
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 16 Information Theory and Coding
Midterm solutions Oct. 31, 2017

Problem 1.

(a) We already know that
H(X) + H(Y) ≥ H(XY),

H(Y) + H(Z) ≥ H(Y Z),

and
H(Z) + H(X) ≥ H(ZX).

Adding these inequalities together and diving by two gives

H(X) + H(Y) + H(Z) ≥ 1

2

[
H(XY) + H(Y Z) + H(ZX)

]
.

(b) The difference between the left and right sides, i.e.,

H(XY) + H(Y Z)−H(XY Z)−H(Y),

equals
H(X|Y)−H(X|Y Z) = I(X;Z|Y),

which is always positive.

(c) Using (b) with (Y ZX) and (ZXY) in the role of (XY Z) gives the inequalities

H(Y Z) + H(ZX) ≥ H(XY Z) + H(Z)

and
H(ZX) + H(XY) ≥ H(XY Z) + H(X).

Adding the inequality in (b) to these two gives

2
[
H(XY) + H(Y Z) + H(ZX)

]
≥ 3H(XY Z) + H(X) + H(Y) + H(Z).

(d) Since H(X) + H(Y) + H(Z) ≥ H(XY Z), (c) yields

2
[
H(XY) + H(Y Z) + H(ZX)

]
≥ 4H(XY Z).

(e) Let
{

(xi, yi, zi) : i = 1, . . . , n
}

be the xyz-coordinates of the n points. Let X, Y and
Z be random variables with Pr

(
(X, Y, Z) = (xi, yi, zi)

)
= 1/n for every 1 ≤ i ≤ n.

Then, H(XY Z) = log2 n. Furthermore, the random pair (XY) takes values in the
projection of the n points to the xy plane and similarly for (Y Z) and (ZX). Thus
H(XY) ≤ log2 nxy, H(Y Z) ≤ log2 nyz, and H(ZX) ≤ log2 nzx. Part (d) now yields

log2[nxynyznzx] ≥ H(XY) + H(Y Z) + H(ZX) ≥ 2H(XY Z) = 2 log2 n,

which implies that nxynyznzx ≥ n2.

The relationship between H(XY Z) and H(XY), H(Y Z) and H(ZX) is a special case of
Han’s inequality, which, for a collection of n random variables relates the sum of the

(
n
k

)
joint entropies of k out of n random variables to the sum of the

(
n

k+1

)
entropies of k + 1

out of n random variables.
The combinatorial fact about the projections of points in 3D is known as Shearer’s

lemma.

Problem 2. Observe first that∑
u

Q(u) =
∑
j≥0

2j+1−1∑
u=2j

Q(u) =
∑
j≥0

2j(1− 2p)pj = 1,

so Q is indeed a distribution.

(a) H(V) =
∑
j≥0

2j(1− 2p)pj
[
log2

1

1− 2p
+ j log2

1

p

]
= log2

1

1− 2p
− (1− 2p)(log2 p)

∑
j

j(2p)j

= − log2(1− 2p)− 2p

1− 2p
log2 p.

(b) L(V) = E[blog2 V c] =
∑
j≥0

j2j(1− 2p)pj =
2p

1− 2p
.

(c) With L = L(V), by (b), we have 2p = L/(L + 1) and 1 − 2p = 1/(L + 1). Thus by
(a) we have

H(V) = log2(L + 1) + L log2

2(L + 1)

L
= L + L log2(1 + 1/L) + log2(1 + L),

which is (c1). On the other hand, we already know that ln(1 + x) ≤ x, so

log2(1 + x) = ln(1 + x) log2 e ≤ x log2 e.

Using this with x = 1/L yields (c2), i.e., H(V) ≤ L + log2(1 + L) + log2 e.

(d) With P (i) = Pr(U = i), we have

H(U) =
∑
i

P (i) log2[1/P (i)] =
∑
i

P (i) log2[1/Q(i)]−
∑
i

P (i) log2[P (i)/Q(i)].

As the second sum is a divergence, it is non-negative, consequently (d1) follows. Since

log2

1

Q(i)
is of the form ablog2 ic+b, the sums

∑
i

P (i) log2

1

Q(i)
and

∑
i

Q(i) log2

1

Q(i)

equal aL(U) + b and aL(V) + b respectively. Now (d2) follows because L(U) = L(V).

(e) Since P (1) ≥ P (2) ≥ . . . , the optimal non-singular code C will assign the ith shortest
binary string to the letter i. As the ith shortest binary string has length blog2 ic, we
see that length C(u) = blog2 uc.

(f) One-to-one transformations of a random variable changes neither the entropy nor L∗.
We can thus assume without loss of generality that the distribution P of the random
variable U satisfies P (1) ≥ P (2) ≥ By (e) L∗ =

∑
u P (u)blog2 uc, and by (d)

H(U) ≤ H(V) for the random variable V with distribution Q — where p is chosen so
that L∗ = L(V) = 2p/(1−2p). By (c) we know that H(V) ≤ L∗+log2(1+L∗)+log2 e,
hence H(U) ≤ L∗ + log2(1 + L∗) + log2 e.

What we have shown is that even if we relax the unique decodability requirement on a
code to non-singularity, the expected codeword length L∗ is not too small compared to
the entropy: even if L∗ ≤ H, by (f) we would have H ≤ L∗ + log2(1 + L∗) + log2 e ≤
L∗ + log2(1 + H) + log2 e so that L∗ ≥ H − log2(1 + H)− log2 e.

2

Problem 3.

(a) Even though the decoder can not find out the value of ui+l+1 from the description of
the word w, it can determine ui+l+1 once it receives the index of the next word w′:
either

(i) w′ is not the newly added word, in which case ui+1+l is the first letter of w′, or

(ii) w′ is the newly added word, unknown to the decoder. But w is a prefix of w′,
so ui+l+1 is the first letter of w.

(b) As the algorithm always looks for the longest word w in the dictionary that matches
the start of the as-yet-unprocessed segment of the input, wui+l+1 is not in the dic-
tionary before its addition to the dictionary in step 4. Thus the words added to the
dictionary are distinct. For each occurrence of a word w in the parsing a word of the
form wu with u ∈ U is added to the dictionary. Since these are distinct, w cannot
appear more than |U| times in the parsing.

(c) There are |U|i words of length i, and by (b), each can appear at most U times in
the list w1, . . . , wm. As the algorithm never parses the null string, at most F (k) =
|U|
∑k−1

i=1 |U|i words in the list are of length k − 1 or less, and each of the remaining
words in the list has length k or more. Thus n ≥ k[m− F (k)].

(d) By (c) m(un)
n
≤ 1

k
+ F (k)

n
. Thus, lim supn→∞m(un)/n ≤ 1/k. As k is arbitrary, the

conclusion follows.

(e) The dictionary size s is initially |U|, and increases by 1 at each parsing. Thus, after
the m’th parse the algorithm has output m binary strings, each of length at most
dlog2(|U|+ m)e.

(f) Let un = w1 . . . wm be the parsing of the input by the algorithm. Let zi be the state
the IL machine is in at just before it reads wi, and zi+1 be the state just after it has
read wi. Let ti be the binary string output by the IL machine while it reads wi. No
string t can occur in t1, . . . , tm more than k = s2|U| times. If it did, there will be a
state-pair (z, z′) that occurs among (zi, zi+1) more than |U| times with ti = t. By (b)
there will be wi 6= wj with ti = tj = t and (zi, zi+1) = (zj, zj+1). But this contradicts
the IL property of the machine. Thus the output of the IL machine t1 . . . tm is a
concatenation of m binary strings with no string occurring more than k = s2|U|
times, so their total length is at least L(m, k).

This version of Lempel-Ziv is known as the Lempel-Ziv-Welch (LZW) algorithm and is the
one commonly implemented. In (f) we have shown that no IL machine with fewer than s
states can output fewer than L(m(un), s2|U|) bits when it processes un. In the notes on LZ
we had shown that L(m, k) ≥ m log(m/(8k)). With m = m(un) and k = s2|U|, by (e), the
number of bits per letter LZW emits is at most

m

n

⌈
log
(
|U|+ m

)⌉
− m

n
log

m

8k
≤ m

n
log

16k(|U|+ m)

m

more than that of an IL machine. As n gets large, the argument of the log approaches 16k,
m/n approaches 0, and so the right hand side above approaches 0. Thus, LZW competes
well against the class of finite state IL machines, and we see that it (just as LZ) is an
asymptotically optimal method to compress an infinite sequence u1u2

3

