
Cryptography and Security

http://lasec.epfl.ch/

Exercise Sheet 7
Cryptography and Security 2022

Exercise 1 Elliptic Curve Factoring Method

In this exercise, we want to recover the smallest prime factor p of an integer n.
Given an elliptic curve Ea,b(p) over Zp, we denote by O the point at infinity. The proce-

dure to add two points P and Q which has been seen in class can be implemented as follows:

Add1(Ea,b(p), P,Q)
1: if xP ≡ xQ (mod p) and yP ≡ −yQ (mod p) (equivalent to P = −Q) then
2: return O
3: end if
4: if xP ≡ xQ (mod p) and yP ≡ yQ (mod p) (equivalent to P = Q) then
5: set u = (2yP )−1 mod p
6: set λ = ((3x2P + a)× u) mod p
7: else
8: set u = (xQ − xP )−1 mod p
9: set λ = ((yQ − yP )× u) mod p

10: end if
11: set xR = (λ2 − xP − xQ) mod p
12: set yR = ((xP − xR)λ− yP ) mod p
13: return R = (xR, yR)

We first consider the following algorithm. (Yes, it uses p but we will later build on it another algorithm
ignoring p.)

Proc1(p)
1: pick some random parameters a, b ∈ Zp, define the elliptic curve Ea,b(p) over Zp by y2 = x3+ax+b

and pick a random point S on Ea,b(p)
2: set i = 1
3: while S 6= O do
4: i← i+ 1
5: S ← i.S with the double-and-add algorithm using Add1(Ea,b(p), P,Q)
6: end while

We let q denote the order of Ea,b(p) over Zp. We assume that, due to selecting a and b at random, q
is a random number between p− 2

√
p and p+ 2

√
p.

1. Show that Proc1 terminates.

2. Let M(q) be the largest prime factor of q and αj be the largest integer such that jαj divides q.

We assume that the probability that q is such that we have αj ≤
⌊
M(q)
j

⌋
for all prime j is “very

high”, and that the probability that a random point P in Ea,b(p) has an order multiple of M(q)
is also “very high”.

Show that when these two conditions are met, Proc1 terminates with the value i = M(q).

HINT: Show that when the first condition is met, then q divides M(q)!.

HINT2: This question may be a bit harder than the next ones.

1

http://lasec.epfl.ch/


In what follows, we assume that this implies that the average number of iterations in Proc1 is

e
√

(1+o(1)) ln p ln ln p.

3. We change Proc1 into Proc2 by making computations modulo n instead of modulo p. When
adding two points P and Q, the test P = Q and the test P = −Q are still done modulo p. We
temporarily assume that we can easily pick an element in the curve at random in the first step of
Proc2. Below, we underline what was changed.

Add2(Ea,b(p, n), P,Q)

1: if xP ≡ xQ (mod p) and yP ≡ −yQ (mod p) then
2: return O
3: end if
4: if xP ≡ xQ (mod p) and yP ≡ yQ (mod p) then
5: set u = (2yP )−1 mod n (abort with an error message if non invertible)

6: set λ = ((3x2P + a)× u) mod n
7: else
8: set u = (xQ − xP )−1 mod n (abort with an error message if non invertible)
9: set λ = ((yQ − yP )× u) mod n

10: end if
11: set xR = (λ2 − xP − xQ) mod n
12: set yR = ((xP − xR)λ− yP ) mod n
13: return R = (xR, yR)

Proc2(p, n)
1: pick some random parameters a, b ∈ Zn, define the curve Ea,b(p, n) over Zn by y2 = x3 +

ax+ b, and pick a random point S on Ea,b(p, n)
2: set i = 1
3: while S 6= O do
4: i← i+ 1
5: S ← i.S with the double-and-add algorithm using Add2(Ea,b(p, n), P,Q)
6: end while

We execute in parallel Proc1 and Proc2 with the same random seed. We let S1 (resp. S2)
designate the value of the register S in Proc1 (resp. Proc2). Show that at every step, xS1 ≡ xS2

(mod p) and yS1 ≡ yS2 (mod p) until Proc2 aborts with an error or terminates.

4. Transform Add2 so that any abortion yields a non-trivial factor of n instead of an error.

5. Further transform Add2 so that it does not need p any longer.

HINT: look at what can go wrong if we do the comparisons modulo n.

6. Observe that the first step of Proc2 cannot be done efficiently. Transform this step to make it
doable efficiently and without using p.

HINT: pick S first!

7. Show that the probability that Proc2 terminates with an abortion is “very high” based on the
assumptions from 2. Deduce that we can find the smallest prime factor p of n with complexity

e
√

(1+o(1)) ln p ln ln p.

HINT: we do not expect any probability computation, just identify cases when the algorithm
does not abort and heuristicaly justify that this is unlikely to happen.

Exercise 2 Weak Keys of DES

We say that a DES key k is weak if DESk is an involution. Exhibit four weak keys for DES.
Reminder: Let S be a finite set and let f be a bijection from S to S. The function f is an involution
if f(f(x)) = x for all x ∈ S.

2



Note: PC1 and PC2 are permutations you don’t need to know.

Exercise 3 Complementation Property of DES

Given a bitstring x we let x denote the bitwise complement, i.e., the bitstring obtained by flipping all
bits of x.

1. Prove that
DESK(x) = DESK(x)

for any x and K.

2. Deduce a brute force attack against DES with average complexity of 254 DES encryptions.
Hint: Assume that the adversary who is looking for K is given a plaintext block x and the two
values corresponding to DESK(x) and DESK(x).

Exercise 4 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C and we use it in the following mode of
operation: to encrypt a sequence of blocks x1, . . . , xn, we initialize a counter t to some IV value, then
we compute

yi = ti ⊕ CK(xi)

for every i where K is the encryption key and ti = IV + i. The ciphertext is

IV, y1, . . . , yn

Namely, IV is sent in clear.

1. Is this mode of operation equivalent to something that you already know? Say why?

2. Does the IV need to be unique?

3. What kind of security problem does this mode of operation suffer from?

3


	Elliptic Curve Factoring Method
	Weak Keys of DES
	Complementation Property of DES
	A Weird Mode of Operation

