
Advanced Cryptography

http://lasec.epfl.ch/

Prerequisites Test
Cryptography and Security 2023

Exercise 1 Probability

Given a discrete random variable X, we recall the definition of entropy H(X)

H(X) = −
∑
x∈X

p(x) log2 p(x)

And the associated notion of joint entropy H(X,Y) and conditional entropy H(X|Y)

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

H(X|Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x|y)

Question 1.1

Show the following chain rule for entropy.

H(X,Y) = H(Y) +H(X|Y)

Proof. Recall the chain rule for probabilities : p(x, y) = p(x|y)p(y). Then we have

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y)(log2 p(x|y) + log2 p(y))

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x|y)−
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y)

= H(X|Y) +H(Y).

Question 1.2

Consider the following symmetric encryption system : We consider a plaintext spaceM =
{m1,m2,m3}, key space K = {k1, k2, k3} and a ciphertext space C = {1, 2, 3, 4, 5}. We denote

1

http://lasec.epfl.ch/

by P,C,K the random variables for the plaintext, ciphertext and keys respectively. The
encryption is given by the following matrix:

m1 m2 m3

k1 2 1 4
k2 1 5 3
k3 2 4 5

 .

This means that e.g. the encryption of m1 with k1 is 2.
Additionally we suppose that the keys are equiprobable, and that the plaintexts appear with
the following probabilities :

p(m1) =
1

2
, p(m2) =

3

20
, p(m3) =

7

20
.

Compute the following entropies, justify your computations when necessary and simplify
all the expressions as much as possible :

1. H(P)

2. H(K)

3. H(C)

4. H(P |C)

Answer.

1.

H(P) = −1

2
log

1

2
− 3

20
log

3

20
− 7

20
log

7

20
= (simplifying...)

=
3

2
+

1

2
log 5− 3

20
log 3− 7

20
log 7 ≃ 1.44.

2. The keys are equiprobable.

H(K) = − log
1

3
= log 3 ≃ 1.58.

3. Step 1: Compute p(ci) = Pr(C = i) for each i.

p(c1) = p(m2, k1) + p(m1, k2) =
13

60

similarly, p(c2) =
1

3
, p(c3) =

7

60
, p(c4) =

1

6
, p(c5) =

1

6

Step 2: Compute H(C)

H(C) = (use formula and replace with the values computed above, simplify)

= 1 + log 3 +
1

3
log 5− 7

60
log 7− 13

60
log(13)

≃ 2.23

2

4. Direct computation method. (Might use chain rule if they want to).
Step 1: Compute P (mi|C = i).

1.1 Rule out impossibilities:

0 = p(m3|C = 1) = p(m2|C = 2) = p(m3|C = 2)

= p(m1|C = 3) = p(m2|C = 3) = p(m1|C = 4)

= p(m1|C = 5)

1.2 Observe ”obvious ones”:

1 = p(m1|C = 2) = p(m3|C = 3). (1)

1.3 Compute the combinations that are left.

p(m1|C = 1) =
p(m1, c1)

p(c1)
=

p(m1, k2)

p(c1)
=

10

13

p(m2|C = 1) =
3

13

p(m2|C = 4) =
3

10

p(m3|C = 4) =
7

10

p(m2|C = 5) =
3

10

p(m3|C = 5) =
7

10
.

Step 2: Put everything together and compute H(P |C).

H(P |C) =
1

6
− 3

20
log 3 +

1

6
log 5− 7

30
log 7 +

13

60
log 13 ≃ 0.46.

Question 1.3

What do you think of this cryptosystem ? Do you think it is secure ? Give one concrete
example/justification.

Answer. Look at equation 1 for example. We observe that if the ciphertext is 2 then we know
for sure that the encrypted message is m1 and similarly for c = 3 and m3. This is not good.

3

Exercise 2 Arithmetic

Question 2.1

Let a = 247338 and b = 139776. Using Euclid’s Algorithm, compute gcd(a, b).

Answer. By reading Table 1, we have gcd(a, b) = 546.

index qi−1 ri
0 247338
1 139776
2 1 107562
3 1 32214
4 3 10920
5 2 10374
6 1 546
7 19 0

Table 1: Extended Euclidean Algorithm for a = 247338 and b = 139776. The step ri+1 at
index i+ 1 is defined by ri+1 = ri−1 − qiri with 0 ≤ ri+1 < |ri| and initial values r0 = a and
r1 = b.

Question 2.2

Let (Fn)n≥0 be the Fibonacci sequence, starting from F0 = 0 and F1 = 1 and recursively
defined by Fn+2 = Fn + Fn+1 for n ≥ 0.

2.2a Prove that gcd(Fn, Fn−1) = 1 for all n ≥ 1.

Proof. The proof goes by induction on n. Since gcd(F1, F0) = gcd(1, 0) = 1, the claim is
verified for n = 1. Assume that it holds up to n and let us show that it holds for n+1, namely
gcd(Fn+1, Fn) = 1. Since gcd(a+ b, b) = gcd(a, b) for every integers a, b ∈ Z, we have

gcd(Fn+1, Fn) = gcd(Fn + Fn−1, Fn) = gcd(Fn, Fn−1).

By induction hypothesis, gcd(Fn, Fn−1) = 1, whence the result.

2.2b Prove that Fm+n+1 = Fm+1Fn+1 + FmFn for all n,m ≥ 0.

Proof. The proof goes by induction on n and extends by symmetry to m. The claim is trivially
verified for the base case n = 0. Assume that the claim holds for all 0 ≤ n ≤ k and let us show
that it holds for n = k + 1. We have

Fk+m+2≜Fk+m + Fk+m+1

= (Fm+1Fk + FmFk−1) + (Fm+1Fk+1 + FmFk)

= Fm+1(Fk + Fk+1) + Fm(Fk−1 + Fk)

≜Fm+1Fk+2 + FmFk+1,

where the second equality is deduced from the induction hypothesis for n = k−1 and n = k.

4

2.2c Let m,n ≥ 1. Prove that if m divides n, then Fm divides Fn.

Proof. Let n = km be a multiple of m. The proof goes by induction on k. Clearly, if k = 1,
then Fn = Fm is divisible by Fm. Assume that the result holds up to some k and let us prove
that it holds for k + 1. By the previous question,

F(k+1)m = Fkm+m = Fkm+1Fm + FkmFm−1.

By induction hypothesis, Fkm is divisible by Fm, say Fkm = sFm for some s ∈ Z. Therefore
F(k+1)m = Fm(Fkm+1 + sFm−1) is divisible by Fm as well.

2.2d Prove that gcd(Fm, Fn) = Fgcd(m,n) for all n,m ≥ 1.

Hint: Show that Euclid’s algorithm can be applied to Fm and Fn and to their subscripts
simultaneously.

Proof. Consider the Euclidean division n = qm+ r. By the second claim,

gcd(Fm, Fn)≜ gcd(Fm, Fqm+r) = gcd(Fm, Fqm+1Fr + FqmFr−1).

Since Fm divides Fqm, this implies that

gcd(Fm, Fqm+1Fr + FqmFr−1) = gcd(Fm, Fqm+1Fr).

Combining the divisibility property with the fact that gcd(Fqm, Fqm+1) = 1, we deduce that
gcd(Fm, Fqm+1Fr) = gcd(Fm, Fr). We now note that the subscripts of F follow the same
process as in Euclid’s algorithm. In particular, one may apply Euclid’s algorithm to Fm and Fn

and their subscripts simultaneously until eventually reaching gcd(m,n) = gcd(s, 0) = s. On
the Fibonacci’s side, we would end up with gcd(Fm, Fn) = gcd(Fs, 0) = Fs = Fgcd(m,n).

2.2e Let m,n ≥ 1 and m ̸= 2.1 Deduce that if Fm divides Fn, then m divides n.

Proof. Since Fm = gcd(Fm, Fn) = Fgcd(m,n), it follows that m = gcd(m,n).

1POST-TEST EDIT: One should assume m ̸= 2 since F2 = 1 divides every Fn, but obviously 2 does not
divide each n.

5

Exercise 3 Algorithms

Question 3.1 Random root finding

Given a polynomial p of degree d (i.e. deg(p) = d) defined over a finite field F and a maximum
number of iterations N . Algorithm 1 tries to find a root of this polynomial. Compute the
expected number of iterations of this algorithm.

Algorithm 1: FindRoot

Input: p(x) of degree d over F and a maximum number of iterations N .
1 for 1 . . . N do

2 r
$← F ▷

$←: sampling uniformly at random

3 if p(r) = 0 then
4 return r

5 return ⊥

Answer. Let nd be the number of roots of p, we have Pr[p(r) = 0] = nd/|F|. Hence the
expected number of iterations is the following:

E(#iterations) =
N−1∑
i=1

i · (1− nd/|F|)i−1 · (nd/|F|) +N · (1− nd/|F|)N−1.

Note that N is a fixed input to the algorithm. Assuming N =∞ does not yield the correct
answer.

Question 3.2 Asymptotic Notation

Definition 1 (O(.)). Assume that f(n) and g(n) are two functions. We write f(n) = O(g(n))
if and only if there exist constants N > 0 and C > 0 such that for all n ≥ N , |f(n)| ≤ C|g(n)|.

Definition 2 (Ω(.)). Assume that f(n) and g(n) are two functions. We write f(n) = Ω(g(n))
if and only if there exist constants N > 0 and C > 0 such that for all n ≥ N , |f(n)| ≥ C|g(n)|.

Definition 3 (o(.)). Assume that f(n) and g(n) are two functions. We write f(n) = o(g(n)) if
and only if for all C > 0 there exists a constant N > 0 such that for all n ≥ N , |f(n)| < C|g(n)|.

Definition 4 (ω(.)). Assume that f(n) and g(n) are two functions. We write f(n) = ω(g(n)) if
and only if for all C > 0 there exists a constant N > 0 such that for all n ≥ N , |f(n)| > C|g(n)|.

3.2a Show that 3n3 − 5n+ 16 = Ω(n3).

Answer. Using the definition of Ω(.), we need to find constants N and C such that 3n3− 5n+
16 ≥ Cn3. We write

3n3 − 5n+ 16 = n3 + (2n3 − 5n) + 16

if we choose N = 2. and C = 1 (you need to mention that 2n3 − 5n is increasing), we have

3n3 − 5n+ 16 ≥ n3 + 16

≥ 1 · n3

6

3.2b Let f(n) and g(n) be positive functions. Show that f(n) = O(g(n)) implies g(n) =
Ω(f(n)).

Answer. We know that f(n) ≥ 0 and f(n) = O(g(n)). Hence by Definition 1, 0 ≤ f(n) ≤
C · g(n) for some C. We need to show that 0 ≤ C ′ · g(n) ≤ f(n) for some C ′ (i.e. g(n) =
Ω(f(n))). Simply by setting C ′ = 1/C and dividing the first inequality by C, we obtain
0 ≤ C ′ · g(n) ≤ f(n).

3.2c If f(n) = n2 log(n) and g(n) = n3. Which of the following statements are true? List
all.

1. f = O(g)

2. f = Ω(g)

3. f = o(g)

4. g = ω(f)

Answer. 1, 3, 4.

7

	Probability
	
	1.1
	
	1.2
	
	1.3

	Arithmetic
	
	2.1
	
	2.2
	2.2a
	
	2.2b
	
	2.2c
	
	2.2d
	
	2.2e
	

	Algorithms
	Random root finding
	Asymptotic Notation
	3.2a
	
	3.2b
	
	3.2c
	

