

Prerequisites Test

Cryptography and Security 2024

Name:			
SCIPER:			

- ♦ This document contains 3 independent exercises.
- ♦ Do NOT open this document until the beginning of the exam.
- ♦ Duration: **105 minutes** (one hour and forty-five minutes).
- ♦ This is a closed book exam. No extra sheet is allowed.
- Allowed Material: blue or black pen (avoid pencils), eraser. Except for a basic pocket calculator or a non-connected clock, any other kind of electronic device is forbidden.
- ♦ Food and water are allowed but should not disturb the exam when consumed.
- ♦ If needed, additional scrap paper will be provided.
- ♦ Only answers directly written on the exam sheet will be corrected.
- ♦ Each answer must be written in English in the dedicated box. If the answer is put at the end, clearly indicate which exercise it refers to. In particular, properly separate scrap text from answers to be corrected.
- ♦ Non-trivial statements must be cleanly and formally justified.
- ♦ Questions about the (technical) content of the exam will not be answered.
- ♦ Prepare the CAMPIRO card or an official ID paper for the identity check.

THIS PACE INTERVITOR ALLEY LETTERS PACE INTERVITOR AND A STATE OF THE PACE OF

Exercise 1 Probability

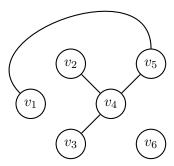


Figure 1: Example graph with 6 vertices $(V = \{v_1, v_2, v_3, v_4, v_5, v_6\})$ and 4 edges $(E = \{\{v_1, v_5\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_4, v_5\}\})$ where v_6 is an isolated vertex.

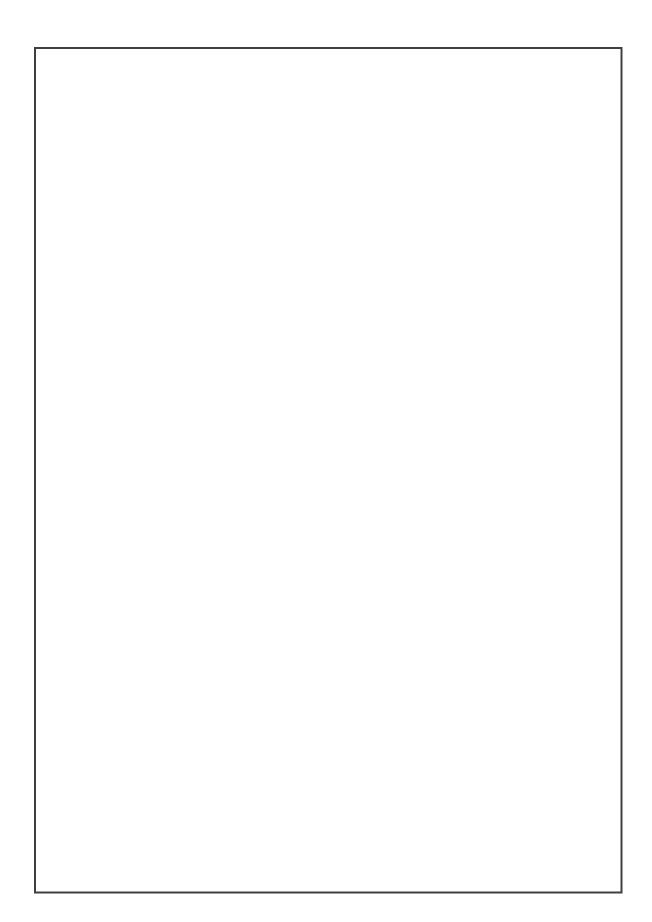
A simple, undirected graph G = (V, E) with vertex set V and edge set E is a graph without any self loops or multiedges, and whose edges have no direction. In other words, for any two vertices a and b, there is at most one edge $\{a,b\}$ (edge (a,b)=(b,a)) between them, and there is no edge if a=b. We say a vertex is isolated if there is no edge connected to it. See Figure 1 as an example.

Suppose for every two different vertices a and b, the edge $\{a,b\}$ appears with probability p. Moreover, the appearances of any two different edges are independent.

Question 1.1 Expectation

Given |V| = n, use the linearity of expectation to compute the expected number of isolated vertices.

Hint: Define a boolean random variable X_i that indicates whether vertex i is isolated.



Question 1.2 Variance Compute the variance of number of isolated vertices.

Exercise 2 Algorithms

Question 2.1 Randomized Algorithms

In this exercise, we are going to analyze the expected number of iterations for a simple randomized search algorithm. Let a_1, \ldots, a_N be N integers. Our goal is to search the index of a given target number T. Below is an algorithm $\mathsf{RandSearch}(a_1, \ldots, a_N, N, T)$ that takes a list of integers as a_1, \ldots, a_N , the number of integers as N and the target integer as T, outputs an index in $\{1, \ldots, N\}$ if T is found, 0 if not.

```
RandSearch(a_1, \ldots, a_N, N, T)

1: pick a uniformly random permuation of \sigma of a_1, \ldots, a_N

2: for i = 1 to N:

3: if a_{\sigma(i)} = T:

4: return \sigma(i)

5: return 0
```

1. Compute the expected number of iterations of the for loop in line 2 of the RandSearch algorithm.

Question 2.2 Asymptotic Notation

Assume that f(n) and g(n) are two positive functions.

Definition 1 (O(.)). We write f(n) = O(g(n)) if and only if there exist constants N > 0 and C > 0 such that for all $n \ge N$, $f(n) \le C \cdot g(n)$.

Definition 2 $(\Omega(.))$. We write $f(n) = \Omega(g(n))$ if and only if there exist constants N > 0 and C > 0 such that for all $n \ge N$, $f(n) \ge C \cdot g(n)$.

Definition 3 $(\Theta(.))$. We write $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Definition 4 (o(.)). We write f(n) = o(g(n)) if and only if for all constants C > 0 there exists N > 0 such that for all $n \ge N$, $f(n) < C \cdot g(n)$.

Show that if $f = \Omega(g)$ then f is not in $o(g)$.					

Exercise 3 Number Theory & Algebra

The goal of this exercise is to demonstrate the connection between two mathematical concepts: Mersenne primes and perfect numbers.

Definition 5 (Mersenne primes). A prime number q is called a Mersenne prime if $q = 2^n - 1$ for some $n \in \mathbb{N}$.

For example, $7 = 2^3 - 1$ and $31 = 2^5 - 1$ are Mersenne primes. Note that q being prime implies n is prime but not all numbers of the form $2^p - 1$ are Mersenne primes. For instance, $2^{11} - 1 = 2047 = 23 \times 89$.

Definition 6 (Perfect numbers). A number $n \in \mathbb{N}$ is called *perfect* if the sum of all its positive divisors equals 2n.

For example, 6 is the smallest perfect number, as its divisors are 1,2,3 and 6 and their sum is equal to 12.

To link both concepts, we use Euler's σ function, which is similar to Euler's totient function. It is defined as follows:

$$\sigma: \mathbb{N} \to \mathbb{N}$$
$$\sigma(n) = \sum_{d|n,d>0} d$$

Question 3.1 Perfect Numbers

Here are some calculations to reinforce your understanding in those notions:

- Are 28 and 42 perfect numbers? Show why.
- What is the value of $\sigma(p^n)$, where p is prime and $n \in \mathbb{N}$?
- Show that σ is multiplicative, i.e., for $a, b \in \mathbb{N}$ such that $\gcd(a, b) = 1$, we have

$$\sigma(a \cdot b) = \sigma(a)\sigma(b)$$

1		

Question 3.2 Euclid-Euler Theorem

Prove the following equivalence, known as the Euclid-Euler Theorem:
$n=2^{p-1}(2^p-1)$ with 2^p-1 a Mersenne prime $\iff n$ is an even perfect number.
Hint: Let $n = 2^k x$ with x odd and n perfect, show that x and $\frac{x}{2^{k+1}-1}$ muss be the only divisors of x .
