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Cryptography and Security 2022

Exercise 1  Elliptic Curve Factoring Method

In this exercise, we want to recover the smallest prime factor p of an integer n.
Given an elliptic curve E,p(p) over Z,, we denote by O the point at infinity. The proce-
dure to add two points P and ) which has been seen in class can be implemented as follows:

AddL(E,y(p). P.Q)

if xp = 2o (mod p) and yp = —ygo (mod p) (equivalent to P = —Q)) then
2:  return O

3: end if

4: if xp = g (mod p) and yp = yg (mod p) (equivalent to P = @) then

5. set u = (2yp) ! mod p

6:  set A= ((3z% +a) x u) mod p
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. else
set u = (rg —xp) ' mod p
set A = ((yo —yp) x u) mod p
10: end if
11: set zr = (A2 —2p — 2g) mod p
12: set yr = ((xp — xr)\ — yp) mod p
13: return R = (xR, yr)
We first consider the following algorithm. (Yes, it uses p but we will later build on it another algorithm
ignoring p.)
Procl(p)
1: pick some random parameters a,b € Z,, define the elliptic curve E, ;(p) over Z, by y? =23 +ax+b
and pick a random point S on E, 4(p)
2: set 1 =1
3: while S # O do
4: 1+—1+1
5. S < 1.5 with the double-and-add algorithm using Add1(E,(p), P, Q)
6: end while
We let ¢ denote the order of E, ;(p) over Z,. We assume that, due to selecting a and b at random, ¢
is a random number between p — 2,/p and p + 2,/p.

1. Show that Procl terminates.

2. Let M(q) be the largest prime factor of ¢ and «; be the largest integer such that j% divides g.

We assume that the probability that ¢ is such that we have a; < {@J for all prime j is

high”, and that the probability that a random point P in E, ;(p) has an order multiple of M (q)
is also “very high”.

“very

Show that when these two conditions are met, Procl terminates with the value i = M(q).
HINT: Show that when the first condition is met, then ¢ divides M (q)!.
HINT?: This question may be a bit harder than the next ones.
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In what follows, we assume that this implies that the average number of iterations in Procl is

ew/(l-i—o(l)) Inplnlnp

3. We change Procl into Proc2 by making computations modulo n instead of modulo p. When
adding two points P and @), the test P = @) and the test P = —(@) are still done modulo p. We
temporarily assume that we can easily pick an element in the curve at random in the first step of
Proc2. Below, we underline what was changed.

Add2(E, (p,n), P,Q)

if zp = 2¢ (mod p) and yp = -y (mod p) then
return O

: end if
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4: if zp = 2 (mod p) and yp = ygo (mod p) then

5 set u = (2yp)~! mod n (abort with an error message if non invertible)
6: set A= ((3z% +a) x u) mod n
7
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: else

' mod n (abort with an error message if non invertible)
. set A= ((yg —yp) X u) mod n

10: end if

11: set zr = (A2 —zp — zg) mod n

12: set yr = ((xp —xr)\ — yp) mod n

13: return R = (xR, yRr)

set u=(xg —xp)”

Proc2(p, n)
1: pick some random parameters a,b € Zj, define the curve E,(p,n) over Z, by y? = 23 +

ax + b, and pick a random point S on Eg(p, n)
2: set i =1 -
3: while § # O do
4: 14— 1+1
5. S 4.5 with the double-and-add algorithm using Add2(E,(p,n), P, Q)
6: end while -

We execute in parallel Procl and Proc2 with the same random seed. We let S (resp. S2)
designate the value of the register S in Procl (resp. Proc2). Show that at every step, zg, = xg,
(mod p) and yg, = ys, (mod p) until Proc2 aborts with an error or terminates.

4. Transform Add2 so that any abortion yields a non-trivial factor of n instead of an error.

5. Further transform Add2 so that it does not need p any longer.

HINT: look at what can go wrong if we do the comparisons modulo n.

6. Observe that the first step of Proc2 cannot be done efficiently. Transform this step to make it
doable efficiently and without using p.

HINT: pick S first!

7. Show that the probability that Proc2 terminates with an abortion is “very high” based on the
assumptions from 2. Deduce that we can find the smallest prime factor p of n with complexity

e (1+o(1)) Inplnlnp_

HINT: we do not expect any probability computation, just identify cases when the algorithm
does not abort and heuristicaly justify that this is unlikely to happen.

Exercise 2 Weak Keys of DES

We say that a DES key k is weak if DESy, is an involution. Exhibit four weak keys for DES.
Reminder: Let S be a finite set and let f be a bijection from § to S. The function f is an involution
if f(f(z))==xforallz e S.



Note: PC1 and PC2 are permutations you don’t need to know.

Exercise 3 Complementation Property of DES

Given a bitstring x we let T denote the bitwise complement, i.e., the bitstring obtained by flipping all
bits of x.

1. Prove that
DES?(E) = DESk (z)

for any z and K.

2. Deduce a brute force attack against DES with average complexity of 2°4 DES encryptions.
Hint: Assume that the adversary who is looking for K is given a plaintext block x and the two
values corresponding to DESk (z) and DESk (7).

Exercise 4 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C' and we use it in the following mode of
operation: to encrypt a sequence of blocks x1,...,x,, we initialize a counter ¢ to some IV value, then

we compute
yi = t; © Ck (xi)

for every i where K is the encryption key and t; = IV + 4. The ciphertext is
IV, y1,.- -, Yn
Namely, IV is sent in clear.
1. Is this mode of operation equivalent to something that you already know? Say why?
2. Does the IV need to be unique?

3. What kind of security problem does this mode of operation suffer from?
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