
Cryptography and Security

http://lasec.epfl.ch/

Solution Sheet 7
Cryptography and Security 2022

Solution 1 Elliptic Curve Factoring Method

1. Due to the Lagrange Theorem, q.S = O for any initial point S. So, if i is large enough, q divides
i! and for sure, i!.S = O. Hence, Proc1 terminates.

2. Let q =
∏
j
αjk
k be the factorization into primes of q, with αjk > 1 and j1 < j1 < · · · primes.

Due to the assumption, we have αjk ≤
⌊
M(q)
jk

⌋
. So, q divides

∏
j

⌊
M(q)
jk

⌋
k .

We have bM(q)/jc integers multiple of j between 1 and M(q) so j

⌊
M(q)
jk

⌋
k divides M(q)! for all k.

Since all jk are different primes,
∏
j

⌊
M(q)
jk

⌋
k divides M(q)! as well. Hence, q divides M(q)!. We

deduce that i = M(q) makes the algorithm terminate.

As M(q) is prime, (M(q)− 1)! is not divisible by M(q) so when the order of P is a multiple of
M(q), i = M(q)− 1 does not terminate.

So, i = M(q) is the smallest i making the algorithm terminate.

3. For any polynomial function f , f(x) mod n mod p = f(x) mod p. This is also the case when
we have divisions, except if we try to divide by something non invertible. So, by induction, the
intermediate results are equal modulo p until we have an illegal division.

4. The original algorithm never tries to divide by something non-invertible. So, the new algorithm
never tries to divide by a multiple of p. If it tries to divide by some value z which is not
invertible modulo n, then gcd(n, z) > 1 and p does not divide z. So, gcd(n, z) is a non-trivial
factor of n. Hence, we can run the extended Euclid algorithm (u, d) = eEuclid(n, z) to obtain
the d = gcd(n, z) and the inverse u of z modulo n (if d = 1). If d > 1, we can abort and yield d
as a non-trivial factor of n.

5. If two points are equal modulo n, they must be equal modulo p. However, two different points
modulo n may become equal modulo p. What can go wrong is when we add two points P and
Q such that P 6= −Q modulo n but P = −Q modulo p. In that case, xQ − xP is a multiple of p
but not a multiple of n and we are back in the previous case which will yield a non-trivial factor
of n. If P 6= Q modulo n but P = Q modulo p, this is the same.

6. We cannot try to solve y2 = x3 + ax + b modulo n as we do not know how to extract roots
modulo n. Instead, we pick S = (x, y) at random in Zn then a ∈ Zn at random then set
b = y2 − x3 − ax:

1: pick S = (x, y) ∈ Z2
n at random

2: pick a ∈ Zn at random
3: set b = y2 − x3 − ax

7. We have seen that Proc1 terminates with “very high” probability with a number of iterations
equal to M(q). If Proc2 terminates without any illegal division, it means that for each prime
factor p′ of n, the order q′ of the curve modulo p′ have all the same M(q′). Since these orders
are random and independent, this is “highly unlikely” to happen.

Here is the final algorithm:

1

http://lasec.epfl.ch/


Table 1: Weak keys of DES
C D k

{0}28 {0}28 PC1−1({0}28, {0}28)
{0}28 {1}28 PC1−1({0}28, {1}28)
{1}28 {0}28 PC1−1({1}28, {0}28)
{1}28 {1}28 PC1−1({1}28, {1}28)

Add3(Ea,b(n), P,Q)
1: if xP ≡ xQ (mod n) and yP ≡ −yQ (mod n) then
2: return O
3: end if
4: if xP ≡ xQ (mod n) and yP ≡ yQ (mod n) then
5: set (u, d) = eEuclid(n, 2yP )
6: if d > 1, abort and yield d
7: set λ = ((3x2P + a)× u) mod n
8: else
9: set (u, d) = eEuclid(n, xQ − xP )

10: if d > 1, abort and yield d
11: set λ = ((yQ − yP )× u) mod n
12: end if
13: set xR = (λ2 − xP − xQ) mod n
14: set yR = ((xP − xR)λ− yP ) mod n
15: return R = (xR, yR)

ECM(n)
1: pick S = (x, y) ∈ Z2

n at random
2: pick a ∈ Zn at random
3: set b = y2 − x3 − ax mod n
4: set i = 1
5: while S 6= O do
6: i← i+ 1
7: S ← i.S with the double-and-add algorithm using Add3(Ea,b(n), P,Q)
8: end while
9: stop (the algorithm failed)

Based on the previous questions, this algorithm is most likely to yield p, or at least a non-trivial
factor but we can then run it recursively until we find p. Furthermore, its expected number of

iterations is e
√

(1+o(1)) ln p ln ln p.

Solution 2 Weak Keys of DES

If the subkeys k1 to k16 are equal, then the reversed and original key schedules are identical. In that
case, DESk clearly is an involution. The sixteen subkeys will be equal when the registers C and D are
all-zero or all-one bit vectors, as the rotation of such bitstrings has no effect on them. Therefore, the
four weak keys of DES can easily be computed by applying PC1−1 to the four possible combinations
of these C and D values. We have represented the weak keys of DES on Table 1, where {b}n denotes
a sequence of n bits all equal to b.

Solution 3 Complementation Property of DES

1. First note that x ⊕ y = x⊕ y and that x ⊕ y = x ⊕ y. The initial and final permutations (IP
and IP−1) do not have any influence on our computations, so we will not consider them. We

2



can write one round of DES as

(CL, CR)← (PR, PL ⊕ F (PR,K))

where PL and PR denote the left and right half of the plaintext, respectively, where CL and CR
denote the left and right half of the ciphertext and where K denotes the key. From the definition
of the key schedule algorithm, we see that if we take the bitwise complement of the key, then
each subkey will turn into its bitwise complement as well. Furthermore, from DES F -function
definition, we can see that if we complement its input and the subkey, then the input of the
S-boxes and thus the output will remain the same. We can thus write

(CL, CR)← (PR, PL ⊕ F (PR,K)) = (PR, PL ⊕ F (PR,K))

If we extend this to the whole Feistel scheme, then we can conclude that DESK(x) = DESK(x).

2. The following algorithm describes a brute force attack that exploits the complementation prop-
erty of DES. Note that in this algorithm, c corresponds to DESk(x) = DESk(x). Therefore, if the
condition of line 6 is true, we almost surely have K = k. In the loop, the only heavy computation
is the computation of DESk(x), and we expect to perform 254 such computations.

Input: a plaintext x and two ciphertexts DESK(x) and DESK(x)
Output: the key candidate for K
Processing:
1: for all non-tested key k do
2: c← DESk(x)
3: if c = DESK(x) then
4: output k and stop.
5: end if
6: if c = DESK(x) then
7: output k and stop.
8: end if
9: end for

Solution 4 A Weird Mode of Operation

1. It is equivalent to the ECB mode. Namely, a passive adversary can compute ti and then yi ⊕ ti
for every i. This gives the ECB encryption of x1, . . . , xn.

2. No.

3. Like the ECB mode, if the entropy of a block xi is low, then yi ⊕ ti repeats. For instance,
xi = xj is equivalent to yi ⊕ ti = yj ⊕ tj which can be observed with values which are sent over
the insecure channel.

3


	Elliptic Curve Factoring Method
	Weak Keys of DES
	Complementation Property of DES
	A Weird Mode of Operation

