

Exercise Sheet 14

Cryptography and Security 2022

Exercise 1 TCHO Encryption

The goal of the exercise is to study the TCHO public-key cryptosystem.

- We consider the usual + and \times operations in \mathbb{Z}_2 .
- The plaintext space is $\{0,1\}$ (we encrypt a single bit) and the ciphertext space is $\{0,1\}^{\ell}$ (the ciphertexts are ℓ -bit long).
- The public key is an irreducible polynomial of degree d with coefficients in \mathbb{Z}_2 denoted $P(z) = P_0 + P_1 z + \cdots + P_d z^d$.
- The secret key is a polynomial of degree d_K with coefficients in \mathbb{Z}_2 denoted $K(z) = K_0 + K_1 z + \cdots + K_{d_K} z^{d_K}$.
- These two polynomials are such that:
 - P(z) divides K(z) in $\mathbb{Z}_2[z]$;
 - -K(z) has a total number w of nonzero coefficients which is low. We assume that w is odd.
- We define four elementary operations.
 - **Repetition:** Given a plaintext x, we define the ℓ -bit vector C(x) = (x, ..., x) (all components of C(x) are equal to x).
 - **LFSR:** Given a *d*-bit vector $r = (r_0, r_1, \dots, r_{d-1})$, we define its expansion to an ℓ -bit vector $(\ell > d)$ by using the relation

$$r_{i+d} = \sum_{j=0}^{d-1} r_{i+j} P_j$$

for $i = 0, ..., \ell - 1 - d$ in \mathbf{Z}_2 .

Note that this relation is linear. We let $\mathcal{L}_P(r) = (r_0, r_1, \dots, r_{\ell-1})$.

- **Biased sequence:** Given a random seed r' we define $S_{\gamma}(r')$ as a random ℓ -bit string such that the probability that each bit is 0 is given by $\frac{1+\gamma}{2}$ (its probability of being 1 is thus $\frac{1-\gamma}{2}$).
- Cancellation: Given $y \in \mathbf{Z}_2^{\ell}$, we define $K \otimes y \in \mathbf{Z}_2^{\ell-d_K}$ by

$$(K \otimes y)_i = \sum_{j=0}^{d_K} y_{i+j} K_j$$

for $i = 0, ..., \ell - 1 - d_K$ in \mathbf{Z}_2 .

• Encryption: To encrypt the bit x with randomness r and r', compute:

$$Enc_P(x; r, r') = C(x) + \mathcal{L}_P(r) + \mathcal{S}_{\gamma}(r')$$

with component-wise addition over \mathbb{Z}_2 .

- 1. Show that given $C(x) + S_{\gamma}(r')$, the plaintext x can be recovered if γ is not too small. What is the complexity of the attack in terms of ℓ ?
- 2. Show that given $C(x) + \mathcal{L}_P(r)$, the plaintext x can be recovered. What is the complexity of the attack in terms of d?
- 3. Show that for any $x \in \mathbf{Z}_2$ we have $K \otimes C(x) = (x, x, \dots, x)$.
- 4. Show that for any $r \in \mathbf{Z}_2^d$ we have $K \otimes \mathcal{L}_P(r) = 0$.
- 5. Show that for a random r' all bits of $K \otimes S_{\gamma}(r')$ have the same distribution and a probability of being 0 of $\frac{1}{2}(1+\gamma^w)$.

Hint: For any i, $(K \otimes S_{\gamma}(r'))_i$ is the XOR of exactly w independent bits of bias γ .

- 6. Given $\mathsf{Enc}_P(x;r,r')$ and K(z), give an algorithm to recover x. What is its complexity in terms of the parameters d_K and ℓ ?
- 7. To study the security, give an algorithm to recover K(z) given P(z), d_K and w. What is its complexity?

Hint: if $K(z) = 1 + \sum_{j=1}^{w-1} z^{i_j}$, it satisfies a condition which can be written

$$1 + \sum_{j=1}^{\frac{w-1}{2}} z^{i_j} = \sum_{j=\frac{w-1}{2}+1}^{w-1} z^{i_j} \pmod{P(z)}$$