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Cryptography and Security 202/

Exercise 1 Probability

Figure 1: Example graph with 6 vertices (V = {v1,va,v3,v4,v5,06}) and 4 edges (E =
{{v1,vs}, {va, v}, {vs,v4},{v4,v5}}) Where vg is an isolated vertex.

A simple, undirected graph G = (V, E) with vertex set V" and edge set F is a graph without
any self loops or multiedges, and whose edges have no direction. In other words, for any two
vertices a and b, there is at most one edge {a, b} (edge (a,b) = (b,a)) between them, and there
is no edge if a = b. We say a vertex is isolated if there is no edge connected to it. See Figure 1
as an example.

Suppose for every two different vertices a and b, the edge {a, b} appears with probability
p. Moreover, the appearances of any two different edges are independent.

Question 1.1 Expectation

Given |V| = n, use the linearity of expectation to compute the expected number of isolated
vertices.
Hint: Define a boolean random variable X; that indicates whether vertex 7 is isolated.

Answer. Let X; be a boolean random variable that indicates whether vertex 7 is isolated.Then
Pr[X; = 1] = (1 — p)"! since there are at most n — 1 edges that can connect to 4, and each of
them does not appear with probability 1 — p. Since X; takes value in {0, 1}, E[X;] = Pr[X;] =
(1-p.

Let X =), X; be the random variable for the number of isolated vertices. By linearity of
expectation, E[X] =Y. E[X;] =n- (1 —p)"!
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Question 1.2 Variance

Compute the variance of number of isolated vertices.

Answer. We know that Var[X] = E[X?] — E[X]? and E[X] =n - (1 — p)"~! from the previous
question. It suffices to compute E[X?].
Again let X =3, X;. Then we compute

Bl X:)*) = ) _E[X:X)]
=) BIX:X;]+ > E[X7]

i#j 7

For the second term, notice that Xi2 = X; for Bernoulli random variable. Then for n addends,
>, E[X?] = nE[X,] = n- (1 —p)"L.

For the first term, we need some extra care. Since X;X; takes value in {0, 1}, it suffices to
calculate Pr[X;X;]. Also notice that X;X; = 1 iff both vertice ¢ and j are isolated. We first
ignore the edge {i, j}, the probability that vertex i does not have the remaining n — 2 edges is
(1 —p)"~2, same for vertex j. The probability that both vertex i and j are isolated except for
edge {i,j} is then (1 — p)?»~%. Finally, the probability that {4, j} does not appear is (1 — p).
Putting everything together, the probability that X;X; =1 is (1 — p)®*~3.

To conclude, the variance is n(1 — p)"~t +n(n — 1)(1 — p)**=3 — n?(1 — p)?n—2.



Exercise 2 Algorithms

Question 2.1 Randomized Algorithms

In this exercise, we are going to analyze the expected number of iterations for a simple
randomized search algorithm. Let aj,...,any be N integers. Our goal is to search the index
of a given target number 7. Below is an algorithm RandSearch(ay,...,an,N,T') that takes a
list of integers as a1, ..., an, the number of integers as N and the target integer as T', outputs
an index in {1,..., N} if T is found, 0 if not.

RandSearch(ay,...,an, N, T)

1: pick a uniformly random permuation of o of a1,...,ay
2: fori=1to N:

3 if agy =T :

4: return o(i)

5: return (

1. Compute the expected number of iterations of the for loop in line 2 of the RandSearch
algorithm.

Answer. Assuming a; are distinct and there exists i,1 < i < N s.t. T = a;. The
grading was a bit relaxed due to this assumption being announced mid exam and each
question was graded based on its own assumption.

Note: Albeit being simple, this analysis appears quite often in the course while analyzing
the complexity of brute force attacks.
Let X be the random variable for the number of iterations of the RandSearch algorithm.

We have
N

E[X] =) E[Pr[C = a,)) - i
i=1
Since o is a uniformly random permutation, we have

1
BIPr(C = ay)l = 1
for all < Hence, we have
N
1 N+1
EX] = — = —
[X] ;N i=—

Common mistake: X is not a geometric distribution, it would be the case if we were
sampling an element from {ai,...,an} at each iteration. However, in our case we are
iterating over these elements meaning that we only visit them once in a random order.

Question 2.2 Asymptotic Notation
Assume that f(n) and g(n) are two positive functions.

Definition 1 (O(.)). We write f(n) = O(g(n)) if and only if there exist constants N > 0 and
C > 0 such that for all n > N, f(n) < C-g(n) .



Definition 2 (£2(.)). We write f(n)

= Q(g(n)) if and only if there exist constants N > 0 and
C > 0 such that for all n > N, f(n) > C

(

~9(n) -

Definition 3 (©(.)). We write f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Q(g(n)).

Definition 4 (o(.)). We write f(n) = o(g(n)) if and only if for all constants C' > 0 there
exists N > 0 such that for all n > N, f(n) < C-g(n) .

1. Show that if f = Q(g) then f is not in o(g).

Answer. Assume the contrary that f = Q(g) and f = o(g), we have the following:

(a) by definition of o, for all constants ¢ > 0 there exists N7 > 0 such that for all
n > Ni we have

f(n) <c-g(n)

(b) by definition of 2, there exists constants co > 0 and Ny > 0 such that for all n > No
we have

f(n) = ca-g(n)

Note that since the first condition holds for all positive constants, it holds for ¢y as
well. Moreover, both conditions when n is greater than N; and N». Hence, we obtain a
contradiction as required.

2. Show that if f(n) + g(n) = ©(maz{f(n),g(n)}).

Answer. By definition, we need to show that f(n) + g(n) = O(maz{f(n),g(n)}) and
f(n) 4+ g(n) = Q(max{f(n),g(n)}). Note that both f and g are positive functions.
Hence, for a fixed for any n > 0 we have f(n) > 0 and g(n) > 0.

e Due to the positiveness of f and g we have f(n) + g(n) > 1-maz{f(n),g(n)} so
f(n)+ g(n) = Q(mazx{f(n),g(n)}) with C = 1.

e Again, due to positiveness, we have f(n)+ g(n) < 2-maz{f(n),g(n)} so f(n)+
g(n) = O(mazx{f(n),g(n)}) with C = 2.



Exercise 3 Number Theory & Algebra

The goal of this exercise is to demonstrate the connection between two mathematical concepts:
Mersenne primes and perfect numbers.

Definition 5 (Mersenne primes). A prime number ¢ is called a Mersenne prime if ¢ = 2" — 1
for some n € N.

For example, 7 =23 — 1 and 31 = 2% — 1 are Mersenne primes. Note that ¢ being prime
implies n is prime but not all numbers of the form 2P — 1 are Mersenne primes. For instance,
21 — 1 =2047 = 23 x 89,

Definition 6 (Perfect numbers). A number n € N is called perfect if the sum of all its positive
divisors equals 2n.

For example, 6 is the smallest perfect number, as its divisors are 1,2,3 and 6 and their
sum is equal to 12.

To link both concepts, we use Fuler’s o function, which is similar to Euler’s totient function.
It is defined as follows:

c:N— N
o(n) = Z d
d|n,d>0

Question 3.1 Perfect Numbers
Here are some calculations to reinforce your understanding in those notions:

e Are 28 and 42 perfect numbers? Show why.

e What is the value of o(p™), where p is prime and n € N?

e Show that o is multiplicative, i.e., for a,b € N such that ged(a,b) = 1, we have

o(a-b) =o(a)o(b)
Answer. e 28 is a perfect number. Since 28 = 7 x 4, we have
0(28) =1+2+4+7+14+28=56=2x 28.
However, 42 is not perfect. Since 42 =2 x 3 x 7, we have
0(42) =1+24+34+6+7+14+21+42 =196 # 84 =2 x 42.

e Since divisors of p™ are of the form p™ with 0 < m < n, we have

n+1_1

n
;D
a(p") = p' = —
=0 p

e Since a and b are coprime, all divisor d of ab can be uniquely writen as d = d,dp with
dg|a and dy|b. Therefore,

olab)=> d= > dady=>_ Y dadp= > do | |D dy| =0(a)o(b).

d|ab dala,dy|b dala dylb dala dy|b



Question 3.2 Euclid-Euler Theorem

Prove the following equivalence, known as the Euclid-Euler Theorem:
n = 2P"1(2P — 1) with 2° — 1 a Mersenne prime <= n is an even perfect number.

Hint: Let n = 2%z with = odd and n perfect, show that z and sx71—7 muss be the only
divisors of z.

Answer.

Let n = 2P~1(2P — 1) with 2P — 1 prime. Then,

2r -1
2-1

o(n) =ca(2P"He(2? - 1) = (2P —1+1) = (2P —1)(2P) = 2n.

Thus, n is a perfect number.

Now, suppose n = 2¥z with z odd, and n is perfect. Then,
2k Hy = 2n = o(n) = (2F! — 1o ().
Since 281 — 1 is odd, it must divide z. Hence, srrr—7 must be a divisor of z. Therefore,

2k+1$ T
1 =o(x) :x—l—iﬁﬂ 7 +
other divisors
The equality holds only if x has no other divisors, meaning z is prime. Additionally, 1 = 555—
implies = 2¥*1 — 1, which shows z is a Mersenne prime.
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