3’__ A S_ E g Cryptography and Security

11111111

.......................... http://lasec.epfl.ch/

Exercise Sheet 10

Cryptography and Security 2022

Exercise 1 CFB-MAC

In this problem, we study a MAC scheme based on the CFB encryption mode. We consider a block
cipher E : {0,1}5% x {0,1}%* — {0,1}%*, where Ej(z) = E(k, x) denotes the encryption of the plaintext
x under the key k. The CFB-MAC of a given message m € {0,1}* with the key k is obtained by
first encrypting m with E; using the CFB encryption mode and then combining the output blocks
by XORing them together. More precisely, for a message m = xz1||x2| - ||zn, CFB-MACk(m) =
Y1 D ys D -+ D yYn, where y; = Ex(y;—1) @ z; for i = 2,...,n and y; = Ex(IV) @ x1, IV being an
initialization vector. For the sake of simplicity, we assume that all messages have a length that is a
multiple of 64 bits. We also assume in all the questions of this problem that IV is constant and known.

1.

Assume we have access to an oracle O that computes the CFB-MAC under a given secret key k
and a fixed known IV. Show that you can recover Ex(IV) by querying only one message to the
oracle.

Assume that an adversary has access to an oracle O that computes the CFB-MAC under a given
secret key k and a fixed known IV. The adversary would like to find a CFB-MAC collision on
two different messages of 192 bits. How many messages of 192 bits does the adversary need to
query to O in order to get a collision with probability close to 0.9996 ~ 1 — =87

Given a message m of n blocks and h = CFB-MACk(m). Show how it is possible to generate a
new message m’ of n blocks and a k' € {0,1}%4 such that m’ # m and CFB-MAC(m') = A’

. Assume we are given IV, Ex(IV), and a h € {0, 1}64. Show how it is possible to generate a

message m of two blocks, such that CFB-MACy(m) = h.

Can we extend the attack of the previous question to messages m of more than two blocks?
Explain your answer.

http://lasec.epfl.ch/

Exercise 2 Analysis of the Floyd Cycle Finding Algorithm

We recall here the Floyd cycle finding algorithm. Remember that the algorithm forms a graph which
looks like a p. We call the length of the tail A and the length of the loop 7.
Input: an initial string x¢, a function F : {0,1}* — {0,1}".
Output: The length of the tail A.
a < xo //(tortoise)
b < xo //(hare)
repeat
a < F(a)
b« F(F(b))
until a =0
a < Xo
A0
while a # b do
a < F(a)
b+« F(b)
A=A+1
: end while
return A\

e e e
w9

1. Explain how to adapt the algorithm so that it finds a collision in the function F. In which case
is your algorithm failing?

2. Let z; = F(z;—1). Show that the condition a = b in the first loop is verified if and only if i > A
and 7|i. Explain at what point of the graph the first loop stops.

3. How many iterations (in term of A and 7) are required for the first loop to terminate?
4. How many times (in term of A and 7) do we do the second while loop?

5. Assume that Pr[A < 7] = 1/2 and that Pr[A > 27] is negligible, i.e., close to 0. Knowing that
E[\ = E[r] = \/nN/8 for a random function over a set of cardinality N, what is the overall
expected complexity (in terms of calls to F') of the algorithm? How much memory does it use?

	CFB-MAC
	Analysis of the Floyd Cycle Finding Algorithm

