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Problem 1. (20 points)
In a cryptosystem, a secret key K known to both Alice and Bob allows for secure

communication. Using the key K, Alice converts her plain text U to a ciphertext V . Using
the same key K, Bob converts the ciphertext V back into U . We model U , V and K as
random variables. Secure communication requires U and V to be independent.

(a) (2 pts) What are the values of H(U |V K) and I(U ;V )?

From the problem statement we know that Bob can determine U given V and K. This
implies that H(U |V K) = 0.

From the problem statement we know that the secret key K allows secure communi-
cation, whereas secure communication is defined as U and V to be independent. This
implies that I(U ;V ) = 0.

(b) (4 pts) Determine the relation,(i.e., <,≤,=, >, or ≥), between H(U) and I(U ;K|V ).
Provide a proof for this relation.

Consider the following expansion of I(U ;K|V )

I(U ;K|V ) = H(U |V )−H(U |KV )

= H(U)

where we used the fact that U and V are independent
(
H(U |V ) = H(U)

)
and the

result of (a) that H(U |V K) = 0.

(c) (4 pts) Determine the relation,(i.e., <,≤,=, >, or ≥), between H(K) and I(U ;K|V ).
Provide a proof for this relation.

Observe the following inequalities:

I(U ;K|V ) = H(K|V )−H(K|UV )

≤ H(K|V )

≤ H(K)

where the first inequality is due to H(K|UV ) ≥ 0 and the second inequality is due to
the fact that conditioning reduces entropy.

(d) (4 pts) Show that H(K) ≥ H(U). Furthermore, show that if the equality holds, then
(i) K and V are independent and (ii) H(K|UV ) = 0.

From (b) and (c) we have H(K) ≥ I(U ;K|V ) = H(U). The equality holds if H(K) =
I(U ;K|V ). From the chain of inequalities in part (c), we can see that this implies
that H(K|V ) = H(K) (such that K is independent of V ) and H(K|UV ) = 0.

Suppose further that (i) K is independent of U , (ii) the cryptosystem is implemented
as V = f(U,K) and U = g(V,K), and (iii) the system is supposed to be secure regardless
of the distribution of U on a given alphabet U .



(e) (2 pts) Show that H(K) ≥ log |U|.
From (d) we have H(K) ≥ H(U), and from the problem statement, this property
must hold for any distribution of U . Take U to be distributed uniformly on U such
that H(U) = log |U|. This gives us H(K) ≥ H(U) = log |U|.

(f) (4 pts) With U = {0, 1, . . . , |U| − 1}, show that if we take K to be uniform on U , the
secrecy requirement is satisfied by f(u, k) = u+ k mod |U|.
To fulfill the secrecy requirement, we need to show that U and V are independent.
One way to do this is by showing that P (V = v | U = u) = P (V = v) for all v and
u. As we have V = K + U mod |U|, then

P (V = v|U = u) = P (K = u− v mod |U| |U = u)

= P (K = u− v mod |U|)

=
1

|U|

where the second line is due to U and K are independent. From this equality, we can
see that for any v, P (V = v|U = u) does not depend on u. Therefore we can assert
that P (V = v|U = u) = P (V = v) for all u and v.
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Problem 2. (18 points)
Suppose U1, U2, . . . are i.i.d. random variables with finite alphabet and let p denote the

distribution of each Ui. Suppose we do not know p, but we know that it is included in the
set of K possible distributions, i.e., p ∈ P = {pk : k = 1, ..., K}.

For any distribution q on U , define r(q) = maxkD(pk‖q).

(a) (4 pts) Show that for any q there exists a prefix-free code C : U → {0, 1}∗ such that

E
[
length

(
C(U)

)]
−H(U) ≤ r(q) + 1

whenever the distribution of random variable U is in P .

For each u ∈ U , we assign a code of length l(u) = d− log2 q(u)e. We can see that∑
u∈U

2−d− log2 q(u)e ≤
∑
u∈U

2log2 q(u) =
∑
u∈U

q(u) = 1.

and due to Kraft’s inequality, there exists a prefix-free code with such code lengths.

Now, suppose each Ui has distribution pk for some k ∈ [K], then we have the following
relations between the expected length of the code designed as above and the entropy of
Uis.

E
[
length

(
C(U)

)]
−H(U) =

∑
u∈U

pk(u)l(u)−
∑
u∈U

−pk(u) log2 pk(u)

≤ −
∑
u∈U

pk(u) log2 q(u) + 1 +
∑
u∈U

pk(u) log2 pk(u)

=
∑
u∈U

pk(u) log2

pk(u)

q(u)
+ 1

= D(pk||q) + 1

≤ max
k
D(pk||q) + 1

= r(q) + 1

where the second line is due to dxe ≤ x+1, and the fourth line is due to the definition
of D(pk||q). Since the last inequality obtained does not depend on k, it is valid no
matter what distribution Uis have.

(b) (4 pts) Show that minq r(q) ≤ logK. [Hint: try q(u) = 1
K

∑
k pk(u).]

We use the q given in the hint to show the following inequality

min
q′

max
k
D(pk||q′) ≤ max

k
D(pk||q)

= max
k

∑
u∈U

pk(u) log2

pk(u)
1
K

∑
u′∈U pk(u

′)

= max
k

∑
u∈U

pk(u) log2

pk(u)∑
u′∈U pk(u

′)
+
∑
u∈U

pk(u) log2K

≤ max
k

∑
u∈U

pk(u) log2K

= log2K

where the third line is due to the fact that pk(u) ≤
∑

u′∈U pk(u
′) and log2(x) ≤ 0 for

all 0 < x ≤ 1.
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(c) (4 pts) Show that for fixed K there exists a sequence of prefix-free codes Cn : Un →
{0, 1}∗ such that

lim
n→∞

1

n
E
[
length

(
Cn(Un)

)]
= H(U)

whenever U1, U2, . . . are i.i.d. and have a distribution in P . [Hint: use (b).]

Define pk,n(Un) =
∏n

i=1 pk(Ui). We use the results of (a) on the random variables Un

such that we have for every n there exists a prefix-free code Cn such that

E
[
length

(
Cn(Un)

)]
−H(Un) ≤ min

q
max
k
D(pk,n||q) + 1.

Furthermore, from the result of (b) and the fact that Ui’s are i.i.d. we have

E
[
length

(
Cn(Un)

)]
− nH(U) ≤ log2K + 1.

Dividing both sides by n gives us

1

n
E
[
length

(
Cn(Un)

)]
−H(U) ≤ log2K + 1

n
. (1)

We also know from the lectures that

0 ≤ 1

n
E
[
length

(
Cn(Un)

)]
−H(U). (2)

Combining (1) and (2), and taking n→∞, we finally obtain

lim
n→∞

1

n
E
[
length

(
Cn(Un)

)]
−H(U) = 0.

(d) (2 pts) Let Z =
∑

u maxk pk(u). Show that minq r(q) ≤ logZ. [Hint: try choosing
q(u) proportional to maxk pk(u).]

We use the same argument as in (b) by just replacing q with the new hint
(
q(u) =

maxk pk(u)/Z, Z = maxk pk(u)
)

min
q′

max
k
D(pk||q′) ≤ max

k
D(pk||q)

= max
k

∑
u∈U

pk(u) log2

pk(u)

maxj pj(u)
+
∑
u∈U

pk(u) log2 Z

≤ max
k

∑
u∈U

pk(u) log2 Z

= log2 Z

where the inequality is due to the fact that for all u, pk(u) ≤ maxj pj(u).

(e) (4 pts) Show that Z ≤ min{K, |U|}.
We have two upper bounds on Z, (i)∑

u∈U

max
k
pk(u) ≤

∑
u∈U

1 = |U|

and, (ii) ∑
u∈U

max
k
pk(u) ≤

∑
u∈U

∑
k

pk(u) =
∑
k

∑
u∈U

pk(u) =
∑
k

1 = K.

Combining these two upper bounds give us

Z ≤ min{K, |U|}.
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Problem 3. (12 points)
Suppose p1, p2, . . . , pK are probability distributions on the finite alphabet U . Let

H1, . . . , HK be the entropies of these distributions, and let H = maxkHk. Fix ε > 0
and for each n ≥ 1 consider the set

T (n, ε) =
⋃
k

T (n, pk, ε)

where T (n, pk, ε) is the set of ε-typical sequences of length n with respect to the distribution
pk, i.e., T (n, pk, ε) =

{
un ∈ Un : ∀u′∈U

∣∣ 1
n
Nu′(u

n)− pk(u′)
∣∣ < εpk(u

′)
}

where Nu′(u
n) is the

number of occurrences of u′ in sequence un.
Suppose that U1, U2, . . . are i.i.d. with distribution p where p is one of p1, . . . , pK , i.e.,

p ∈ P = {pk : k = 1, ..., K}.

(a) (4 pts) Show that limn→∞ Pr
(
(U1, . . . , Un) ∈ T (n, ε)

)
= 1. (In particular for any

δ > 0, for n large enough Pr
(
Un ∈ T (n, ε)

)
> 1− δ.)

We have for all k, n and ε, P
(
(U1, . . . , Un) ∈ T (n, pk, ε)

)
≤ P

(
(U1, . . . , Un) ∈ T (n, ε)

)
as T (n, ε) ⊇ T (n, pk, ε). This implies that for any ε > 0, with k and p such that
pk = p, we have

lim
n→∞

Pr
(
(U1, . . . , Un) ∈ T (n, pk, ε)

)
≤ lim

n→∞
Pr
(
(U1, . . . , Un) ∈ T (n, ε)

)
1 ≤ lim

n→∞
Pr
(
(U1, . . . , Un) ∈ T (n, ε)

)
.

where the second line is due to the property of typical sets.

As we also have limn→∞ Pr
(
(U1, . . . , Un) ∈ T (n, ε)

)
≤ 1, with these inequalities we

prove the statement.

(b) (4 pts) Show that for large enough n, 1
n

log |T (n, ε)| < (1 + ε)H + ε.

For typical sets, we know that |T (n, pk, ε)| ≤ 2(1+ε)Hkn ≤ 2(1+ε)Hn. Hence, we obtain
the following upper bound.

|T (n, ε)| =

∣∣∣∣∣⋃
k

T (n, pk, ε)

∣∣∣∣∣ ≤∑
k

|T (n, pk, ε)| ≤ K2(1+ε)Hn.

By taking logartihm and dividing by n the above expression, we have

1

n
log |T (n, ε)| ≤ (1 + ε)H +

logK

n
.

This implies that for any n ≥ logK/ε we have

1

n
log |T (n, ε)| ≤ (1 + ε)H + ε.

(c) (4 pts) Fix R > H and δ > 0. Show that for n large enough there is a prefix-free
code c : Un → {0, 1}∗ such that

Pr
(

length
(
c(Un)

)
< nR

)
> 1− δ.

Let us use the construction of prefix-free code for typical set given in the lectures.
First, take an injective function fε,n : T (n, ε)→ {0, 1}dn(1+ε)H+nεe, this function exists
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for large enough n due to our result in (b). Now take another injective function
gn : Un → {0, 1}dn log |U|e. We define cε,n(x) as 0||fε,n(x) if x ∈ T (n, ε) and 1||gn
otherwise, where || is the concatenation operator.

We have that

Pr
(
Un ∈ T (n, ε)

)
= Pr

(
length

(
cε,n(Un)

)
= dn(1 + ε)H + nεe

)
≤ Pr

(
length

(
cε,n(Un)

)
≤ n(1 + ε)H + nε+ 1

)
.

From (a) we know that there exists an na(ε, δ) such that 1 − δ < Pr
(
Un ∈ T (n, ε)

)
for all n ≥ na(ε, δ). From (b) we require n ≥ logK/ε = nb(K, ε). To get the form
required in the problem statement, we need that :

n
(
(1 + ε)H + ε+ 1/n

)
< nR

Since 1/n ≤ ε for n ≥ nb(K, ε), the following inequality will also work

n
(
(1 + ε)H + 2ε

)
< nR.

The above inequality satisfied by choosing an appropriate ε
(
i.e., 0 ≤ ε < R−H

H+2

)
.

Therefore, for a code cε,n constructed as above and ε chosen small enough, we have

Pr
(

length
(
cε∗,n(Un)

)
< nR

)
≥ Pr

(
length

(
cε,n(Un)

)
≤ n(1 + ε)H + nε+ 1

)
≥ Pr

(
Un ∈ T (n, ε)

)
> 1− δ

for all n ≥ max
{
na(ε, δ), nb(K, ε)

}
.
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Problem 4. (10 points)
Suppose Cp is a prefix-free binary code for non-negative integers {0, 1, 2, . . .}. Suppose

Ci is an injective code for an alphabet U .

(a) (4 pts) Show that C defined by C(u) = Cp
(
l(u)

)
Ci(u), with l(u) = length

(
Ci(u)

)
is

a prefix-free code for U .

We need to show that for any u there is no u′ such that C(u′) is a prefix of C(u). We
can divide it into two cases;

– The set of u′ such that l(u) = l(u′). In this case length
(
C(u)

)
= length

(
C(u′)

)
,

but C(u) 6= C(u′) due to the assumption that Ci is injective. This implies no
such u′ exists.

– The set of u′ such that l(u) 6= l(u′). As we assume that Cp is prefix-free, it implies
that C(u′) must always have a prefix that is not a prefix of C(u). Therefore no
such u′ exists.

Observe that (i) the code Ca with Ca(j) = 0j1, (i.e., Ca(0) = 1, Ca(1) = 01, Ca(2) =
001, . . . ) is prefix-free with length

(
Ca(j)

)
= j + 1, and (ii) the code Cb for non-negative

integers with
Cb(0) = λ, Cb(j) = bin(j − 1), j > 0

where bin(j) denotes the binary expansion of the integer j, (i.e., bin(0) = 0, bin(1) = 1,
bin(2) = 10, bin(3) = 11, ...) is injective with length

(
Cb(j)

)
= blog2(j + 1)c.

(b) (2 pts) Show that there exists a prefix-free code C ′ for non-negative integers with

length
(
C ′(j)

)
= 2blog2(j + 1)c+ 1, j ≥ 0.

We take Cp = Ca and Ci = Cb. Therefore, by result on (a), we have

length
(
C ′(j)

)
= lb(j) + la

(
lb(j)

)
= blog2(j + 1)c+ blog2(j + 1)c+ 1

where lb(j) = length
(
Cb(j)

)
and la(j) = length

(
Ca(j)

)
.

(c) (4 pts) Consider a sequence of functions

l1(j) = 2blog2(j + 1)c+ 1

ln(j) = blog2(j + 1)c+ ln−1
(
blog2(j + 1)c

)
, n > 1.

Show that for each n > 0 there exists a prefix-free code for non-negative integers Cn
such that

length
(
Cn(j)

)
= ln(j).

[Hint: use induction.]

We define the code recursively as

C1(j) = Ca(j)Cb(j)

Cn(j) = Cn−1(j)Cb(j), n > 1

The code C1 is prefix-free and satisfies the length requirement due to (b). The code
Cn is prefix-free due to (a) in which we take Cn−1 as the prefix-free code and Cb as
the injective code. It also satisfies the length requirement as

length
(
Cn(j)

)
= la(j) + ln−1

(
la(j)

)
= blog2(j + 1)c+ ln−1

(
blog2(j + 1)c

)
.
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