaaaab...$ which is formed by the concatenation of null, a, b, aa, ab, ba, bb, aaa, aab, ... (listing the elements of \mathcal{U}^* in non-decreasing length).

- (a) (4 pts) Show that $\rho_{LZ}(u^{\infty}) = 1$. [Hint: How many bits does LZ produce at each iteration?]
- (b) (4 pts) Let $U^{\infty} = U_1 U_2 \dots$ be a stochastic process with a finite entropy rate H. Can Lempel-Ziv compress the sequence to H bits/letter in average? [Hint: What is the entropy rate of a stochastic process that produces a deterministic sequence?]

With u^{∞} defined as before, let $v^{\infty} = u_1 u_1 u_2 u_1 u_2 u_3 u_4 u_2 u_3 u_4 \dots$ In other words $v^{\infty} = x_1 x_2 x_3 x_4 \dots$ where $x_n = u^n$.

- (c) (4 pts) Find $\rho_{LZ}(v^{\infty})$.
- (d) (4 pts) Let M be an s-state information lossless finite-state machine. We give v^{∞} above as input to M. Let y_n be the output the machine produces while processing the segment x_n . Show that

$$\forall \epsilon > 0 \ \exists n_0(\epsilon) \ \forall n \ge n_0(\epsilon), \quad \frac{1}{n} \operatorname{length}(y_n) \ge 1 - \epsilon.$$

That is, for large enough n, the length of the output M produces while processing the segment x_n , divided by $n = \text{length}(x_n)$, is arbitrarily close to 1.

[Hint: For any parsing of x_n into m distict words, length $(y_n) \ge m \log \frac{m}{8s^2}$.]

(e) (4 pts) What is $\rho_{FSM-IL}(v^{\infty})$? [Hint: Show that $\frac{\operatorname{length}(y_1y_2\dots y_n)}{\operatorname{length}(x_1x_2\dots x_n)} \geq 1 - 2\epsilon$ for n large enough.]