# COM 402 Final Exam

# Jan 17th, 2022

1

Name: Anonymous

Sciper: **123123** 

# Do NOT open this document until instructed to do so.

## Instructions

- This is a **closed book** exam. Books, notes and electronic devices are not allowed, except for up to two A4 pages of notes (this amounts for *one* double-sided A4 sheet or equivalent).
- No question will be answered during the exam, except possibly questions related to the understanding of the English language.
- Once finished leave this document on the table.
- You can use the blank pages at the end as scratch paper. It will not be accounted in the grading.

## Multiple choice questions:

- There are multiple choice questions, counting 1 point each.
- Only one answer per question is correct.
- Ticking the correct answer counts for 1 point.
- Ticking an incorrect answer, more than one answer, or no answer counts for 0 point.
- Make a mark **inside** the box corresponding to your answer.
- Use a black or blue pen to mark your final answers. Pencils are not allowed.
- If you ticked the wrong answer, use a white-out fluid or tape to erase the box completely. **Do not try to re-draw the box**.

### Open text questions:

- There are 13 open text questions, counting 1 point each.
- Please write your answers in the corresponding text boxes. Any text outside of the boxes will be ignored.
- Pencils are not allowed.
- Do not tick the '0', '0.5', '1' boxes of the top of the text boxes.

| Question 1 Which of the following is false ab                                                                                                | pout a HMAC used for cookies?                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| It uses a shared secret between the client and the server.                                                                                   | It provides both integrity and authentic ity.                                                                               |
| It does not encrypt the cookies.                                                                                                             | It provides only integrity.                                                                                                 |
| Question 2 Which of the following is true for                                                                                                | rainbow tables?                                                                                                             |
| The reduction function takes as input a password and returns a hash from the set of possible outputs of the employed hash function.          | The reduction function takes as input a hash and returns a password from the specific set the rainbow table is tailored to. |
| In order to save memory, only the last element of the chain is stored.                                                                       | In order to save memory, only the firs element of the chain is stored.                                                      |
| Question 3 Which of the following is true?                                                                                                   |                                                                                                                             |
| Windows privileges can never act as capabilities.                                                                                            | Unix has more access rights than Windows.                                                                                   |
| Setuid lets simple users execute some well defined privileged actions.                                                                       | Windows' admin is the highest privilege access possible.                                                                    |
| Question 4 Which of the following is <i>true</i> in                                                                                          | the context of a buffer overflow?                                                                                           |
| A canary is a constant value pushed on the stack.                                                                                            | If a canary is placed before the return address, an attacker can still overwrite local variables.                           |
| Return-oriented programming is used to execute a piece of code on the stack.                                                                 | Most compilers set the stack to 'non writable' as a defense mechanism.                                                      |
| Question 5 What is false about anonymous of                                                                                                  | credentials?                                                                                                                |
| The verifier cannot distinguish two users with the same attributes.                                                                          | A user can create valid credentials for its attributes.                                                                     |
| A user can disclose only relevant attributes to the verifier.                                                                                | The verifier cannot link two showings of the same credential.                                                               |
| Question 6 Consider an attacker performing as-a-service (MLaaS) that hosts a non-linear macoutputs the prediction in clear. Which one of the |                                                                                                                             |
| Model stealing will take $d+1$ queries for an input size (number of features) of $d$ .                                                       | MLaaS is prone to model stealing, mem bership inference, and attribute infer                                                |
| If the model has been trained in a federated learning setting, attribute inference attacks are not possible.                                 | ence attacks.  If the model is kept encrypted, mode stealing attacks are not possible.                                      |
| Question 7 Which of the following is false ab                                                                                                | oout TLS?                                                                                                                   |
| Both client and server use an asymmetric cipher to encrypt the data.                                                                         | Both client and server use a HMAC to guarantee integrity.                                                                   |
| The client can optionally be authenticated by a client certificate.                                                                          | The server is authenticated with a certificate.                                                                             |

| Question 8 Which one of the following is false a                                                                                                                                                                                        | about remote access protection?                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>A VPN can be based on TLS.</li><li>A VPN can be used to protect privacy as all connection locations are always hidden by design.</li></ul>                                                                                      | <ul> <li>The destination only sees the VPN gateway address.</li> <li>A VPN uses encryption and encapsulation for confidentiality.</li> </ul> |
| Question 9 Consider a blockchain system that use rate of new blocks per minute. The proof-of-work many                                                                                                                                  | uses a proof-of-work mechanism to control the echanism works as follows:                                                                     |
| Let $h$ be the SHA-256 hash of a candidate block, see $\mathtt{zeros}(h)$ be the number of leading zero bits of $h$ , $\mathtt{int}(h)$ be the base-10 unsigned integer represe. A node accepts candidate blocks for which the follows: | ntation of $h$ .                                                                                                                             |
| On a system of $N$ equally powerful nodes (i.e., each operations per second), the described mechanism re Would the number of nodes increase to $2N$ , which o new blocks per minute?                                                    | esults in a rate of $R$ new blocks per minute.                                                                                               |
|                                                                                                                                                                                                                                         | [] :==(h) < 2233                                                                                                                             |
|                                                                                                                                                                                                                                         |                                                                                                                                              |
| $\blacksquare$ 2010 $\mathbb{D}(n) > = 21.$                                                                                                                                                                                             | 20105(11) < 21.                                                                                                                              |
| <b>Question 10</b> Let $p, q$ be two primes as in the Paill 1) and $n = pq$ . In addition, let Enc be Paillier encrypmessages. Which of the following statements is $true^{i}$                                                          |                                                                                                                                              |
| $\square$ The public-key is $(p,q)$ .                                                                                                                                                                                                   |                                                                                                                                              |
|                                                                                                                                                                                                                                         | $r \in \mathbb{Z}_n^*$ $(1+n)^m r^n \mod n^2 = (1+mn)r^n \mod n^2, \text{ for all } r \in \mathbb{Z}_n^*$                                    |
| Question 11 Which of the following is true about                                                                                                                                                                                        | at the one-time pad cipher?                                                                                                                  |
| The key must be at least as long as the                                                                                                                                                                                                 | A key can be used for more than once.                                                                                                        |
| plaintext.                                                                                                                                                                                                                              | The ciphertext produced by a one-time                                                                                                        |
| The one-time pad is an asymmetric cryptographic algorithm.                                                                                                                                                                              | pad is not malleable.                                                                                                                        |
| Question 12 Which of the following is true about tection?                                                                                                                                                                               | out technologies for privacy and security pro-                                                                                               |
| Homomorphic encryption is the most ef-                                                                                                                                                                                                  | Secure multiparty computation mini-                                                                                                          |
| ficient and versatile technology.                                                                                                                                                                                                       | mizes the communication cost.                                                                                                                |
| Trusted execution environments are prone to side-channel attacks.                                                                                                                                                                       | Distributed ledger technologies provide the highest data privacy.                                                                            |
| Question 13 Which of the following is NOT pro                                                                                                                                                                                           | stected against in information security?                                                                                                     |
| Loss of availability.                                                                                                                                                                                                                   | Loss of integrity.                                                                                                                           |
| Theft of the computer hardware.                                                                                                                                                                                                         | Loss of confidentiality.                                                                                                                     |

| Questi                                                                                                | ion 14                                      | Which of the                                           | e following i           | is true      | about a stack     | k buffer overflo                                                            | w:                           |           |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------|--------------|-------------------|-----------------------------------------------------------------------------|------------------------------|-----------|
| tl<br>R<br>it                                                                                         | he program<br>tandomizing<br>harder to      | fer overflow<br>g the memo<br>determine<br>that can be | ry space m<br>where the | akes<br>exe- | ory<br>yon<br>Nor | tack canary se<br>space and pred<br>d.<br>n-executable s<br>mory to non-ex  | vents the execustack sets th | ition be- |
|                                                                                                       | denotes tha                                 |                                                        | ncrypted vi             |              | _                 | snapshots of tw<br>leterministic en                                         |                              | , ,       |
|                                                                                                       | Database                                    | 1                                                      |                         |              | Database 2        |                                                                             |                              |           |
|                                                                                                       | Zipcode                                     | Name                                                   | Age                     |              | Zipcode           | Cancer Status                                                               | Age                          |           |
|                                                                                                       | 1004                                        | (John)                                                 | (41)                    |              | 1004              | [yes]                                                                       | [41]                         |           |
|                                                                                                       | 1004                                        | (Alice)                                                | (45)                    |              | 1004              | [no]                                                                        | [45]                         |           |
|                                                                                                       | 1005                                        | (Bob)                                                  | (45)                    |              | 1005              | [no]                                                                        | [45]                         |           |
|                                                                                                       | 1006<br>1007                                | (Mary)<br>(Louise)                                     | (45)<br>(45)            |              | 1006<br>1007      | [no]                                                                        | [45]<br>[45]                 |           |
| T T W                                                                                                 | ancer. The attacker with the san er status. | r can infer                                            | that the pe             | ople<br>can- | age pro The cod   | e attacker can<br>with zipcode<br>bability.<br>e attacker can<br>e is 1004. | 1004 is 41 w infer that Joh  | rith 50%  |
| Questi<br>serious                                                                                     |                                             | Although ca<br>el attack vec                           |                         |              | us in modern      | CPU architect                                                               | ures, they int               | roduce a  |
| □ Power Analysis Attacks. □ Sound-Based Attacks.   □ Electromagnetic Attacks. □ Timing-Based Attacks. |                                             |                                                        |                         |              |                   |                                                                             |                              |           |
| Questi algorith this?                                                                                 |                                             |                                                        |                         |              |                   | s, implementatele. What is a s                                              |                              |           |
| A A                                                                                                   | uted concur                                 | the algorithmently with o                              | other progra            | ams.         | =                 | ecuting the algorypting any o                                               |                              |           |

### Blockchain

**Question 18** Explain the differences between proof-of-work (POW) and proof-of-stake (POS) with their advantages and limitations.

0 0 5 1

 $\square_0 \square_0 5 \square_1$ 

| POW: need to solve a complex cryptographic puzzle: + anyone can join - waste of energy. POS: assign consensus shares + address energy waste problem - need public randomness |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              |

Question 19 Explain the countermeasures used to prevent double spending attacks.

| Use of a proof-of-work (hash power) makes it hard to perform as one need than $50\%$ of the network to cheat and additionally merchants can simply confirmations (at least 6 as a rule of thumb) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                  |  |

## Differential Privacy

Question 20 Consider a vaccination database curated by the Department of Health of a country. This database consists of a single table named 'vaccination\_status' with two columns: the unique user ID (user\_id) comprising alphanumeric values and the number of vaccine doses received by this user (num\_doses) comprising positive integer values. The department relies on the Laplacian mechanism to enable a differentially private query-interface. An analyst has been allotted with a total privacy budget of B to query the vaccination status database.

Every day, the analyst performs two queries:


- 1. Q1: "how many people have been vaccinated with at least one dose" (i.e., SELECT count(user\_id) FROM vaccination\_status WHERE num\_doses > 0;). This query uses a budget  $\varepsilon_1$ .
- 2. Q2: "how many doses have been delivered" (i.e., SELECT sum(num\_doses) FROM vaccination\_status;). This query uses a budget  $\varepsilon_2$ .
- (a) Give and explain what is the sensitivity of Q1 and the parameter of the distribution that the mechanism needs to sample for Q2.
- (b) What is the amount of privacy budget remaining after k days?

Answer and explain both (a) and (b) using the distribution  $Lap(\cdot)$ , B, k, user\_id, num\_doses,  $\varepsilon_1$ , and  $\varepsilon_2$ .

| (a.1) the sensitivity of Q1 is $\Delta_1 = 1$ .<br>(a.2) the noise required for Q2 is sampled from $Lap(max(num\_doses)/\varepsilon_2)$ .<br>(b) $B - k \cdot \varepsilon_1 - k \cdot \varepsilon_2$ |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                      |  |

### Side-Channels & Rowhammer

Question 21 The first operation of the AES encryption algorithm involves the XORing of the secret key bytes with the plaintext bytes, i.e.,  $x_i \oplus k_i$ , for  $0 \le i \le 15$  and  $x_i, k_i \in \{0, 1, \dots, 255\}$ . A side-channel adversary has access to an unprotected AES software implementation whose power consumption is freely measurable. Let  $P(x_i \oplus k_i)$  be the power consumed by the XORing of the i-th key and plaintext byte. For simplicity's sake, let us assume that  $P(x_i \oplus k_i) > P(x_i' \oplus k_i)$  if and only if  $HW(x_i \oplus k_i) > HW(x_i' \oplus k_i)$  where HW(z) is the Hamming weight of the byte z, i.e., number of bits set to 1. Analogously,  $P(x_i \oplus k_i) < P(x_i' \oplus k_i)$  if and only if  $HW(x_i \oplus k_i) < HW(x_i' \oplus k_i)$ . Using exactly 256 encryptions/measurements of  $P(x_i \oplus k_i)$  with varying  $x_i$  give an algorithm that uniquely recovers the i-th key byte  $k_i$ .



**Question 22** Consider the following simple block cipher for an initial plaintext x and key k:

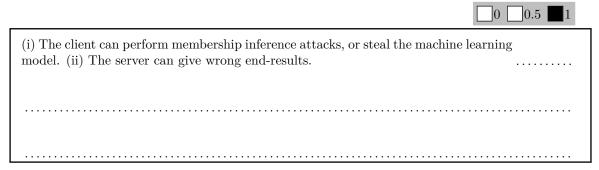
```
\begin{array}{lll} 1: & \textbf{for} \ i \leftarrow 1 \ \text{to} \ N \\ 2: & x \leftarrow \mathsf{KeyAddition}(x,k) \\ 3: & x \leftarrow \mathsf{Substitution}(x) \\ 4: & x \leftarrow \mathsf{Permutation}(x) \end{array}
```

The operations KeyAddition and Permutation are linear operations in x and k whereas Substitution is non-linear. Using the Rowhammer exploit, an adversary managed to divert the program flow in such a way that Substitution is skipped in each round and thus not executed. This is akin to Substitution being the identity function. Explain, why it is now possible to recover k by knowing a plaintext x and its corresponding ciphertext.

Hint. A superficial argument is sufficient for this question.

The entire algorithm has been rendered completely linear. Hence, an adversary can construct a system of linear equations with the key bits as unknowns and solve it ........ using his favorite equation solver, e.g., Gaussian elimination.

## Machine Learning


Question 23 Consider a federated learning setting with several hospitals where the data of the hospitals remain in their own trusted servers, but a global neural network model is trained collaboratively using *multiparty homomorphic encryption*. As such, the model and any intermediate value exchanged among the servers remain encrypted throughout the process and no party alone can decrypt the model.

State two limitations of using multiparty homomorphic encryption in this setting. Assuming that the servers are malicious, explain one possible attack that can be achieved in the training phase.

0.5 1

| Two limitations: computational cost, scalability in terms of complexity of models, limits the computation of non-linear functions, the servers cannot trace the model training (whole process is under encryption). Possible attacks: the servers can poison the model, install backdoors, adversarial examples, etc. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                       |

Question 24 Consider a server that provides machine learning-as-a-service (MLaaS) with a pretrained model. A client is able to query the server to obtain a prediction result on some evaluation data. The server and the client rely on secure multiparty computation to protect confidentiality: the server does not see the client's data nor the end result, and the client only receives the prediction result. What are the possible threats posed by (i) the client and (ii) the server?



# **SQL** Injections

Question 25 Your website lets users authenticate themselves through a password, before handing them private data. In order to do this, the server makes the following SQL query to the database.

SELECT user\_data FROM database WHERE password LIKE '\$pwd';

where pwd is the variable containing the password input by the user, without any type of quotes (e.g., ', ', ") to prevent simple SQL injections.

- (a) Assume the database contains the data of a single user, who has a password of at most 9 alphabetical ([a-z,A-Z]) characters. Design an attack that fully recovers the password with less than 500 attempts. Explain.
- (b) Assume the SQL query is correctly sanitized (i.e., no injection is possible). Give two reasons why authentication should never be handled like that.

| (a) % is not removed, one can bruteforce each character at a time 'b%', etc.). (b) 1. two users sharing the same pwd would get data from try a pwd against all user passwords 3. no hashing                                                                                                                                                                                            | · · · -                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| N. J                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |
| Memory Vulnerabilities                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| <b>Question 26</b> Common defenses against memory vulnerabilities at and ASLR. Please describe (1) how an attacker could bypass the non-                                                                                                                                                                                                                                               |                                                    |
| attacker could bypass the ASLR.                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| (1) Non-exec memory: Instead of writing your code on the stack, sear code (gadgets) in the program that end with a return instruction. Pu of these gadgets on the stack. The gadgets will be executed in seque ASLR typically works by shifting addresses by a constant value. If w program will leak the address of a function or a variable. From this can calculate other addresses | ut the addresses ence. (2) ASLR: re are lucky, the |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |

| <b>A</b>       | $\sim$       |
|----------------|--------------|
| $\Delta$ ccass | Control      |
| ALLESS.        | <b>V</b> (V) |

| <b>Question 27</b> In mandatory access control: (1) What is the goal of no write is the goal of no write-up?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e-down? (2) What       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| (1) No write-down: When protecting confidentiality, we don't want users to value a lower level. (2) No write-up: We don't want users from lower level to write higher levels to protect integrity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Networking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Question 28 (a) Explain what is a DMZ and give an example of a threat the a DMZ.  (b) Explain the difference between DMZ and Zero Trust network. Give an advantage of the contract of the cont | · ·                    |
| over the other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| (a) DMZ separates network into zones. Compromising internet facing server VPN) does not compromise sensitive internal service (e.g., finance) (b) DMZ zones (i.e., firewalls between zones). Zero trust network treats each machine threat (i.e., firewall on every machine). DMZ simpler (no need to configuration). ZTN-potentially more secure as security policy enforced on each machine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | createsne as a re each |

**Question 29** The version 1.2 of the Transport Layer Security (TLS) protocol is standardized by RFC 5246. Below is an extract of the RFC:

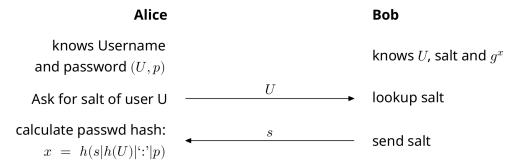
7.4.7. Client Key Exchange Message

When this message will be sent:

This message is always sent by the client. It MUST immediately follow the client certificate message, if it is sent. Otherwise, it MUST be the first message sent by the client after it receives the ServerHelloDone message.

Meaning of this message:

With this message, the premaster secret is set, either by direct transmission of the RSA-encrypted secret or by the transmission of Diffie-Hellman parameters that will allow each side to agree upon the same premaster secret. [...]


[...]

(a) explain the difference between the two possible ways used to set the premaster secret, (b) indicate why one of the two methods (which one?) should be preferred and (c) describe a possible attack against the method indicated in (b).

| <ul> <li>(a) DH key exchange vs. client samples random symmetric key and send to server encrypted with RSA public key of the server.</li> <li>(b) DH key exchange because of (P)FS.</li> <li>(c) MitM, quantum, can accept also attacks from "Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice" if some student read the paper.</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                           |

# Authentication

**Question 30** In Homework 2, you implemented the Secure Remote Password protocol (SRP), a Password Authenticated Key Exchange (PAKE). The first steps of SRP are shown below.



Briefly answer the following questions.

- 1. List the **two** goals of a PAKE.
- 2. Discuss a possible attack carried out by an eavesdropper Eve against the SRP protocol.

|                                                                                                   | 0 0.5 1  |
|---------------------------------------------------------------------------------------------------|----------|
| (a) verify the password of a remote party and exchange a key (b) get salt and to bruteforce $x$ . | username |
| to bruteforce x.                                                                                  | •••••    |
|                                                                                                   |          |
|                                                                                                   |          |
|                                                                                                   |          |