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Exercise 1 Probability
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Figure 1: Example graph with 6 vertices (V = {v1, v2, v3, v4, v5, v6}) and 4 edges (E =
{{v1, v5}, {v2, v4}, {v3, v4}, {v4, v5}}) where v6 is an isolated vertex.

A simple, undirected graph G = (V,E) with vertex set V and edge set E is a graph without
any self loops or multiedges, and whose edges have no direction. In other words, for any two
vertices a and b, there is at most one edge {a, b} (edge (a, b) = (b, a)) between them, and there
is no edge if a = b. We say a vertex is isolated if there is no edge connected to it. See Figure 1
as an example.

Suppose for every two different vertices a and b, the edge {a, b} appears with probability
p. Moreover, the appearances of any two different edges are independent.

Question 1.1 Expectation

Given |V | = n, use the linearity of expectation to compute the expected number of isolated
vertices.
Hint: Define a boolean random variable Xi that indicates whether vertex i is isolated.

Answer. Let Xi be a boolean random variable that indicates whether vertex i is isolated.Then
Pr[Xi = 1] = (1− p)n−1 since there are at most n− 1 edges that can connect to i, and each of
them does not appear with probability 1− p. Since Xi takes value in {0, 1}, E[Xi] = Pr[Xi] =
(1− p)n−1.

Let X =
∑

iXi be the random variable for the number of isolated vertices. By linearity of
expectation, E[X] =

∑
i E[Xi] = n · (1− p)n−1
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Question 1.2 Variance

Compute the variance of number of isolated vertices.

Answer. We know that Var[X] = E[X2]− E[X]2 and E[X] = n · (1− p)n−1 from the previous
question. It suffices to compute E[X2].

Again let X =
∑

iXi. Then we compute

E[(
∑
i

Xi)
2] =

∑
i,j

E[XiXj ]

=
∑
i ̸=j

E[XiXj ] +
∑
i

E[X2
i ]

For the second term, notice that X2
i = Xi for Bernoulli random variable. Then for n addends,∑

i E[X
2
i ] = nE[Xi] = n · (1− p)n−1.

For the first term, we need some extra care. Since XiXj takes value in {0, 1}, it suffices to
calculate Pr[XiXj ]. Also notice that XiXj = 1 iff both vertice i and j are isolated. We first
ignore the edge {i, j}, the probability that vertex i does not have the remaining n− 2 edges is
(1− p)n−2, same for vertex j. The probability that both vertex i and j are isolated except for
edge {i, j} is then (1− p)2n−4. Finally, the probability that {i, j} does not appear is (1− p).
Putting everything together, the probability that XiXj = 1 is (1− p)2n−3.

To conclude, the variance is n(1− p)n−1 + n(n− 1)(1− p)2n−3 − n2(1− p)2n−2.
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Exercise 2 Algorithms

Question 2.1 Randomized Algorithms

In this exercise, we are going to analyze the expected number of iterations for a simple
randomized search algorithm. Let a1, . . . , aN be N integers. Our goal is to search the index
of a given target number T . Below is an algorithm RandSearch(a1, . . . , aN , N, T ) that takes a
list of integers as a1, . . . , aN , the number of integers as N and the target integer as T , outputs
an index in {1, . . . , N} if T is found, 0 if not.

RandSearch(a1, . . . , aN , N, T )

1 : pick a uniformly random permuation of σ of a1, . . . , aN

2 : for i = 1 to N :

3 : if aσ(i) = T :

4 : return σ(i)

5 : return 0

1. Compute the expected number of iterations of the for loop in line 2 of the RandSearch
algorithm.

Answer. Assuming ai are distinct and there exists i, 1 ≤ i ≤ N s.t. T = ai. The
grading was a bit relaxed due to this assumption being announced mid exam and each
question was graded based on its own assumption.

Note: Albeit being simple, this analysis appears quite often in the course while analyzing
the complexity of brute force attacks.
Let X be the random variable for the number of iterations of the RandSearch algorithm.
We have

E[X] =
N∑
i=1

E[Pr[C = aσ(i)]] · i

Since σ is a uniformly random permutation, we have

E[Pr[C = aσ(i)]] =
1

N

for all i Hence, we have

E[X] =

N∑
i=1

1

N
· i = N + 1

2

Common mistake: X is not a geometric distribution, it would be the case if we were
sampling an element from {a1, . . . , aN} at each iteration. However, in our case we are
iterating over these elements meaning that we only visit them once in a random order.

Question 2.2 Asymptotic Notation

Assume that f(n) and g(n) are two positive functions.

Definition 1 (O(.)). We write f(n) = O(g(n)) if and only if there exist constants N > 0 and
C > 0 such that for all n ≥ N , f(n) ≤ C · g(n) .
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Definition 2 (Ω(.)). We write f(n) = Ω(g(n)) if and only if there exist constants N > 0 and
C > 0 such that for all n ≥ N , f(n) ≥ C · g(n) .

Definition 3 (Θ(.)). We write f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Ω(g(n)).

Definition 4 (o(.)). We write f(n) = o(g(n)) if and only if for all constants C > 0 there
exists N > 0 such that for all n ≥ N , f(n) < C · g(n) .

1. Show that if f = Ω(g) then f is not in o(g).

Answer. Assume the contrary that f = Ω(g) and f = o(g), we have the following:

(a) by definition of o, for all constants c > 0 there exists N1 > 0 such that for all
n ≥ N1 we have

f(n) < c · g(n)

(b) by definition of Ω, there exists constants c2 > 0 and N2 > 0 such that for all n ≥ N2

we have
f(n) ≥ c2 · g(n)

Note that since the first condition holds for all positive constants, it holds for c2 as
well. Moreover, both conditions when n is greater than N1 and N2. Hence, we obtain a
contradiction as required.

2. Show that if f(n) + g(n) = Θ(max{f(n), g(n)}).

Answer. By definition, we need to show that f(n) + g(n) = O(max{f(n), g(n)}) and
f(n) + g(n) = Ω(max{f(n), g(n)}). Note that both f and g are positive functions.
Hence, for a fixed for any n > 0 we have f(n) > 0 and g(n) > 0.

• Due to the positiveness of f and g we have f(n) + g(n) > 1 ·max{f(n), g(n)} so
f(n) + g(n) = Ω(max{f(n), g(n)}) with C = 1.

• Again, due to positiveness, we have f(n) + g(n) ≤ 2 ·max{f(n), g(n)} so f(n) +
g(n) = O(max{f(n), g(n)}) with C = 2.
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Exercise 3 Number Theory & Algebra

The goal of this exercise is to demonstrate the connection between two mathematical concepts:
Mersenne primes and perfect numbers.

Definition 5 (Mersenne primes). A prime number q is called a Mersenne prime if q = 2n − 1
for some n ∈ N.

For example, 7 = 23 − 1 and 31 = 25 − 1 are Mersenne primes. Note that q being prime
implies n is prime but not all numbers of the form 2p − 1 are Mersenne primes. For instance,
211 − 1 = 2047 = 23× 89.

Definition 6 (Perfect numbers). A number n ∈ N is called perfect if the sum of all its positive
divisors equals 2n.

For example, 6 is the smallest perfect number, as its divisors are 1, 2, 3 and 6 and their
sum is equal to 12.

To link both concepts, we use Euler’s σ function, which is similar to Euler’s totient function.
It is defined as follows:

σ : N → N
σ(n) =

∑
d|n,d>0

d

Question 3.1 Perfect Numbers

Here are some calculations to reinforce your understanding in those notions:

• Are 28 and 42 perfect numbers? Show why.

• What is the value of σ(pn), where p is prime and n ∈ N?

• Show that σ is multiplicative, i.e., for a, b ∈ N such that gcd(a, b) = 1, we have

σ(a · b) = σ(a)σ(b)

Answer. • 28 is a perfect number. Since 28 = 7× 4, we have

σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2× 28.

However, 42 is not perfect. Since 42 = 2× 3× 7, we have

σ(42) = 1 + 2 + 3 + 6 + 7 + 14 + 21 + 42 = 96 ̸= 84 = 2× 42.

• Since divisors of pn are of the form pm with 0 ≤ m ≤ n, we have

σ(pn) =

n∑
i=0

pi =
pn+1 − 1

p− 1
.

• Since a and b are coprime, all divisor d of ab can be uniquely writen as d = dadb with
da|a and db|b. Therefore,

σ(ab) =
∑
d|ab

d =
∑

da|a,db|b

dadb =
∑
da|a

∑
db|b

dadb =

∑
da|a

da

∑
db|b

db

 = σ(a)σ(b).
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Question 3.2 Euclid-Euler Theorem

Prove the following equivalence, known as the Euclid-Euler Theorem:

n = 2p−1(2p − 1) with 2p − 1 a Mersenne prime ⇐⇒ n is an even perfect number.

Hint: Let n = 2kx with x odd and n perfect, show that x and x
2k+1−1

muss be the only
divisors of x.

Answer.

Let n = 2p−1(2p − 1) with 2p − 1 prime. Then,

σ(n) = σ(2p−1)σ(2p − 1) =
2p − 1

2− 1
(2p − 1 + 1) = (2p − 1)(2p) = 2n.

Thus, n is a perfect number.

Now, suppose n = 2kx with x odd, and n is perfect. Then,

2k+1x = 2n = σ(n) = (2k+1 − 1)σ(x).

Since 2k+1 − 1 is odd, it must divide x. Hence, x
2k+1−1

must be a divisor of x. Therefore,

2k+1x

2k+1 − 1
= σ(x) = x+

x

2k+1 − 1
+ · · ·︸︷︷︸

other divisors

.

The equality holds only if x has no other divisors, meaning x is prime. Additionally, 1 = x
2k+1−1

implies x = 2k+1 − 1, which shows x is a Mersenne prime.
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