
Cryptography and Security

http://lasec.epfl.ch/

Solution Sheet 10
Cryptography and Security 2022

Solution 1 CFB-MAC

1. We can simply query a message x of one block to the oracle O. The oracle returns the value
y = x⊕ Ek(IV). Hence, Ek(IV) is found by computing x⊕ y.

2. After querying n different messages to O, we receive n MAC values for which we would like to
get a collision. The probability to have at least one collision is given by the Birthday Paradox.

Let N = 264. We know that the probability is approximated by 1− e−
θ2

2 , where n = θ
√
N . In

our case, θ = 4 since θ2

2 = 8. Thus, n must at least be equal to 4 · 232 = 234.

3. Letm = x1‖x2‖ · · · ‖xn and h = CFB-MACk(m). We take another messagem′ = x1‖x2‖ · · · ‖xn−1‖x′n
where x′n is any block of 64 bits. Since CFB mode is used with a fixed IV the output blocks
of m′ will be identical to those of m except the last one. Since h′ = CFB-MACk(m

′) =
y1 ⊕ · · · ⊕ yn−1 ⊕ y′n and h = y1 ⊕ · · · ⊕ yn, we have h ⊕ h′ = yn ⊕ y′n. We also know that
yn = Ek(yn−1) ⊕ xn and y′n = Ek(yn−1) ⊕ x′n. Using these two relations, we finally deduce that
h′ = h⊕ yn ⊕ y′n = h⊕ xn ⊕ x′n.

4. Set m = x1‖x2 and x1 = Ek(IV) ⊕ IV. We then have y1 = IV and y2 = h ⊕ IV. Thus,
x2 = Ek(y1)⊕ y2 = Ek(IV)⊕ IV ⊕ h.

5. Yes, this works in the same way! Set m = x1‖x2‖ · · · ‖xn where x1 = x2 = · · · = xn−1 =
Ek(IV)⊕ IV. Hence, y1 = y2 = · · · = yn−1 = IV. If n is even, setting xn = h⊕ IV⊕Ek(IV) gives
yn = h⊕ IV and thus y1 ⊕ · · · ⊕ yn = h. If n is odd, setting xn = h⊕ Ek(IV) gives yn = h and
thus y1 ⊕ · · · ⊕ yn = h.

Solution 2 Analysis of the Floyd Cycle Finding Algorithm

1. We simply store in the last loop the previous position.

Input: an initial string x0, a function F : {0, 1}∗ → {0, 1}n.
Output: Two elements a′, b′ such that F (a′) = F (b′).

1: a← x0 //(tortoise)
2: b← x0 //(hare)
3: repeat
4: a← F (a)
5: b← F (F (b))
6: until a = b
7: a← x0
8: while a 6= b do
9: a′ = a

10: b′ = b
11: a← F (a)
12: b← F (b)
13: end while
14: return a′ and b′

1

http://lasec.epfl.ch/


The algorithm is failing when λ = 0. In this case, there is no collision. This happen with very
small probability.

2. Let j be the iteration at which a = b. Note first that this can happen only in the loop and not
in the tail since the hare is going twice faster. Hence j ≥ λ. We have

2j − λ ≡ j − λ (mod τ) ,

since we have to remove the tail part. This implies that j ≡ 0 (mod τ) and, hence, that τ |j.
To prove the other direction, suppose we are at a step i such that i ≥ λ and τ |i. From the first
condition, we know that we are in the loop. From the second condition, we know that we can
write i = τk for some integer k. We also know that we did 2i − λ = 2τk − λ steps in the loop
with the hare and i− λ = τk− λ steps in the loop with the tortoise. If we look at their position
in the loop, i.e., we take the number of steps modulo τ , we have τk − λ ≡ 2τk − λ (mod τ).
Hence, both the tortoise and the hare are on the same point of the loop. This point is at the
position −λ mod τ of the loop, i.e., λ steps before the end of the loop.

3. From the previous point, we know that the tortoise and the hare meet always when τ |i and
i ≥ λ. To see after how many iterations the loops stops, we are looking for the smallest such i.
Hence, the number of iterations is the smallest multiple of τ greater than λ. This is obviously
(when λ 6= 0) dλ/τeτ since there are dλ/τe − 1 multiples of τ that are smaller than λ.

4. Since we know from question 2 that a = b at point −λ mod τ of the loop, we know that after
λ steps, the tortoise (a) will have walked on the tail and reach the meeting point between the
tail and the loop. On the other hand, the hare (b)(which is now going slowly) will have done λ
steps as well and reach the same point.

5. For the first loop, we have τ ≥ λ with probability 1/2. In this case, we have to stop after τ
iterations and we need 3

√
π2n/8 evaluations of F in average. If τ < λ, we stop after 2τ iterations

and we need 6
√
π2n/8 evaluations of F in average. Hence, we have an average complexity for

the first loop of 4.5
√
π2n/8

In the second loop, we do 2
√
π2n/8 evaluations of F . Hence, for the whole algorithm, we do

6.5
√
π2n/8 evaluations of F in average.

We need to store four n bit words (a, a′, b, b′) as well as x0. Hence, in total, we need only 5n
bits of memory.

2


	CFB-MAC
	Analysis of the Floyd Cycle Finding Algorithm

