

Solution Sheet 14

Cryptography and Security 2022

Solution 1 TCHO Encryption

1. The C(x) is a repetition of x and S_{γ} generates bits which are biased towards 0. We can just look at the majority of $C(x) + S_{\gamma}(r')$ which is most likely to be equal to x. The complexity is $\mathcal{O}(\ell)$. There is however a probability of giving an incorrect result which is bounded by

$$p = \sum_{i=\frac{\ell}{2}}^{\ell} {\ell \choose i} \left(\frac{1}{2}(1+\gamma)\right)^i \left(\frac{1}{2}(1-\gamma)\right)^{\ell-i}$$

- 2. Since $K(1) = w \mod 2 = 1$ and is a multiple of P(1) we must have an odd number of nonzero terms in P(z). It is easy to check if $C(x) + \mathcal{L}_P(r)$ satisfies the linear relation defined by P(z) or its opposite by just looking at the first d terms. The complexity is $\mathcal{O}(d)$.
- 3. From the definition of $K \otimes y$ we can see that $(K \otimes C(x))_i = K(x) \mod 2$ for all i. Since w is odd, we have $K(x) \mod 2 = x$ so $K \otimes C(x) = (x, x, \dots, x)$.
- 4. Let $y = \mathcal{L}_P(r)$. Since K(z) is a multiple of p(z), let us write K(z) = P(z)Q(z). We have $K_s = \sum_{i+j=s} P_i Q_j$ so

$$(K \otimes y)_t = \sum_{i,j} y_{t+i+j} P_i Q_j = \sum_j \sum_{i=0}^d y_{t+i+j} P_i$$

Clearly, we have $\sum_{i=0}^{d} y_{t+i+j} P_i = 0$ for all j and t. So, $K \otimes \mathcal{L}_P(r) = 0$.

5. For any i, $(K \otimes S_{\gamma}(r'))_i$ is the XOR of exactly w independent bits of bias γ so it has a bias of γ^w . Indeed, if b is a random bit of bias γ , it means that the probability of being 0 is $\frac{1}{2}(1+\gamma)$ so $\gamma = E((-1)^b)$. If b_1, \ldots, b_w are independent of bias γ we have

$$E((-1)^{b_1 \oplus \cdots \oplus b_w}) = E((-1)^{b_1 + \cdots + b_w}) = E((-1)^{b_1} \times \cdots \times (-1)^{b_w})$$

Due to the independence, this is $E((-1)^{b_1})\cdots E((-1)^{b_w}) = \gamma^w$.

- 6. We compute $K \otimes \mathsf{Enc}_P(x; r, r')$ in time $\mathcal{O}(d_K \ell)$. Due to the previous questions, this must be equal to $(x, x, \ldots, x) + K \otimes \mathcal{S}_{\gamma}(r')$. Assuming that γ^w is not too small and that ℓd_K is large enough, we can recover x by computing the majority. The complexity is $\mathcal{O}(d_K \ell)$.
- 7. We compute a list of many $1 + \sum_{j=1}^{\frac{w-1}{2}} z^{i_j} \mod P(z)$ and another list of many $\sum_{j=\frac{w-1}{2}+1}^{w-1} z^{i_j} \mod P(z)$ and look for matching. This works with complexity $\mathcal{O}(2^{\frac{w-1}{2}})$ which is not polynomial.