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Exercise 1 Probability

Figure 1: Example graph with 6 vertices (V' = {v1,v2,v3,v4,v5,v6}) and 4 edges (F =
{{v1,vs}, {va, va}, {vs,va},{v4,v5}}) where vg is an isolated vertex.

A simple, undirected graph G = (V, E) with vertex set V' and edge set E is a graph without
any self loops or multiedges, and whose edges have no direction. In other words, for any two
vertices a and b, there is at most one edge {a, b} (edge (a,b) = (b, a)) between them, and there
is no edge if a = b. We say a vertex is isolated if there is no edge connected to it. See Figure 1
as an example.

Suppose for every two different vertices a and b, the edge {a, b} appears with probability
p. Moreover, the appearances of any two different edges are independent.

Question 1.1 Expectation

Given |V| = n, use the linearity of expectation to compute the expected number of isolated
vertices.
Hint: Define a boolean random variable X; that indicates whether vertex 7 is isolated.







Question 1.2 Variance

Compute the variance of number of isolated vertices.




Exercise 2 Algorithms

Question 2.1 Randomized Algorithms

In this exercise, we are going to analyze the expected number of iterations for a simple
randomized search algorithm. Let aj,...,any be N integers. Our goal is to search the index
of a given target number 7. Below is an algorithm RandSearch(ay,...,an,N,T') that takes a
list of integers as a1, ..., ay, the number of integers as N and the target integer as T, outputs
an index in {1,..., N} if T is found, 0 if not.

RandSearch(ay,...,an, N, T)

1: pick a uniformly random permuation of o of a1,...,an
2: fori=1to N:

3: if agy =T :

4 return o(i)

5: return (

1. Compute the expected number of iterations of the for loop in line 2 of the RandSearch
algorithm.




Question 2.2 Asymptotic Notation
Assume that f(n) and g(n) are two positive functions.

Definition 1 (O(.)). We write f

( (g(n)) if and only if there exist constants N > 0 and
C > 0 such that for all n > N, f(n )

Definition 2 (€2(.)). We write f(
C > 0 such that for all n > N, f(n

Definition 3 (0©(.)). We write f(n) = O(g(n)) if and only if f(n) = O(g(n)) and f(n) =

Q(g(n))-

Definition 4 (o(.)). We write f(n) = o(g(n)) if and only if for all constants C' > 0 there
exists N > 0 such that for all n > N, f(n) < C-g(n) .

S~

1. Show that if f = Q(g) then f is not in o(g).




2. Show that if f(n) + g(n) = ©(maz{f(n),g(n)}).




Exercise 3 Number Theory & Algebra

The goal of this exercise is to demonstrate the connection between two mathematical concepts:
Mersenne primes and perfect numbers.

Definition 5 (Mersenne primes). A prime number ¢ is called a Mersenne prime if ¢ = 2" — 1
for some n € N.

For example, 7 =23 — 1 and 31 = 2° — 1 are Mersenne primes. Note that ¢ being prime
implies n is prime but not all numbers of the form 2P — 1 are Mersenne primes. For instance,

211 _ 1 =2047 = 23 x 89.

Definition 6 (Perfect numbers). A number n € N is called perfect if the sum of all its positive
divisors equals 2n.

For example, 6 is the smallest perfect number, as its divisors are 1,2,3 and 6 and their
sum is equal to 12.

To link both concepts, we use Fuler’s o function, which is similar to Euler’s totient function.
It is defined as follows:

c:N—=N
o(n) = Z d
d|n,d>0

Question 3.1 Perfect Numbers
Here are some calculations to reinforce your understanding in those notions:
e Are 28 and 42 perfect numbers? Show why.
e What is the value of o(p™), where p is prime and n € N?
e Show that o is multiplicative, i.e., for a,b € N such that ged(a,b) = 1, we have

o(a-b) =o(a)o(b)
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Question 3.2 Euclid-Euler Theorem

Prove the following equivalence, known as the Euclid-Euler Theorem:
n = 2P71(2P — 1) with 2P — 1 a Mersenne prime <= n is an even perfect number.

Hint: Let n = 2%z with z odd and n perfect, show that = and ﬁ muss be the only
divisors of .
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