
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 11 Information Theory and Coding
Notes on the Lempel-Ziv Algorithm Oct. 8, 2024

Universal Source Coding — Lempel-Ziv Algorithm

Our experience with data compression so far has been of the following type: We are
given the statistical description of an information source, we then try to design a system
which will represent the data produced by this source efficiently.

In this note we depart from this model, and consider a method which will represent a
sequence efficiently without knowing by which means the sequence was produced. For this
purpose, rather than assuming a statistical model for the sequence, it makes more sense to
imagine that there is only a single sequence: an infinite string u which we wish to represent.

We will first consider the compressibility of an infinite string with a finite state machine.
For our purposes, a finite state machine is a device that reads the input sequence one
symbol at a time. Each symbol of the input sequence belongs to a finite alphabet U with
|U| symbols (|U| ≥ 2). The machine is in one of a finite number s of states before it reads a
symbol, and goes to a new state determined by the old state and the symbol read. We will
assume that the machine is in a fixed, known state z1 before it reads the first input symbol.
The machine also produces a finite string of binary digits (possibly the null string) after
each input. This output string is again a function of the old state and the input symbol.
That is, when the infinite sequence u = u1u2 · · · is given as the input, the encoder produces
y = y1y2 · · · , while visiting an infinite sequence of states z = z1z2 · · · , given by

yk = f(zk, uk), k ≥ 1

zk+1 = g(zk, uk), k ≥ 1

where the function f takes values on the set {0, 1}∗ of finite binary strings, so that each yk
is a (perhaps null) binary string. A finite segment xkxk+1 · · ·xj of a sequence x = x1x2 · · ·
will be denoted by xj

k, and by an abuse of the notation, the functions f and g will be
extended to indicate the output sequence and the final state. Thus, f(zk, u

j
k) will denote y

j
k

and g(zk, u
j
k) will denote zj+1. Without loss of generality we will assume that any state z is

reachable from the initial state z1 — i.e., that some input sequence will take the machine
from state z1 to z.

To make the question of compressibility meaningful one has to require some sort of
an ‘invertibility’ condition on the finite state encoders. Given the description of the finite
state machine that encoded the string, and the starting state z1, but (of course) without
the knowledge of the input string, it should be possible to reconstruct the input string u
from the output of the encoder y. A weaker requirement than this is the following: for
any state z and two distinct input sequences vm1 and ṽn1 , either f(z, vm1) ̸= f(z, ṽn1) or
g(z, vm1) ̸= g(z, ṽn1). An encoder satisfying this condition will be called information lossless
(IL). It is clear that if an encoder is not IL, then there is no hope to recover the input from
the output, and thus every ‘invertible’ encoder is IL. 1

1However, as illustrated in Figure 1, an IL encoder is not necessarily uniquely decodable. Starting from
state S, two distinct input sequences will leave the encoder in distinct states if they have different first
symbols, otherwise they will lead to different output sequences. Thus, the above encoder is IL. Nevertheless,
no decoder can distinguish between the input sequences aaaa · · · and bbbb · · · by observing the output
000 · · · .

.......

.......
.......
........
..........

................
..

..........
........
........
.......
.......
.

.......

.......
.......
........
..........

................
..

..........
........
.......
.......
.......
..

...
.........

...............
...............

...............
...............

...............
...............

...............
...............

...............
...

..........
............................

................................
......

....................
.............

..........
.........
........
.......
.......
.......
.......
..........
.........
...........
............
..................

..
.............................
.........

.......
.........
.........
..........
.........
...........
..............
..

..
..........
..........
.........
........
.........
........
.......
.......
.......
.........
.........
.........
...

......................................
..

...........
.........
.......
.......
........
.......
........
......
........
..

.......

.......

........................

.......

.......
.......
........
..........

................
..

..........
........
........
.......
.......
.

a / λ

b / 1

A

B

S

b / λ

a / 0

b / 0 a / 1

A finite state machine with three states S, A and B. The notation i /output means
that the machine produces output in response to the input i. λ denotes the null
output.

Figure 1: An IL encoder which is not uniquely decodable.

We will first derive a lower bound to the the number of bits per input symbol any IL
encoder will produce when encoding a string u. This lower bound will even apply to IL
encoders which may have been designed with the advance knowledge about u. We will
then show that a particular algorithm (the Lempel-Ziv algorithm) the design of which
does not depend on u, does as well as this lower bound. That is to say, a machine that
implements the LZ algorithm will compete well against any IL machine in compressing any
u. (However, note that a machine that implements LZ will not be a finite state machine.
The point is to show that LZ performs well — we are not interested in the fairness of the
competition.)

We can now define the compressibility of an infinite string u. Given an IL encoder
E, the compression ratio for the initial n symbols un

1 of u with respect to this encoder is
defined by

ρE(u
n
1) =

1

n
length(yn1),

where length(yn1) is the length of the binary sequence yn1 . (Note that since each yi is a
possibly null binary string length(yn1) may be more or less than n.) The minimum of
ρE(u

n
1) over the set of all IL encoders E with s or less states is denoted by ρs(u

n
1). Observe

that ρs(u
n
1) ≤ ⌈log2 |U|⌉. The compressibility of u with respect to the class of IL encoders

with s or less states is then defined as

ρs(u) = lim sup
n→∞

ρs(u
n
1).

Finally the compressibility of u with respect to IL encoders (or simply the compressibility)
is defined as

ρ(u) = lim
s→∞

ρs(u).

Note that since ρs(u) is non-increasing in s, the limit indeed exists.
Let us define m∗(un

1) as the maximum number of distinct strings that un
1 can be parsed

into, including the null string. (Note that m∗(un
1) ≥ 1.) It turns out that m∗(un

1) plays a
fundamental role in the compressibility of u.

2

Before proceeding further, let us note that m∗(un
1) is sublinear in n:

Lemma 1. For any sequence u, limn→∞m∗(un
1)/n = 0.

Proof. Let v1, . . . , vm∗ be a distinct parsing of un
1 with m∗ = m∗(un

1). For any k ≥ 1, the
number of strings with length k−1 or fewer is 1+|U|+· · ·+|U|k−1 < |U|k. Thus, among the
vi’s at least m

∗ − |U|k of them are of length k or more, and consequently n > k[m∗ − |U|k].
Thus, for any k,

0 ≤ lim
n→∞

1

n
m∗(un

1) ≤ lim
n→∞

1

n
[n/k + |U|k] = 1/k.

As k is arbitrary the lemma follows.

We will also need to the following fact:

Lemma 2. Suppose v1, . . . , vm are binary strings, with no string occurring more than k
times. Then, writing m =

∑j−1
i=0 k2

i + r with 0 ≤ r < k2j, we have
∑m

i=1 length(vi) ≥
k
∑j−1

i=0 i2
i + rj.

Proof. The set of binary strings ordered in increasing length consists of: 1 string of length
0, 2 strings of length 1, . . . , 2i strings of length i, The shortest total length for the vi’s
will be attained if the vi’s are chosen by traversing the set of all binary strings in increasing
length, each string repeated k times, until all strings of length j − 1 or less are repeated k
times, and we are left to find 0 ≤ r < k2j strings, which are chosen from the set of strings
of length j. The lower bound in the lemma is precisely the total length of this optimal
collection.

Lemma 3. Suppose v1, . . . , vm are binary strings, with no string occurring more than k
times. Then,

m∑
i=1

length(vi) ≥ m log2
m

8k
. (1)

Proof. Noting that
∑j−1

i=0 2
i = 2j − 1 and

∑j−1
i=0 i2

i = (j − 2)2j + 2, the previous lemma
states: writing m = k2j − k + r with 0 ≤ r < k2j, the total length of the vi’s is lower
bounded by

k((j − 2)2j + 2) + rj = (j − 2)m+ kj + 2r ≥ (j − 2)m.

As r < k2j, we have m < k(2j+1 − 1). Rearranging, we get 2j+1 > 1 +m/k > m/k, and
thus j − 2 > log m

8k
.

Now we can state the following

Theorem 1. For any IL-encoder with s states,

length(yn1) ≥ m∗(un
1) log2

m∗(un
1)

8s2
. (2)

Proof. Let un
1 be parsed into m∗ = m∗(un

1) distinct words, u = v1 . . . vm∗ . Let si denote
the state the machine is in just before reading vi, and si+1 the state the machine is in
after reading vi. Let ti be the binary string the machine outputs while digesting vi, so that
yn1 = t1t2 . . . tm∗

Note that no binary string t can occur more than s2 times among the ti’s. Indeed,
suppose to the contrary the binary string t occurs more than s2 times among the ti’s.
Consider the vi’s for which ti = t. Since there are only s2 distinct values of (si → si+1),

3

we will find vi and vj for ti = tj = t, si = sj = z and si+1 = sj+1 = z′. As vi ̸= vj, this
contradicts the machine being IL.

As the collection t1, . . . , tm∗ satisfies the conditions of Lemma 3 with k = s2, we get

length(yn1) =
m∗∑
i=1

length(ti) ≥ m∗ log
m∗

8s2
.

Using Lemma 1 and (2), we see that

ρs(u) ≥ lim sup
n→∞

1

n
m∗(un

1) log2(m
∗(un

1)/(8s
2))

= lim sup
n→∞

1

n
m∗(un

1) log2m
∗(un

1)− lim
n→∞

1

n
m∗(un

1) log2(8s
2)

= lim sup
n→∞

1

n
m∗(un

1) log2m
∗(un

1)

and since the right hand side is independent of s,

ρ(u) ≥ lim sup
n→∞

1

n
m∗(un

1) log2m
∗(un

1). (3)

Now, let us describe the Lempel-Ziv algorithm. The algorithm proceeds by generating
a dictionary for the source and constantly updating it. It starts up with a dictionary
just consisting of the words of length 1, and operates in the following manner: When the
dictionary has D words, each of its words is assigned a binary codeword of length ⌈log2D⌉
in lexicographic order. When a word in the dictionary is recognized in the input sequence,
the encoder generates the binary codeword of that word on its output, and enlarges the
dictionary by replacing the just recognized word with all its single letter extensions. The
dictionary can be represented as a tree, whose leaves are the current dictionary entries.
Figure 2 shows an example of the operation of the algorithm. Since the recognized words
are encoded before the dictionary is modified, the decoder can keep track of the encoder’s
operation. Suppose that the algorithm parses the sequence un

1 into m(un
1) words v1, . . . ,

vm. Then we can write:
un
1 = λv1v2 · · · vm,

where λ denotes the null sequence. By construction, the first m − 1 of the parses are
distinct. (The last word vm may not be distinct from the others.) If we concatenate the
last two parses, and count in λ we get a parsing of un

1 into m(un
1) distinct words. Thus

m(un
1) ≤ m∗(un

1). Since each parse extends the dictionary by |U|− 1 entries, the size of the
dictionary at the end of parsing un

1 is

1 + (|U| − 1)m(un
1) ≤ 1 + (|U| − 1)m∗(un

1) ≤ |U|m∗(un
1).

Thus, the number of bits L(un
1) the LZ algorithm emits after seeing un

1 is upper bounded
by

m(un
1)⌈log2(|U|m∗(un

1))⌉ ≤ m(un
1) log2(2|U|m∗(un

1)) ≤ m∗(un
1) log2(2|U|m∗(un

1)).

Dividing by n, and taking the lim sup as n gets large we see

lim sup
n→∞

1

n
L(un

1) ≤ lim sup
n→∞

1

n
m∗(un

1)[log2m
∗(un

1) + log2(2|U|)]

= lim sup
n→∞

1

n
m∗(un

1) log2m
∗(un

1)

4

...

........
........
........
........
........
........
........
........
...

...
........
........
........
........
........
........
........
.

...
........
........
........
........
........
........
........
........
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
. ...

...
........
........
........
........
........
........
........
.

...
........
........
........
........
........
........
........
........
...

........
........
........
........
........
........
........
........
........
. ...

...
........
........
........
........
........
........
........
........
.

.........
.........
.........
.........
.........
.........
.........
.........
.. ...

..
.........
.........
.........
.........
.........
.........
.........
.. ...

.........
.........
.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
.........
.........
.. ..

........
........
........
........
........
........
........
........
.

........
........
........
........
........
........
........
........
........
.

cbccbbcba

(e)(d)
........
........
........
........
........
........
........
........
........
....

ca

a

cb cc

b

abac

aaa aab aac aac

ac

b

cccaab

aaa aab

(c)(b)(a)

acab

cc bb

aacaabaaa

acabaa

cb

The parsing of the sequence aaaccb with the Lempel-Ziv algorithm. The figure shows
the evolution of the dictionary. The sequence is parsed into the phrases a, aa, c and
cb. Figure 2(a) shows the initial dictionary. In 2(b) we see the dictionary after
reading a, 2(c) shows after aaa has been read, etc. At each stage one might assign
each dictionary entry a fixed length binary codeword. If the assignment is done in
lexicographic order, at stage (a) it will be {a → 00, b → 01, c → 10}, at stage (b)
{aa → 000, ab → 001, . . . , c → 100}, at stage (c) {aaa → 000, aab → 001, . . . , cc →
110}, and at stage (d) {aaa → 0000, aab → 0001, aac → 0010, . . . , cc → 1000}, and
the output sequence will be 00,000,110,0111. (Commas are put in to aid the reader,
they will not appear at the output.)

Figure 2: Operation of the Lempel-Ziv algorithm

so that the LZ algorithm will achieve the lower bound previously derived (3) in the limit of
n → ∞. (However, the algorithm uses up infinite memory, since it keeps track of an ever
growing tree.)

One can perhaps express the tradeoff we have seen as follows: suppose we want to
compress an infinite string u, and we were given the choice of using the ‘off the shelf”
Lempel-Ziv, versus designing a machine tuned to u with a finite (but arbitrary) number of
states. Then, we might as well pick the Lempel-Ziv: In the long run (i.e., for long strings)
the Lempel-Ziv algorithm will do as well as the best finite state machine.

In particular, if one knew that the string u is the output of an information source which
is stationary and ergodic, one could have designed a finite state machine that implements,
for example, the Huffman algorithm designed for this source for a large enough block length
that will compress the source output with high probability, arbitrary close to its entropy
rate. Combined with the above paragraph we see that for such sources, the Lempel Ziv
algorithm will compress them to their entropy rate too.

5

