
Cryptography and Security

http://lasec.epfl.ch/

Solution Sheet 11
Cryptography and Security 2022

Solution 1 Distribution of Birthdays

1. It is 1/N due to uniform distribution.

2. It is again 1/N due to uniform distribution and independence.

3. The probability to be in a 3-collisions is
(
M−1
2

)
1
N2

(
1− 1

N

)M−3 ≈ 1.9%.

We could do the same computation for a 2-collision: the probability that exactly one other

student share his birthday is
(
M−1
1

)
1
N

(
1− 1

N

)M−2 ≈ 18%.

The probability that no student share his birthday is
(
1− 1

N

)M−1 ≈ 80%.

4. We have
(
M
2

)
pairs of students. Each pair share the same birthday with probability 1/N . So,

is should be
(
M
2

)
1
N ≈ 8.9.

For triplets, this is
(
M
3

)
1
N2 ≈ 0.6.

5. The pairs are from the pool of 2-collisions and 3-collisions. In a 3-collision, we have 3 pairs. In
a 2-collision, we have a single pair. So, we have 3 × 3 + 6 × 1 = 15 pairs of students with the
same birthday. There is a gap between 15 and 8.9.

Clearly, we have only 3 triplets of students sharing the same birthday. There is a gap between
3 and 0.6.

Most probably, the distribution of birthdays in the class is not uniform. This can explain the
discrepancy.

6. We have Pr[collision] ≤
(
M
2

)
1
N with N = 10`. We can solve

(
M
2

)
1
10`
≤ 0.01 and obtain

` ≥ 2 + log10

(
M
2

)
≈ 5.5. So, ` = 6 digits are enough for Pr[collision] ≤ 1%.

With ` = 5 digits, we have

Pr[collision] = 1−
M−1∏
i=0

(
1− i

N

)
≈ 0.03

so 5 digits are not enough. Note that we obtain the same result by using the approximation

Pr[collision] ≈ 1− e−
M2

2N

Solution 2 RSA for Paranoids

1. The bottleneck is making an s-bit prime number, which can be done in O(s4).

1

http://lasec.epfl.ch/


2. For plain RSA, the condition would be gcd(e, (p − 1)(q − 1)) = 1. Here q is not a prime, and
its factorization is not even known, so that computing ϕ(pq) is not an easy task. We can guess
that the condition we are looking for is gcd(e, p− 1) = 1. We now show that this is sufficient to
make E injective. For any m1,m2 ∈ {0, 1, . . . , 2s−1 − 1}, we have

E(m1) = E(m2) ⇒ me
1 ≡ me

2 (mod pq)

⇒ me
1 ≡ me

2 (mod p).

As gcd(e, p− 1) = 1, we can find (using the Extended Euclid Algorithm) two integers u, v such
that ue− v(p− 1) = 1. Therefore

E(m1) = E(m2) ⇒ mue
1 ≡ mue

2 (mod p)

⇒ m
1+v(p−1)
1 ≡ m

1+v(p−1)
2 (mod p)

⇒ m1 ≡ m2 (mod p) ,

using Fermat’s Little Theorem. Finally, as m1 < p and m2 < p, the last condition is sufficient
to show that m1 = m2.

3. As gcd(e, p− 1) = 1, we can compute d = e−1 mod (p− 1), so that there exists some k ∈ Z such
that ed = 1 + k(p− 1). To decrypt, we compute

E(m)d mod p = med mod p = m1+k(p−1) mod p = m ,

using Fermat’s Little Theorem.

4. Encryption is a modular exponentiation, so that the complexity is O(s3t2) (exponent is of length
s, multiplication of st-bit long integers is quadratic). Similarly, decryption’s complexity is O(s3)
(integers are s-bit long). We can accept O(s3) for both complexities if t is considered as a
constant. The complexity of the key generation is the same as for plain RSA, that is, O(s4)
(prime generation).

5. If e is smaller than t, me mod n is simply me, since me < n. So, anyone can extract eth roots
over Z and decrypt the ciphertext c.

6. Clearly, the knowledge of p enables to compute the secret key and thus to decrypt. Conversely,
suppose we can decrypt, i.e., we have access to a decryption machine that takes as an input any
ciphertext and returns as an output the result of the decryption process on the ciphertext. We
choose to submit the encryption of a large plaintext m such that p < m < 2p (even if p is not
known yet, such a m can be chosen as we know the size of p). We can write m as m = p + u,
where u < p. The decryption machine allows to recover u easily. Indeed, if we submit the
ciphertext me mod n the decryption machine returns

med mod p = (p + u)ed mod p = ued mod p = u ,

as u was chosen smaller than p. Knowing m and u allows to recover p as p = m− u. Note that
the same kind of ideas can be applied to the Rabin cryptosystem.

7. This works as in Question 6, since we have a decryption oracle at disposal.

8. To thwart this attack, one can add some redundancy in the message before encryption, and
check the redundancy after decryption before disclosing the result.

2


	Distribution of Birthdays
	RSA for Paranoids

