

# Exercise Sheet 12

Cryptography and Security 2022

### Exercise 1 Generating Prime Numbers

We recall that if we pick a random number in  $\{1, 2, ..., N\}$ , the probability that it is prime is approximately  $\frac{1}{\ln N}$ .

We want to generate prime numbers p and q for an RSA modulus with exponent e = 3. To generate one  $\ell$ -bit prime number, we iteratively pick a random number between  $2^{\ell-1}$  and  $2^{\ell} - 1$  until we find a prime number:

#### $GenPrime(\ell)$

- 1: repeat
- 2: pick  $p \in \{2^{\ell-1}, 2^{\ell-1} + 1, \dots, 2^{\ell} 2, 2^{\ell} 1\}$  at random
- 3: **until** p is prime
- 4: output p

Then, to generate a  $2\ell$ -bit RSA key, we proceed as follows:

#### $\mathsf{GenRSA}(\ell)$

- 1: repeat
- 2:  $p = \mathsf{GenPrime}(\ell)$
- 3:  $q = \mathsf{GenPrime}(\ell)$
- 4: **until** e = 3 is a valid exponent with the RSA modulus pq
- 5: output p, q

In this exercise, we assume that  $\ell$  is large enough for the RSA security.

- 1. Estimate the probability that a randomly selected element from  $\{2^{\ell-1}, 2^{\ell-1}+1, \dots, 2^{\ell}-2, 2^{\ell}-1\}$  is prime.
- 2. Show that the GenPrime algorithm can be speeded up by a factor 2 by selecting random elements in  $\{2^{\ell-1}+1,2^{\ell-1}+3,\ldots,2^{\ell}-3,2^{\ell}-1\}$ .
- 3. Show that e = 3 is a valid RSA exponent if and only if p and q are equal to 2 modulo 3.
- 4. Consider the following algorithm:

#### $GenRSA'(\ell)$

- 1: repeat
- 2:  $p = \mathsf{GenPrime}(\ell)$
- 3: **until**  $p \mod 3 = 2$
- 4: repeat
- 5:  $q = \mathsf{GenPrime}(\ell)$
- 6: **until**  $q \mod 3 = 2$
- 7: output p, q

Show that it produces equivalent outputs to GenRSA but with a twice lower expected complexity.

5. The previous way to generate prime numbers is equivalent to using the following new algorithm:

#### $\mathsf{GenPrime}'(\ell)$

1: repeat

```
2: pick p \in \{2^{\ell-1}, 2^{\ell-1}+1, \dots, 2^{\ell}-2, 2^{\ell}-1\} at random
```

- 3: **until** p is prime and  $p \mod 3 = 2$
- 4: output p

Propose another algorithm GenPrime" (we expect a full description of the algorithm in the same style as GenPrime') to generate the prime numbers which is about 6 times faster than GenPrime'. Conclude that GenRSA with this new algorithm instead of GenPrime is speeded up by a factor of about 12.

HINT: a Chinese proverb says that if you have two requirements at the same time, maybe you should combine them into a single requirement.

6. Propose a way to speed up  $\mathsf{GenPrime}''$  by a factor  $\frac{4}{5} \times \frac{6}{7} \times \frac{10}{11} \times \frac{12}{13} \times \frac{16}{17} \times \frac{18}{19} \times \frac{22}{23} \times \cdots$ 

## Exercise 2 Security Issues in ECDSA

In Sony PS3, the bootup code can be changed when it comes from a valid signature from the manufacturer. The signature scheme is ECDSA. We briefly recall the scheme here.

The public key consists of a prime number n, a finite field  $\mathsf{GF}(q)$ , an elliptic curve over this field, a generator G of order n, and another point Q. The secret key is an integer  $d \in \mathbf{Z}_n^*$  such that Q = dG. To sign a message M, the signer picks  $k \in \mathbf{Z}_n^*$ , computes the point  $(x_1, y_1) = kG$ , then  $r = \bar{x}_1 \mod n$  given a function  $x \mapsto \bar{x}$  from  $\mathsf{GF}(q)$  to  $\mathbf{Z}$ , and finally  $s = \frac{H(M) + dr}{k} \mod n$  given a hash function H. If r = 0 or s = 0, the signer restarts the computation until  $r \neq 0$  and  $s \neq 0$ . The signature is the pair (r, s). To verify a signature (r, s) for a message M, the verifier checks that  $Q \neq \mathcal{O}$ , that Q lies on the curve, that  $nQ = \mathcal{O}$ , and that  $r \in \mathbf{Z}_n^*$ . Then, he computes  $u_1 = \frac{H(M)}{s} \mod n$ ,  $u_2 = \frac{r}{s} \mod n$ , and  $(x_1, y_1) = u_1G + u_2Q$ , and finally checks that  $r = \bar{x}_1 \mod n$ .

- 1. ECDSA manipulates values of different types such as points, field elements, integers, etc. What are the types of k, r, s,  $y_1$ , H(M)? What is  $\mathcal{O}$ ?
- 2. What kind of finite fields can we use in practice? Cite at least two and briefly explain how to perform computations in these structures.
- 3. If a key is valid and a signature is produced by the signing algorithm, show that the verification algorithm will accept the signature.
- 4. Why is it hard to recover the secret key given the public key?
- 5. For some reasons, the manufacturer produced signatures for different codes using the same random k. Given two codes M and M' and their signatures (r, s) and (r', s'), respectively, show that an adversary can recover d.