
Cryptography and Security

http://lasec.epfl.ch/

Homework 1 – Quadratic Residues, Diffie-Hellman
Cryptography

Cryptography and Security 2024

⋄ You are free to use any programming language you want, although Python/SAGE is
recommended.

⋄ Put all your answers and only your answers in the provided [id]-answers.txt file
where [id] is the student ID.1 This means you need to provide us with all Q-values
specified in the questions below. Personal files are to be found on Moodle under the
feedback section of Parameters HW1.

⋄ Please do not put any comment or strange character or any new line in the
submission file and do NOT rename the provided files.

⋄ Do NOT modify the SCIPER, id and seed headers in the [id]-answers.txt file.

⋄ Submissions that do not respect the expected format may lose points.

⋄ We also ask you to submit your source code. This file can of course be of any readable
format and we encourage you to comment your code. Notebook files are allowed, but we
prefer if you export your code as normal textual files containing Python/SAGE code. If
an answer is incorrect, we may grant partial marks depending on the implementation.

⋄ Be careful to always cite external code that was used in your implementation if the
latter is not part of the public domain and include the corresponding license if needed.
Submissions that do not meet this guideline may be flagged as plagiarism or cheating.

⋄ Some plaintexts may contain random words. Do not be offended by them and search
them online at your own risk. Note that they might be really strange.

⋄ Please list the name of the other person you worked with (if any) in the designated
area of the answers file.

⋄ Corrections and revisions may be announced on Moodle in the “News” forum. By
default, everybody is subscribed to it and does receive an email as well. If you decided
to ignore Moodle emails, we recommend that you check the forum regularly.

⋄ The homework is due on Moodle on November 20, 2024 at 23h59.

1Depending on the nature of the exercise, an example of parameters and answers will be provided on Moodle.

1

http://lasec.epfl.ch/

Exercise 1 Identity-Based Encryption

Identity-Based Encryption (IBE) is a public-key encryption system where any string (e.g.,
email address) can serve as a public key. This eliminates the need for certificates as used in
traditional public-key systems. A trusted authority possessing a master secret key generates
private keys for users based on their identities.

An IBE scheme consists of four algorithms:

• Setup(λ) → (pp, msk): Generates a public parameter pp and master secret key msk

• Extract(msk, id) → skid: Generates secret key for identity id using the master secret
key msk.

• Encrypt(pp, id, m) → c: Encrypts message m to identity id

• Decrypt(pp, skid, c) → m: Decrypts ciphertext c using secret key for id

Prerequisites: Legendre and Jacobi Symbols

Legendre Symbol: Let p be an odd prime and a be an element of Zp.

(
a

p

)
=


0 if a ≡ 0 (mod p)

1 if a is a quadratic residue in Z∗
p

−1 if a is a quadratic non-residue in Z∗
p

Essentially, (
a

p

)
≡ a

p−1
2 (mod p)

Jacobi Symbol: Let n = pα1
1 · p

α2
2 . . . pαk

k be a composite odd number where pi is a prime
number for all i ∈ [k]. The Jacobi symbol (an) is defined as:(

a

n

)
=

(
a

p1

)α1

·
(
a

p2

)α2

. . .

(
a

pk

)αk

where (a
pi
) is the Legendre symbol.

Key properties of the Jacobi symbol:

• if a is a quadratic residue in Z∗
n,

(
a
n

)
= 1.

•
(

a
n

)
= −1 does not necessarily imply a is a quadratic non-residue in Z∗

n.

• For odd n:

(
1
n

)
= 1

• For a ≡ b (mod n):

(
a
n

)
=

(
b
n

)
•
(

ab
n

)
=

(
a
n

)(
b
n

)

•
(

2
n

)
=

{
1 if n ≡ ±1 (mod 8)

−1 if n ≡ ±3 (mod 8)

2

Cocks’ IBE

Cocks’ IBE is based on the quadratic residuosity assumption modulo a composite number. In
this exercise, you will implement the scheme described in Figure 1. You will notice that we
need a encode function that maps the id to Z∗

N . This function is provided to you as a black
box as encode(id, N) under utils.sage (available on Moodle).

IBE.KeyGen(λ)

1 : p←$ GenPrime(λ/2)

2 : q ←$ GenPrime(λ/2)

3 : N ← p · q
4 : msk← (p, q)

5 : return (N,msk)

IBE.Extract(msk, id)

1 : skid ← encode(id)1/2 mod N

IBE.Encrypt(N, id,m)

1 : t←$ Z∗
N

2 : while

(
t

N

)
̸= m :

3 : t←$ ZN

4 : c← 4t2 + encode(id)

4t
mod N

5 : return c

IBE.Decrypt(N, skid, c)

1 : m←
(
c+ skid
N

)
2 : return m

Figure 1: Cocks’ IBE for square roots.

Since the message space for the Cocks’ IBE is rather small (i.e. {-1, 1}). You will
be encrypting the plaintext one bit at a time. You are supplied with two functions under
utils.sage (available on Moodle) to aid with this process:

• to bits(s) which takes a string s and returns a Python list of -1s and 1s.

• to string(bit list) which takes a Python list of -1s and 1s bit list, returns a string.

Note that for all questions in this exercise, the format of the ciphertext is a Python list of
individual ciphertext corresponding to each bit of the plaintext.

Question 1.1

• Note that for this question, we provide an additional list of values for the variable t
sampled during the encryption. This is because we would like to have deterministic
answers. Hence, we have already sampled the t value for each bit you are going to
encrypt. Therefore you should not implement the sampling of t yourself.

• You are given a public parameter Q1a N, a plaintext Q1a m, a list of values for t Q1a t,
an id Q1a id. Report the resulting ciphertext under Q1a c.

Question 1.2

You are given a public parameter Q1b N, master secret key Q1b msk, an id Q1b id and a
ciphertext Q1b c. Report the resulting plaintext from decrypting Q1b c under Q1b m

3

Question 1.3

Consider the following modification to the key generation shown in Figure 2.

IBE.KeyGen(λ)

1 : p←$ GenPrime(λ/2)

2 : q ←$ NextPrime(p)

3 : N ← p · q
4 : msk← (p, q)

5 : return (N,msk)

Figure 2: Cocks’ IBE for square roots with modified KeyGen.

You are given a public parameter Q1c N, an id Q1c id and a ciphertext Q1c c. Report the
resulting plaintext from decrypting Q1c c under Q1c m

Cubic Cocks’ IBE

Now we slightly modify the Cocks’ IBE to work with cubic roots instead of square roots. The
resulting scheme is shown in Figure 3.

IBE.KeyGen(λ)

1 : p←$ GenPrime(λ/2)

2 : q ←$ GenPrime(λ/2)

3 : while gcd(3, p− 1) ̸= 1

4 : ∨ gcd(3, q − 1) ̸= 1 :

5 : p←$ GenPrime(λ/2)

6 : q ←$ GenPrime(λ/2)

7 : N ← p · q
8 : msk← (p, q)

9 : return (N,msk)

IBE.Extract(msk, id)

1 : skid ← encode(id)1/3 mod N

IBE.Encrypt(N, id,m)

1 : t←$ ZN

2 : a← encode(id)

3 : while

(
t3 + a

N

)
̸= m :

4 : t←$ ZN

5 : c← t(t3 − 8a)

4(t3 + a)
mod N

6 : return c

IBE.Decrypt(N, skid, c)

1 : m←
(
c+ skid
N

)
2 : return m

Figure 3: Cocks’ IBE for cubic roots.

Question 1.4

You are given a public parameter Q1d N, an id Q1d id and a ciphertext Q1d c. Report the
resulting plaintext from decrypting Q1d c under Q1d m

Hint: This question requires a heavy amount of algebraic manupilation. A starting point
could be to realize that: (

(t3 + a)−1

N

)
=

(
(t3 + a)

N

)−1

=

(
t3 + a

N

)

4

Exercise 2 Semi-Direct Discrete Logarithms in Cryptography

After the midterm, you should all be familiar with the concept of group action in cryptography
(if not, refer to this link). This exercise aims to extend group actions cryptography by exploring
the concept of semi-direct discrete logarithms. Let’s start with a key definition:

Definition 1 (Holomorph). Let G be a group with its automorphism set Aut(G). The
holomorphism group Hol(G) is defined as the semidirect product of G with Aut(G), denoted
by G ⋊ Aut(G). This means that it consists of ordered pairs from G × Aut(G) with the
following multiplication:

(g, ϕ) ⋆ (g′, ψ) = (gϕ(g′), ϕ ◦ ψ),

with neutral element (eG, id). We thus have that the exponentiation over Hol(G) is defined
as (g, ϕ)n = (gϕ(g) · · ·ϕ(n−1)(g), ϕ(n)) and ϕ(n) = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n times

.

The holomorph of G induces a natural group action:

Hol(G) ⟳ G

(g, ϕ) ⋆ h = gϕ(h),

Now, restrict Hol(G) to a commutative structure. For any (g, ϕ) ∈ Hol(G), our action
induces the following map:

Φ(g,ϕ) : Zd ×G→ G

Φ(g,ϕ)(n, h) = (g, ϕ)n−1 ⋆ h = gϕ(g) · · ·ϕ(n−2)(g)ϕ(n−1)(h)

where d = |G|. This map has certain properties that allow the construction of a Diffie-
Hellman Key Exchange scheme, which is described below:

Semi-Direct Diffie-Hellman Key Exchange

Alice Bob

Pick a ∈ Zd

A = Φ(g,ϕ)(a, g)

A Verify A ∈ G

Pick b ∈ Zd

B = Φ(g,ϕ)(b, g)

Verify B ∈ G B

K = Aϕ(a)(B) K = Bϕ(b)(A)

Return K Return K

K = Φ(g,ϕ)(a+ b, g)

We now explore an application of this Semi-Direct Diffie-Hellman scheme using matrices.
Consider G = Matn×n(Fp), the group of all n× n matrices over the finite field Fp, where p
is a “safe” prime. We choose g = M , a random matrix, and define ϕ is given by two fixed
matrices H1 and H2 such that HiM ̸=MHi. Our maps, ϕH1,H2 are defined as follows:

5

https://en.wikipedia.org/wiki/Group_action
https://en.wikipedia.org/wiki/Semi-direct_product

ϕH1,H2(T) = H1TH2

Throuhout this exercice, the public parameters Q2 p, Q2 n and Q2 M are fixed. You are
given matrices in flatten mode and your answers should also be in flatten mode, i.e.1 2 3

4 5 6
7 8 9

 = [1, 2, 3, 4, 5, 6, 7, 8, 9].

Constructing the scheme

The goal of this exercise is to construct the Semi-Direct Diffie-Hellman Key Exchange. You
are given the public parameters Q2a H1, Q2a H2, Alice’s secret Q2a a and Bob’s public value
Q2a B. Using all these parameters, compute Q2a K the shared key that correspond to the
output of Semi-Direct Diffie-Hellman Key Exchange.

Hint 1:

• Note the addition notation induces that Φ(M,ϕ)(2,M) =M +H1MH2.

• To implement Φ(g,ϕ)(n, g), do not forget that ϕ ∈ Aut(Matn×n(Fq)). This induces self
similarity. For example:

Φ(M,ϕ)(4,M) =M + ϕ(M) + ϕ(2)(M) + ϕ(3)(M) =M + ϕ(M) + ϕ(2)
(
M + ϕ(M)

)
Reducing the scheme

Let show that this scheme reduces to the discrete log problem over Fp. Let d = det(H1H2) ̸= 0,
given Q2b H1, Q2b H2 and Q2b A, retrieve Q2b da = da mod Fp.

Breaking the Scheme

To break this scheme, we will work with matrices of size n2. Consider the following definitions:

Definition 2 (vectorisation). For M ∈ Matn×n(Fp), define vec(M) ∈ F1×n2

p as the vector
obtained by flattening M row-wise:

vec(M)jn+i =Mi,j , 0 ≤ i, j < n.

Definition 3. For Y ∈ Matn×n(Fp), define the matrix L(Y) ∈ Fn2×n2

p as:

L(Y)jn+i,hn+g = (Hg
1Y H

h
2)i,j , 0 ≤ i, j, g, h < n.

Given matrices Q2c H1, Q2c H2, Q2c A and Q2c B, recover the shared key Q2c K.

• Hint 1: What is L(H1MH2) compare to L(M)?

• Hint 2: Find a vector t such that L(M)t = vec(Ha
1MHa

2).

• Hint 3: Consider the Cayley-Hamilton Theorem.

Conclusion: Constructing a robust group action Diffie-Hellman scheme is challenging.

6

https://en.wikipedia.org/wiki/Cayley\OT1\textendash Hamilton_theorem

Exercise 3 Privacy Preserving Neural Network

In this exercise we are going to create a very simple neural network that will compute its
output in an encrypted manner (preserving the confidentiality of the inputs). Let’s start by
defining our neural network. For simplicity, our neural network will be composed of a single
node called a neuron. Given fixed weights (w1, . . . , wn), for input (x1, . . . , xn) the output y of
the neuron will be the output of an activation function f where the input to the activation
function is the weighted sum of the neuron’s inputs with an added bias b. See Figure 4 for a
diagram that describes the neuron.

Figure 4: Neuron on input (x1, . . . , xn).

We recall a variant of ElGamal encryption from the course (with a group generator g and a
prime modulus p) where the input first goes through an exponential. I.e. instead of encrypting
m, we encrypt gm. See Figure 5 for details. For compatibility with the cryptosystem we use,
our neuron will operate modulo p− 1. Our activation function will be f(x) = x

1009 .

KeyGen(1λ)

1 : (p, g)←$ GroupGen(λ)

2 : x←$ Z∗
p

3 : pp← (p, g)

4 : pk← gx

5 : return (x, pk, pp)

Enc(pk,m, pp)

1 : parse pp→ (p, g)

2 : r ←$ Z∗
p

3 : u← gr

4 : v ← pkr · gm

5 : C ← (u, v)

6 : return C

Figure 5: ElGamal encryption with message in the exponent

7

Question 3.1

Given public parameters Q3a pk, Q3a p and Q3a g, a list of n + 1 ciphertexts Q3a c =
(c1, . . . , cn, cb) corresponding to the encryptions of individual inputs and the bias (x1, x2, . . . , xn, b),
a list of n weights Q3a w, compute the ciphertext that would yield the neuron output when de-
crypted and return it under Q3a cy. That is, Q3a cy should be the encryption of f(b+

∑
i xi·wi).

Note that in this question the ciphertext Q3a cy should be a Python tuple with two
components.

8

	Identity-Based Encryption
	
	1.1
	
	1.2
	
	1.3
	
	1.4

	Semi-Direct Discrete Logarithms in Cryptography
	Privacy Preserving Neural Network
	
	3.1

