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Solution 1 Computation in GF(2*) and Linear Algebra

1. (a) X3+ X + 1 is irreducible because it has no roots (only correct for polynomials of degree 2
and 3), while X3 + 1 is reducible.

(b) X3+ X + 1 is irreducible so it can not be factored, but we can factor X2 +1 as X3 +1 =
(X +1)(X2+ X +1).

(c) 2% = 8 elements.

(d) 2?2 =2 —224+2=0—2(x+1)=0,s0 x =0,z = 1 are solutions, but as we are in a field

and the degree of the polynomial is 2 we can not have more roots.

) < X>={1, X, X2 X +1, X+ X, X2+ X +1,X%2+1}

(f) 22 =1 = (z+ 1)(x — 1) = 0, so we have only one solution x = 1 over GF(2)(2), but to
prove that we have no more solutions, we say that all of the roots of this equation form a
subgroup of F\{0}, x (we can simply show it!), so the order of this subgroup should divide

the order of the group, while the order of the group is 7, so we can have only one solution.
In GF(3), we have two solutions z = 1 and z = 2.

—
)

(g) In Z, with n = pq as a product of two large primes, we need to solve 22> = 1 mod pgq, while
by CRT we can rewrite it as 22 = 1 mod p and 22 = 1 mod ¢, so we will have

z =1 mod p z =1 mod q
z=-1mod p z=-1mod ¢

So, for the system of equations to pick and solve by CRT we have 4 options, so we will get
4 solutions using CRT. If we work in Zg, then the first two equations in the system above
would be equal and so we will get only 2 solutions using CRT. We can not use CRT in Zyg,
because 2 and 2 are not coprime, so the only way is to exhaustively search for all possible
solutions and we will obtain 2 solutions.

(h) We have Sq(X +Y) = (X +Y)? = X? +Y? +2XY = X2 4+ Y2 = Sq(X) + Sq(Y). To
show that Sgq is one-one, first we claim that Sq(X) = 0 leads to X = 0, that is because
F\{0} is a cyclic multiplicative group that there is no element in F\{0} with X? = 0, so
Sq(X) = 0 leads to X = 0. Then we can check that Sq(X —Y) = Sq(X) 4+ Sq(Y). To
prove that it is injective we need to show that if Sq¢(Y') = Sq¢(X) leads to X =Y. We have
Sq(X) —Sq(Y) =Sq(X —Y) =0. Therefore, X =Y, so the function is injective. As Sq
is from F' to F, so it is surjective as well, so it is bijective.

2. Let us consider the polynomial P(X) = X4 + X + 1 in Zy[X].

a) P(0) =1 and P(1) = 1, so it has no roots.

(
(

)
b) Having no root is equivalent to having no factor of degree 1 in Zs|x].
() {X2, X2+ 1,X?+ X, X%+ X +1} and X2+ X + 1 is irreducible.
(d)
)

d) If you divide P(X) by Q(X), you will see the remainder is not zero.
(e

P(X) has no roots and is not divisible by the only irreducible polynomial of degree two so
it is irreducible.
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Solution 2 Elliptic Curves and Finite Fields |

1. The multiplication table of the elements of K is given in Table 1.

Table 1: Multiplication table of Z~
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2. Let P = (x,y) be a point of Ey ;.

e If 2 = 0, y must satisfy y*> = 1, so that (0,1) and (0,6) are points of Eq .
e If z =1, y must satisfy y? = 4, so that (1,2) and (1,5) are points of Eq .
o If x = 2, y must satisfy 2 = 6, which is impossible.
e If x = 3, y must satisfy 2 = 6, which is impossible.
o If x = 4, y must satisfy 2 = 3, which is impossible.
e If x =5, y must satisfy 2 = 3, which is impossible.
o If x = 6, y must satisfy 2 = 5, which is impossible.
Finally Eo = {0, (0,1),(0,6), (1,2), (1,5)} and thus |Ea ;| = 5. According to Hasse’s Theorem,

we should have ||K|+1—|Ez;|| <2y/|K]|. As [|[K|+1—|Eg1||=74+1-5=3and 2\/|K| =
24/7 > 3, everything is fine.

3. Table 2 confirms that —P lies on the curve as well.
Table 2: Inverse elements of Eg 1
P 0 (0,1) (0,6) (1,2) (1,5)
—P o (0a6) (07 1) (175) (1¢2)
4. As Eg is a group of prime order, each of its elements (except O) is a generator. This is because

the order of an element should divide |Eg 1|, which is prime, so that the order of an element is
either 1 (this is only the case for O) or |[Eg;|. We choose for example G = (1,2) as a generator.
Consider the mapping
@ Z5 — E271
v — G

It is easy to show that ¢ is a group isomorphism. From

(a+p8)G
oG + G (by associativity of + in Es )
= ¢(a) +¢(p),

p(a+ )

@ is a group homomorphism. As

(1) =0 = 1G=0
= =0 (as G is a generator of Eg 1),



Table 3: Elements generated by a generator G in Es 1

G 2G 3G 4G 5G
(1,2) (0,1) (0,6) (1,5) o
¢ is injective. As |Zs| = |Eg1|, ¢ is an isomorphism. Therefore, Eg ; is isomorphic to Zs. Note

that an isomorphism is very useful to compute the addition table of the points of the elliptic
curve. Indeed, after some computations, one can obtain Table 3.

From the definition of the isomorphism ¢, we have the following correspondence between the
elements of Eg 1 and of Zs:

O < 0
(1,2) < 1
0,1) « 2
(0,6) + 3
(1,5) « 4

The addition table of the elements of Zs is given in Table 4.

Table 4: Addition table of Zs

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
From this, we easily obtain the addition table of the elements of Ey 1 which is given in Table 5.
Table 5: Addition table of Es
+ @) (1,2) (0,1) (0,6) (1,5)
(@) @) (1,2) (0,1) (0,6) (1,5)
(1,2) (1,2) (0,1) (0,6) (1,5) @)
(0,1) (0,1) (0,6) (1,5) O (1,2)
(0,6) (0,6) (1,5) (1,2) (0,1)
(1,5) (1,5) (1,2) (0,1) (0,6)

Solution 3 Encoding Messages in Elliptic Curves

1. We have rQQ = rdP = dR. This is actually the Diffie-Hellman property: the receiver selects a
long-term secret d and a public key () = dP and the sender selects an ephemeral secret r and a
public R = rP. The key on which they agree is rd P, computed as 7@ on the sender side and as
dR on the receiver side.

The cryptosystem is performing this Diffie-Hellman-like protocol, then encrypt the point M by
the generalized Vernam cipher with key rdP, i.e., by adding these two points.

So, M =S — dR which is computed with the secret d and the ephemeral public key R from the
ciphertext. Thus, m = map~1(S — dR).

2. We need map to



e map bitstrings to the group spanned by P (i.e., the entire elliptic curve, since P generates
it by assumption),

e to be easy to compute,
e to be injective (to be invertible),

e and to have its inverse easy to compute.

First of all, the output of map is clearly in the group spanned by P.

To make it invertible, we must restrict the length of m to logy n.

Then, we realize that computing map ™" is hard since it consists of computing a discrete logarithm

in the elliptic curve. So, this function is not usable.

. If the computation works, map(m) is clearly a point of the elliptic curve.

To make it invertible, we must restrict the length of m to log, p. Then, map™'(z,y) = integer *(z).
So, we only have to convert an integer into a bitstring, which is easy to do.

One problem is that 3?2 = 22 + ax + b has a solution if and only if 23 + ax + b is a quadratic
residue, and this is not guaranteed. So, m may have no image by map.

. To evaluate map, we increment 7 from 0 until (%) = +1, for x = 2Finteger(m) + i. Then,
we take y the smallest integer such that y? = 23 + az + b and set map(m) = (z, ).
We define map~!(z,y) = integer ! (L3])-

This function seems to satisfy our needs, but the distribution of map(m) is not so good (some
points have no preimage), the complexity is not so nice (we may need to test quadratic residuosity
for several values), and we may be careful that map(map~!(z,y)) may not be equal to (z,v).

. A random value in Z, has a square root with probability roughly % By rough estimates, a set
of 2% random values has all its elements with no square root with probability 92"

We can encrypt up to p2~* possible plaintexts. Let S be the size of the plaintext space, between
2 and p27*. We have S sets of 2¥ random values. Finally, the probability that one of the S set
is like this is between 272 and S2_2k, depending on S.

In the worst case, we have S = p2~*. We can just take k = 9 and have a probability lower than

2780 in any case.
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