

Prerequisites Test

Cryptography and Security 2023

Exercise 1 Probability

Given a discrete random variable X, we recall the definition of entropy H(X)

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

And the associated notion of joint entropy H(X,Y) and conditional entropy H(X|Y)

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$H(X|Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(x|y)$$

Question 1.1

Show the following *chain rule* for entropy.

$$H(X,Y) = H(Y) + H(X|Y)$$

Proof. Recall the chain rule for probabilities: p(x,y) = p(x|y)p(y). Then we have

$$\begin{split} H(X,Y) &= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y) \\ &= -\sum_{x \in X} \sum_{y \in Y} p(x,y) (\log_2 p(x|y) + \log_2 p(y)) \\ &= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x|y) - \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y) \\ &= H(X|Y) + H(Y). \end{split}$$

Question 1.2

Consider the following symmetric encryption system: We consider a plaintext space $\mathcal{M} = \{m_1, m_2, m_3\}$, key space $\mathcal{K} = \{k_1, k_2, k_3\}$ and a ciphertext space $\mathcal{C} = \{1, 2, 3, 4, 5\}$. We denote

by P, C, K the random variables for the plaintext, ciphertext and keys respectively. The encryption is given by the following matrix:

$$\begin{pmatrix} m_1 & m_2 & m_3 \\ k_1 & 2 & 1 & 4 \\ k_2 & 1 & 5 & 3 \\ k_3 & 2 & 4 & 5 \end{pmatrix}.$$

This means that e.g. the encryption of m_1 with k_1 is 2.

Additionally we suppose that the keys are equiprobable, and that the plaintexts appear with the following probabilities:

$$p(m_1) = \frac{1}{2}, \quad p(m_2) = \frac{3}{20}, \quad p(m_3) = \frac{7}{20}.$$

Compute the following entropies, justify your computations when necessary and simplify all the expressions as much as possible :

- 1. H(P)
- 2. H(K)
- 3. H(C)
- 4. H(P|C)

Answer.

1.

$$\begin{split} H(P) &= -\frac{1}{2}\log\frac{1}{2} - \frac{3}{20}\log\frac{3}{20} - \frac{7}{20}\log\frac{7}{20} \\ &= (\text{simplifying...}) \\ &= \frac{3}{2} + \frac{1}{2}\log5 - \frac{3}{20}\log3 - \frac{7}{20}\log7 \simeq 1.44. \end{split}$$

2. The keys are equiprobable.

$$H(K) = -\log\frac{1}{3} = \log 3 \simeq 1.58.$$

3. Step 1: Compute $p(c_i) = \Pr(C = i)$ for each i.

$$p(c_1) = p(m_2, k_1) + p(m_1, k_2) = \frac{13}{60}$$

similarly, $p(c_2) = \frac{1}{3}$, $p(c_3) = \frac{7}{60}$, $p(c_4) = \frac{1}{6}$, $p(c_5) = \frac{1}{6}$

Step 2: Compute H(C)

$$\begin{split} H(C) &= \text{(use formula and replace with the values computed above, simplify)} \\ &= 1 + \log 3 + \frac{1}{3} \log 5 - \frac{7}{60} \log 7 - \frac{13}{60} \log(13) \\ &\simeq 2.23 \end{split}$$

- 4. Direct computation method. (Might use chain rule if they want to). Step 1: Compute $P(m_i|C=i)$.
 - 1.1 Rule out impossibilities:

$$0 = p(m_3|C=1) = p(m_2|C=2) = p(m_3|C=2)$$
$$= p(m_1|C=3) = p(m_2|C=3) = p(m_1|C=4)$$
$$= p(m_1|C=5)$$

1.2 Observe "obvious ones":

$$1 = p(m_1|C=2) = p(m_3|C=3). (1)$$

1.3 Compute the combinations that are left.

$$p(m_1|C=1) = \frac{p(m_1, c_1)}{p(c_1)} = \frac{p(m_1, k_2)}{p(c_1)} = \frac{10}{13}$$

$$p(m_2|C=1) = \frac{3}{13}$$

$$p(m_2|C=4) = \frac{3}{10}$$

$$p(m_3|C=4) = \frac{7}{10}$$

$$p(m_2|C=5) = \frac{3}{10}$$

$$p(m_3|C=5) = \frac{7}{10}$$

Step 2: Put everything together and compute H(P|C).

$$H(P|C) = \frac{1}{6} - \frac{3}{20}\log 3 + \frac{1}{6}\log 5 - \frac{7}{30}\log 7 + \frac{13}{60}\log 13 \approx 0.46.$$

Question 1.3

What do you think of this cryptosystem? Do you think it is secure? Give one concrete example/justification.

Answer. Look at equation 1 for example. We observe that if the ciphertext is 2 then we know for sure that the encrypted message is m_1 and similarly for c = 3 and m_3 . This is not good.

Exercise 2 Arithmetic

Question 2.1

Let a = 247338 and b = 139776. Using Euclid's Algorithm, compute gcd(a, b).

Answer. By reading Table 1, we have gcd(a, b) = 546.

index	q_{i-1}	r_i
0		247338
1		139776
2	1	107562
3	1	32214
4	3	10920
5	2	10374
6	1	546
7	19	0

Table 1: Extended Euclidean Algorithm for a=247338 and b=139776. The step r_{i+1} at index i+1 is defined by $r_{i+1}=r_{i-1}-q_ir_i$ with $0 \le r_{i+1} < |r_i|$ and initial values $r_0=a$ and $r_1=b$.

Question 2.2

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence, starting from $F_0=0$ and $F_1=1$ and recursively defined by $F_{n+2}=F_n+F_{n+1}$ for $n\geq 0$.

2.2a Prove that $gcd(F_n, F_{n-1}) = 1$ for all $n \ge 1$.

Proof. The proof goes by induction on n. Since $\gcd(F_1, F_0) = \gcd(1, 0) = 1$, the claim is verified for n = 1. Assume that it holds up to n and let us show that it holds for n + 1, namely $\gcd(F_{n+1}, F_n) = 1$. Since $\gcd(a + b, b) = \gcd(a, b)$ for every integers $a, b \in \mathbb{Z}$, we have

$$\gcd(F_{n+1}, F_n) = \gcd(F_n + F_{n-1}, F_n) = \gcd(F_n, F_{n-1}).$$

By induction hypothesis, $gcd(F_n, F_{n-1}) = 1$, whence the result.

2.2b Prove that $F_{m+n+1} = F_{m+1}F_{n+1} + F_mF_n$ for all $n, m \ge 0$.

Proof. The proof goes by induction on n and extends by symmetry to m. The claim is trivially verified for the base case n=0. Assume that the claim holds for all $0 \le n \le k$ and let us show that it holds for n=k+1. We have

$$F_{k+m+2} \triangleq F_{k+m} + F_{k+m+1}$$

$$= (F_{m+1}F_k + F_mF_{k-1}) + (F_{m+1}F_{k+1} + F_mF_k)$$

$$= F_{m+1}(F_k + F_{k+1}) + F_m(F_{k-1} + F_k)$$

$$\triangleq F_{m+1}F_{k+2} + F_mF_{k+1},$$

where the second equality is deduced from the induction hypothesis for n = k-1 and n = k. \square

2.2c Let $m, n \ge 1$. Prove that if m divides n, then F_m divides F_n .

Proof. Let n = km be a multiple of m. The proof goes by induction on k. Clearly, if k = 1, then $F_n = F_m$ is divisible by F_m . Assume that the result holds up to some k and let us prove that it holds for k + 1. By the previous question,

$$F_{(k+1)m} = F_{km+m} = F_{km+1}F_m + F_{km}F_{m-1}.$$

By induction hypothesis, F_{km} is divisible by F_m , say $F_{km} = sF_m$ for some $s \in \mathbb{Z}$. Therefore $F_{(k+1)m} = F_m(F_{km+1} + sF_{m-1})$ is divisible by F_m as well.

2.2d Prove that $gcd(F_m, F_n) = F_{gcd(m,n)}$ for all $n, m \ge 1$.

Hint: Show that Euclid's algorithm can be applied to F_m and F_n and to their subscripts simultaneously.

Proof. Consider the Euclidean division n = qm + r. By the second claim,

$$\gcd(F_m, F_n) \triangleq \gcd(F_m, F_{qm+r}) = \gcd(F_m, F_{qm+1}F_r + F_{qm}F_{r-1}).$$

Since F_m divides F_{qm} , this implies that

$$\gcd(F_m, F_{qm+1}F_r + F_{qm}F_{r-1}) = \gcd(F_m, F_{qm+1}F_r).$$

Combining the divisibility property with the fact that $\gcd(F_{qm}, F_{qm+1}) = 1$, we deduce that $\gcd(F_m, F_{qm+1}F_r) = \gcd(F_m, F_r)$. We now note that the subscripts of F follow the same process as in Euclid's algorithm. In particular, one may apply Euclid's algorithm to F_m and F_m and their subscripts simultaneously until eventually reaching $\gcd(m, n) = \gcd(s, 0) = s$. On the Fibonacci's side, we would end up with $\gcd(F_m, F_n) = \gcd(F_s, 0) = F_s = F_{\gcd(m, n)}$.

2.2e Let $m, n \ge 1$ and $m \ne 2$. Deduce that if F_m divides F_n , then m divides n.

Proof. Since
$$F_m = \gcd(F_m, F_n) = F_{\gcd(m,n)}$$
, it follows that $m = \gcd(m,n)$.

¹**POST-TEST EDIT**: One should assume $m \neq 2$ since $F_2 = 1$ divides every F_n , but obviously 2 does not divide each n.

Exercise 3 Algorithms

Question 3.1 Random root finding

Given a polynomial p of degree d (i.e. deg(p) = d) defined over a finite field \mathbb{F} and a maximum number of iterations N. Algorithm 1 tries to find a root of this polynomial. Compute the expected number of iterations of this algorithm.

 $\triangleright \stackrel{\$}{\leftarrow}$: sampling uniformly at random

Algorithm 1: FindRoot

Input: p(x) of degree d over \mathbb{F} and a maximum number of iterations N.

1 for $1 \dots N$ do

$$\begin{array}{c|c} \mathbf{2} & r \overset{\$}{\leftarrow} \mathbb{F} \\ \mathbf{3} & \mathbf{if} \ p(r) = 0 \ \mathbf{then} \\ \mathbf{4} & \mathbf{return} \ r \end{array}$$

5 return \perp

Answer. Let n_d be the number of roots of p, we have $\Pr[p(r) = 0] = n_d/|\mathbb{F}|$. Hence the expected number of iterations is the following:

$$E(\#iterations) = \sum_{i=1}^{N-1} i \cdot (1 - n_d/|\mathbb{F}|)^{i-1} \cdot (n_d/|\mathbb{F}|) + N \cdot (1 - n_d/|\mathbb{F}|)^{N-1}.$$

Note that N is a fixed input to the algorithm. Assuming $N=\infty$ does not yield the correct answer.

Question 3.2 Asymptotic Notation

Definition 1 (O(.)). Assume that f(n) and g(n) are two functions. We write f(n) = O(g(n)) if and only if there exist constants N > 0 and C > 0 such that for all $n \ge N$, $|f(n)| \le C|g(n)|$.

Definition 2 $(\Omega(.))$. Assume that f(n) and g(n) are two functions. We write $f(n) = \Omega(g(n))$ if and only if there exist constants N > 0 and C > 0 such that for all $n \ge N$, $|f(n)| \ge C|g(n)|$.

Definition 3 (o(.)). Assume that f(n) and g(n) are two functions. We write f(n) = o(g(n)) if and only if for all C > 0 there exists a constant N > 0 such that for all $n \ge N$, |f(n)| < C|g(n)|.

Definition 4 $(\omega(.))$. Assume that f(n) and g(n) are two functions. We write $f(n) = \omega(g(n))$ if and only if for all C > 0 there exists a constant N > 0 such that for all $n \ge N$, |f(n)| > C|g(n)|.

3.2a Show that $3n^3 - 5n + 16 = \Omega(n^3)$.

Answer. Using the definition of $\Omega(.)$, we need to find constants N and C such that $3n^3 - 5n + 16 \ge Cn^3$. We write

$$3n^3 - 5n + 16 = n^3 + (2n^3 - 5n) + 16$$

if we choose N=2 and C=1 (you need to mention that $2n^3-5n$ is increasing), we have

$$3n^3 - 5n + 16 \ge n^3 + 16$$
$$> 1 \cdot n^3$$

3.2b Let f(n) and g(n) be positive functions. Show that f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.

Answer. We know that $f(n) \geq 0$ and f(n) = O(g(n)). Hence by Definition 1, $0 \leq f(n) \leq C \cdot g(n)$ for some C. We need to show that $0 \leq C' \cdot g(n) \leq f(n)$ for some C' (i.e. $g(n) = \Omega(f(n))$). Simply by setting C' = 1/C and dividing the first inequality by C, we obtain $0 \leq C' \cdot g(n) \leq f(n)$.

3.2c If $f(n) = n^2 \log(n)$ and $g(n) = n^3$. Which of the following statements are true? List all.

- 1. f = O(g)
- 2. $f = \Omega(g)$
- 3. f = o(g)
- 4. $g = \omega(f)$

Answer. 1, 3, 4.