3’__ A S_ E g Cryptography and Security

11111111

.......................... http://lasec.epfl.ch/

Solution Sheet 11

Cryptography and Security 2022

Solution 1 Distribution of Birthdays

—_

It is 1/N due to uniform distribution.

It is again 1/N due to uniform distribution and independence.

The probability to be in a 3-collisions is (MQ_I) ﬁ (1 — %)M_s ~ 1.9%.
We could do the same computation for a 2-collision: the probability that exactly one other

student share his birthday is (Ml_1> % (1 — %)M_Q ~ 18%.

)M % 80%.

The probability that no student share his birthday is (1 — %

We have (]\24) pairs of students. Each pair share the same birthday with probability 1/N. So,
is should be (g) % =~ 8.9.

For triplets, this is (1\34) ﬁ ~ 0.6.

The pairs are from the pool of 2-collisions and 3-collisions. In a 3-collision, we have 3 pairs. In
a 2-collision, we have a single pair. So, we have 3 x 3 4+ 6 x 1 = 15 pairs of students with the
same birthday. There is a gap between 15 and 8.9.

Clearly, we have only 3 triplets of students sharing the same birthday. There is a gap between
3 and 0.6.

Most probably, the distribution of birthdays in the class is not uniform. This can explain the

discrepancy.

We have Prlcollision] < (1\24) + with N = 10°. We can solve <A24) # < 0.01 and obtain
¢ > 2+ logy (A2/1> ~ 5.5. So, £ = 6 digits are enough for Pr[collision] < 1%.

With ¢ = 5 digits, we have

M-1 .
i
Pr|collision] =1 — 1-—1~=0.03
r[collision] H < N)

i=0
so 5 digits are not enough. Note that we obtain the same result by using the approximation

M2

Pr[collision] &~ 1 — e™ 2N

Solution 2 RSA for Paranoids

1.

The bottleneck is making an s-bit prime number, which can be done in O(s%).

http://lasec.epfl.ch/

2. For plain RSA, the condition would be ged(e, (p — 1)(¢ — 1)) = 1. Here ¢ is not a prime, and
its factorization is not even known, so that computing ¢(pq) is not an easy task. We can guess
that the condition we are looking for is ged(e,p — 1) = 1. We now show that this is sufficient to

make E injective. For any mq,mg € {0,1,...,251 — 1}, we have
E(mi) = E(m2) = mf{=m§ (mod pq)
= mi{=m5 (mod p).

As ged(e,p — 1) = 1, we can find (using the Extended Euclid Algorithm) two integers u, v such
that ue — v(p — 1) = 1. Therefore

E(mi) = E(ms) = mi°=mj" (mod p)

- miJrv(p,l) — méJrv(pfl) (mod p)

= mp=mg (modp),

using Fermat’s Little Theorem. Finally, as m; < p and my < p, the last condition is sufficient
to show that m; = mo.

3. As gcd(e,p—1) = 1, we can compute d = ¢! mod (p — 1), so that there exists some k € Z such
that ed =1+ k(p — 1). To decrypt, we compute

14+k(p—1)

E(m)? mod p = m® mod p=m mod p=m,

using Fermat’s Little Theorem.

4. Encryption is a modular exponentiation, so that the complexity is O(s3t?) (exponent is of length
s, multiplication of st-bit long integers is quadratic). Similarly, decryption’s complexity is O(s3)
(integers are s-bit long). We can accept O(s3) for both complexities if ¢ is considered as a
constant. The complexity of the key generation is the same as for plain RSA, that is, O(s*)
(prime generation).

5. If e is smaller than t, m® mod n is simply m®, since m® < n. So, anyone can extract eth roots
over Z and decrypt the ciphertext c.

6. Clearly, the knowledge of p enables to compute the secret key and thus to decrypt. Conversely,
suppose we can decrypt, i.e., we have access to a decryption machine that takes as an input any
ciphertext and returns as an output the result of the decryption process on the ciphertext. We
choose to submit the encryption of a large plaintext m such that p < m < 2p (even if p is not
known yet, such a m can be chosen as we know the size of p). We can write m as m = p + u,
where © < p. The decryption machine allows to recover u easily. Indeed, if we submit the
ciphertext m® mod n the decryption machine returns

m® mod p = (p+u)** mod p=u*’mod p=u,

as u was chosen smaller than p. Knowing m and u allows to recover p as p = m — u. Note that

the same kind of ideas can be applied to the Rabin cryptosystem.

7. This works as in Question 6, since we have a decryption oracle at disposal.

8. To thwart this attack, one can add some redundancy in the message before encryption, and
check the redundancy after decryption before disclosing the result.

	Distribution of Birthdays
	RSA for Paranoids

