
Cryptography and Security

http://lasec.epfl.ch/

Exercise Sheet 10
Cryptography and Security 2022

Exercise 1 CFB-MAC

In this problem, we study a MAC scheme based on the CFB encryption mode. We consider a block
cipher E : {0, 1}64×{0, 1}64 → {0, 1}64, where Ek(x) = E(k, x) denotes the encryption of the plaintext
x under the key k. The CFB-MAC of a given message m ∈ {0, 1}∗ with the key k is obtained by
first encrypting m with Ek using the CFB encryption mode and then combining the output blocks
by XORing them together. More precisely, for a message m = x1‖x2‖ · · · ‖xn, CFB-MACk(m) =
y1 ⊕ y2 ⊕ · · · ⊕ yn, where yi = Ek(yi−1) ⊕ xi for i = 2, . . . , n and y1 = Ek(IV) ⊕ x1, IV being an
initialization vector. For the sake of simplicity, we assume that all messages have a length that is a
multiple of 64 bits. We also assume in all the questions of this problem that IV is constant and known.

1. Assume we have access to an oracle O that computes the CFB-MAC under a given secret key k
and a fixed known IV. Show that you can recover Ek(IV) by querying only one message to the
oracle.

2. Assume that an adversary has access to an oracle O that computes the CFB-MAC under a given
secret key k and a fixed known IV. The adversary would like to find a CFB-MAC collision on
two different messages of 192 bits. How many messages of 192 bits does the adversary need to
query to O in order to get a collision with probability close to 0.9996 ≈ 1− e−8?

3. Given a message m of n blocks and h = CFB-MACk(m). Show how it is possible to generate a
new message m′ of n blocks and a h′ ∈ {0, 1}64 such that m′ 6= m and CFB-MACk(m′) = h′.

4. Assume we are given IV, Ek(IV), and a h ∈ {0, 1}64. Show how it is possible to generate a
message m of two blocks, such that CFB-MACk(m) = h.

5. Can we extend the attack of the previous question to messages m of more than two blocks?
Explain your answer.

1

http://lasec.epfl.ch/


Exercise 2 Analysis of the Floyd Cycle Finding Algorithm

We recall here the Floyd cycle finding algorithm. Remember that the algorithm forms a graph which
looks like a ρ. We call the length of the tail λ and the length of the loop τ .
Input: an initial string x0, a function F : {0, 1}∗ → {0, 1}n.
Output: The length of the tail λ.

1: a← x0 //(tortoise)
2: b← x0 //(hare)
3: repeat
4: a← F (a)
5: b← F (F (b))
6: until a = b
7: a← x0
8: λ← 0
9: while a 6= b do

10: a← F (a)
11: b← F (b)
12: λ = λ+ 1
13: end while
14: return λ

1. Explain how to adapt the algorithm so that it finds a collision in the function F . In which case
is your algorithm failing?

2. Let xi = F (xi−1). Show that the condition a = b in the first loop is verified if and only if i ≥ λ
and τ |i. Explain at what point of the graph the first loop stops.

3. How many iterations (in term of λ and τ) are required for the first loop to terminate?

4. How many times (in term of λ and τ) do we do the second while loop?

5. Assume that Pr[λ ≤ τ ] = 1/2 and that Pr[λ ≥ 2τ ] is negligible, i.e., close to 0. Knowing that
E[λ] = E[τ ] =

√
πN/8 for a random function over a set of cardinality N , what is the overall

expected complexity (in terms of calls to F ) of the algorithm? How much memory does it use?

2


	CFB-MAC
	Analysis of the Floyd Cycle Finding Algorithm

