SV 2024-25

Cryptography and Security

Serge Vaudenay

cPi-L

http://lasec.epfl.ch/

Cryptography and Security

CryptoSec

1/1098

http://lasec.epfl.ch/

0 Ancient Cryptography

© Ditfie-Hellman Cryptography
e RSA Cryptography

0 Elliptic Curve Cryptography
e Symmetric Encryption

e Integrity and Authentication
e Public-Key Cryptography
e Trust Establishment

e Case Studies

SV 2024-25 Cryptography and Security

CryptoSec

2/1098

o Ancient Cryptography

SV 2024-25 Ancient Cryptography CryptoSec 3/1098

Roadmap

@ scope of cryptography
@ prehistory (before XX-th Century)
@ transposition and substitution
o Vigenere
@ pre-modern cryptography
e Kerckhoffs principle
e Enigma

@ cryptography by information theory

@ Vernam
@ Shannon

SV 2024-25 Ancient Cryptography CryptoSec 4/1098

@ Ancient Cryptography
@ Scope of Cryptography

SV 2024-25 Ancient Cryptography CryptoSec 5/1098

Cryptography = Science of Information and
Communication Security

SV 2024-25 Ancient Cryptography CryptoSec 671098

Evolution

@ Prehistory
secret development
cryptography before communication systems
(confidentiality/privacy)

@ Modern cryptography
academic research
for mass communication
(confidentiality/privacy, detection of malicious modification, data
authentication, non-repudiation, access control, timestamping,
fair exchange, digital rights management, etc)

SV 2024-25 Ancient Cryptography CryptoSec 7/1098

Applications

@ bank cards

@ Internet (e-commerce)

@ mobile telephony (DECT, GSM, GPRS, EDGE, 3G, 4G, 5G, ...)
@ mobile communication (Bluetooth, WiFi...)

@ e-passport

@ traceability, logistic & supply chains (RFID)

@ pay-TV, DRM

@ access control (car lock systems, metro...)

@ payment (e-cash)

@ electronic voting

SV 2024-25 Ancient Cryptography CryptoSec 8/1098

Cryptography versus Security

@ cryptography: a toolbox for setting up security infrastructure
@ security experts often assume cryptography does a good job

@ cryptographic tools are pretty good, but not for everything
some can easily be misused

@ proper usage of cryptography still requires to master it

SV 2024-25 Ancient Cryptography CryptoSec 9/1098

Cryptography vs Coding Theory

@ Code
a system of symbols which represent information

@ Coding theory
science of code transformation which enables to send infor-
mation through a communication channel in a reliable and
efficient way (— dummy adversary)

@ Cryptography
(obsolete definition) the science of secret codes, enabling the
confidentiality of communication through an insecure channel
(— malicious adversary)

@ Cipher
secret code, enabling the expression of a public code by a
secret one by making the related information confidential

SV 2024-25 Ancient Cryptography CryptoSec 10/1098

Cryptanalysis

@ Cryptanalysis, cryptographic analysis, cryptoanalysis
theory of security analysis of cryptographic systems

@ To cryptanalyze a cryptosystem (+# to break it)
to prove or to disprove the security provided by a cryptosys-
tem

@ To break a cryptosystem
to prove insecurity (= to disprove security)

SV 2024-25 Ancient Cryptography CryptoSec 11/1098

Problem of this Lecture: Secure Communication

over an Insecure Channel
The Fundamental Trilogy

Adversary

| |

Message R A
> T

| |

Y

X

@ Confidentiality (C): only the legitimate receiver can get X

@ Authentication + Integrity (A+l): only the legitimate sender can
insert X and the received message must be equal to X

SV 2024-25 Ancient Cryptography CryptoSec 12/1098

Basic Security Properties

@ Confidentiality
the information should not leak to any unexpected party
@ Integrity

the information must be protected against any malicious
modification

@ Authentication
the information should make clear who is its author

SV 2024-25 Ancient Cryptography CryptoSec 13/1098

Main Cryptographic Primitives in this Lecture

@ symmetric encryption

@ message authentication code
@ key agreement protocol

@ public-key cryptosystem

@ digital signature

SV 2024-25 Ancient Cryptography CryptoSec 14/1098

Symmetric Encryption

‘ Adversary ‘
\ \

Message Message
——" s Enc Dec |——m>
\ \

A
Key+ . CONFIDENTIAL Key
TAUTHENTICATION!
INTEGRITY
‘ ‘ Generator

SV 2024-25 Ancient Cryptography CryptoSec 15/1098

Message Authentication Code

Message

SV 2024-25

‘ Adversary ‘

essage
\ \ Messag
MAC Check
>
\ \ ok?
A

Key+ . CONFIDENTIAL Key

[AUTHENTICATION!

INTEGRITY
‘ ‘ Generator

Ancient Cryptography

CryptoSec 16 /1098

Secure Comm. based on Conventional

Cryptography

‘ Adversary ‘

\ \ Message
Message
Enc/MAC Dec/Check
——————
‘ ‘ ok?
7y
Key+ . CONFIDENTIAL Key
[AUTHENTICATION!
INTEGRITY
‘ ‘ Generator

SV 2024-25

Ancient Cryptography

CryptoSec 17 /1098

Problem of Symmetric Cryptography

Q: What is the main problem of symmetric-key cryptography?
A: Jr zhfg frg hc n flzzrgevp xrl

SV 2024-25 Ancient Cryptography CryptoSec 18/1098

Key Agreement Protocol

‘ Adversary ‘
\ \ Message
Message
g Enc/MAC Dec/Check
>
‘ ‘ ok?
X X

Key | | Key
\ \

Protox; - AUTHENTICATION »| Protog

ice [INTEGRITY | o

SV 2024-25 Ancient Cryptography CryptoSec 19/1098

Public-Key Cryptosystem (Key Transfer)

Dec

Message

| Adversary |
| |
Message
Enc
| |
Public Keyt _AUTHENTICATION,
I INTEGRITY | |

SV 2024-25

A
Secret Key

Generator

Ancient Cryptography

CryptoSec 20/1098

Problem of Public-Key Cryptography

Q: What is the main problem of public-key cryptography?
A: Jr zhfg nhguragvpngr n choyvp xrl

SV 2024-25 Ancient Cryptography CryptoSec 21/1098

Digital Signature (Public-Key Certificate)

‘ Adversary ‘
| g | | Message
M» Sign Verify
| | [
A
Secret Key | iAU'I;:_I?Egg?‘\I’(ION i *Public Key
Generator ‘ ‘

SV 2024-25 Ancient Cryptography CryptoSec 22/1098

Secure Communication Standards

@ TLS (e-commerce, business-to-customer)
@ IPSEC (VPN, corporate networks)

@ SSH (secure remote connections)

@ PGP (secure peer-to-peer, secure email)

@ GSM/GPRS/3G/4G/5G (mobile telephones)
@ Bluetooth (wireless local networks)

o WPA (WiFi)

@ MRTD (e-passports)

° ..

SV 2024-25 Ancient Cryptography CryptoSec 23/1098

Example of TLS

Authority
/
/ '
PKautn , signature
/ p server
/
authenticated public key»
pkserver i
signature
Client < gk Server
p server

SV 2024-25 Ancient Cryptography CryptoSec 24/1098

@ Ancient Cryptography

@ Cryptography Prehistory

SV 2024-25 Ancient Cryptography CryptoSec 25/1098

Secret Writing

Hieroglyphs!

SV 2024-25 Ancient Cryptography CryptoSec 26 /1098

Transpositions

Spartan scytales

thisisya ,dummy, message

\J Z < Z

|

TSMSH, MSIAYAS,, G DMEIUE

SV 2024-25 Ancient Cryptography CryptoSec 27/1098

Simple Substitution: Caesar Cipher

abcdefghiklmnopgrstvzx
DEFGHIKLMNOPQRSTVXABC
caesar — FDHXDV

SV 2024-25 Ancient Cryptography CryptoSec 28/1098

Simple Substitution: ROT13

= wp
oo
lav o)
o0 o
f=v A0
0w +
1 09
(== 5
< B
= .
>R
<
N B
= B
Qs
O Q
e]
L3 O]
@ ct
e
H <
(S
~ M
<
= N

rot — EBG

Application: quiz

Q:Where can we find good quiz?
A:va pnenzone pnaqvrf

SV 2024-25 Ancient Cryptography CryptoSec 29/1098

Simple Substitution: Random Substitution Table

crypto — LCNMRT

Number of possible tables: 26! ~ 284
Quiz:

Q:How to break this?

A:ol fgngvfgvpny nanylfvf

SV 2024-25 Ancient Cryptography CryptoSec 30/1098

Probabilities of Occurrence in English

letter probability | letter probability | letter probability

A 0.082 J 0.002 S 0.063
B 0.015 K 0.008 T 0.091
C 0.028 L 0.040 U 0.028
D 0.043 M 0.024 U 0.010
E 0.127 N 0.067 W 0.023
F 0.022 0 0.075 X 0.001
G 0.020 P 0.019 Y 0.020
H 0.061 Q 0.001 VA 0.001
I 0.070 R 0.060

SV 2024-25

Ancient Cryptography

CryptoSec

31/1098

Rough Frequencies in English

@ most frequent: E

© veryfrequent: TAOINSHR
© frequent: D L
Qrare:CUMWFGYPB

@ veryrare: VK JXQZ

30 most common digrams (in decreasing order):
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU,
EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI and OF.

12 most common trigrams (in decreasing order):
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.

SV 2024-25 Ancient Cryptography CryptoSec 32/1098

Vigeneére Cipher

Plaintext: thisisadummymessage
Key: ABC

this is a dummy message
+ ABCA BC A BCABC ABCABCA
= TIKS JU A EWMNA MFUSBIE

Ciphertext: TIKSJUAEWMNAMFUSBIE
eg.y+C=A

SV 2024-25 Ancient Cryptography CryptoSec

33/1098

Character Addition Rule

QTmOQwWEl+
QTMMEHOQWE=e
—m QMmoo Q w o
H Do QT MmO Qo
aH D QMT™mE o
N G HmDm QT m|o
BN oH D QT
2N G H DT Q™

cultural remark: using the mapping (isomorphism) a<«> 0, b <> 1,
C + 2, ... this is the addition modulo 26
(group Zz)

SV 2024-25 Ancient Cryptography CryptoSec 34/1098

Column-Dependent Substitution

O n BB MO o=
M O B A P
R < & 0 HlQ

Mmwn2=2=0n 4>
W m =Moo H W
H Q= aXxQa

SV 2024-25 Ancient Cryptography CryptoSec 35/1098

Kasiski Test Example

— look at unexpectedly frequent patterns

CHREEVOAHMAERATB IAXXWTNXBEEOPHBSBQMQEQERBW
RVXUOAKXAOS X XWE AHBWG J MMQMNKGRFVGXWTRZXW | AK
LXFPSKAUTEMNDCMGTSXMXBTU | ADNGMGPSRELXNJELX
VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBF XNGLLCHR
ZBWELEKMSJ I KNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT
AMRVLCRREMNDGL XRRIMGNSNRWCHRQHAEYEVTAQEBB |
PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP

WQA | IWXNRMGWO | | FKEE
CHR occurs at 1, 166, 236, 276, 286.

SV 2024-25 Ancient Cryptography CryptoSec 36/1098

Question

In a random string of 313 characters from an alphabet of
26 letters, is it common to observe 5 occurences of the
same trigram?

SV 2024-25 Ancient Cryptography CryptoSec 37/1098

Reminders on Combinatorics

@ number of k-tuples of elements in a set of size z:
example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

Zk

Application (k = 3, z = 26): #possible trigrams is 26 = 17576

@ number of possible subsets of t elements in a set of size n:
example n=4,t=2: {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}

<n>_ n! ~n-(n—1)---(n—t+1)
t) t(n—1t)! t-(t—1)---1
Application: if we draw n balls with replacement in a jar of 1/p
numbered balls, the probability to pick ball number u exactly ¢
times is () p'(1 — p)™*

(binomial distribution)

SV 2024-25 Ancient Cryptography CryptoSec 38/1098

Are 5 Occurrences Significant?

In a truly random sequence of 313 characters x1 Xz . . . X313 with
alphabet of 26 letters

@ there are n = 311 trigrams t; = xyXoX3, bb = XoX3Xq, ...
tn = XnXn+1Xn+2
@ every possible trigram abc has a number of occurrences
Nape = 27:1 14—abc
@ approximation: all ts are independent and uniformly distributed
in a set of 15 = 26% = 17576 possibilities
® Pr[nape =1 = (1) p'(1 — p)""
(A =n x pis small 50 Pr[na = t] ~ 2 e~*: Poisson distribution)
@ Application: Pr[3a,b,¢ Nape > 5] ~2.42 x 10~/
observing 5 occurrences of CHR is significantly odd

SV 2024-25 Ancient Cryptography CryptoSec 39/1098

Where does CHR Come From?

key of length multiple of 5 + frequent trigram

t h e C H R
H .

t h e C H R

t h e C H R

SV 2024-25 Ancient Cryptography CryptoSec 40/1098

Kasiski Test

to check a guess n for the key length
@ look at repeating patterns at a distance multiple of n
@ check that this is significant

SV 2024-25 Ancient Cryptography CryptoSec 41/1098

Index of Coincidence

Index(x1,...,%,) = f’j[x, = xy|l # J]
1
= _— 1 —
n(n—1) 1;; =
i<
_ Z ne(ne — 1)
= n(n—1)
where I, J € {1,..., n} are independent and uniformly distributed
Proposition
For any permutation o over Z, we have
Index(o(x1),-..,0(Xn)) = Index(xy, ..., Xn)
For any permutation o of {1, ..., n}, we have
Index(Xo (1), - - - » Xo(n)) = INAEX(X4, ..., Xn)

the index of coincidence is invariant by substitution and transposition

SV 2024-25 Ancient Cryptography CryptoSec 42/1098

Expected Index of Coincidence

1
E(Index(x1, ..., X)) = w1 > Prxi = x]
1§il;!'j§n
= ng
ceZ

if all x; have i.i.d. distribution with frequency table f,

@ Index(Random string) — 0.038
@ Index(English text) — 0.065 when n — +oo

SV 2024-25 Ancient Cryptography CryptoSec

43/1098

Application to the Vigenére Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is
of length 3, we can write

mn=2=2=0n4
WM =m|aH
Ha®P =X

so we can compute the index of coincidence of TSAMMSE, IJENFB and
KUWAUT.

SV 2024-25 Ancient Cryptography CryptoSec 44/1098

Example — i

guess the key is of length 4

= H X @M Q
He e =< o
=2 X HAHr>e 0 x
M mME =M

first column:
CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE

(string of 79 characters)
Index(col) = Index(A*B°Cc2D?E’ G*H* 13 3 K3LIM N*PPRASOT3U viwx 7 22)

which is 0.0422: this is too low

SV 2024-25 Ancient Cryptography CryptoSec 45/1098

Example —ii

guess the key is of length 5

m==wrE<QQ
Mma+HmMmOo &
o= o = I
eI = =
j==os I i Il o

first column:
CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFATACNRNCATBWKDMCDCQQXWK

(string of 63 characters)
Index(col) = Index(A"B®c®D*E'F21' s2K2M?N*P!Q*R3*T?U" VW x®) = 0.0630
this is high enough!

SV 2024-25 Ancient Cryptography CryptoSec 46 /1098

Example — iii

Next:
@ do a statistical analysis in each column

@ look at cross-column indices
(find the difference between two letters of the key)

SV 2024-25 Ancient Cryptography

CryptoSec

47 /1098

@ Ancient Cryptography

@ Pre-Modern Industrial Cryptography

SV 2024-25 Ancient Cryptography CryptoSec 48 /1098

Enigma

@ electro-mechanical encryption device (typewriter)
@ could be plugged to a radio transmiter
@ patented (1918)

@ developped to be secure even with public specifications
(Kerckhoffs principle), in hostile environment (battlefield)

@ used by German armies in WW2

@ preliminary attacks by polish mathematician Rejewski in 1932
(before Anschluss)

@ ‘“industrial” (over 2000 messages decrypted per day) attack by
UK intelligence at Bletchley Park during WW2 (performing:
Turing)

SV 2024-25 Ancient Cryptography CryptoSec 49/1098

Picture of Enigma

Rotors
Lampboard\, 'y

—~Keyboard

==4piugboard

SV 2024-25 Ancient Cryptography

CryptoSec

50/1098

Enigma Circuit

A4

A S D F
Q
E®A 5 D.®j F &
;L:F?r = =
oo -

) z
i H

Nwnliw?

https://en.wikipedia.org/wiki/Enigma_machine
SV 2024-25 Ancient Cryptography

CryptoSec 51/1098

https://en.wikipedia.org/wiki/Enigma_machine

Example: DEAD BEEF

reflector rotor 3 rotor 2 rotor 1 plug in/out

deadbeef — AADCCBBB

SV 2024-25 Ancient Cryptography CryptoSec 52/1098

Enigma Building Blocks

@ given a permutation o over Z = {A,B,...,Z}, a fixed point is an
element x € Z such that o(x) = x

@ an involution over Z is a permutation o of Z such that
o(o(x)) = x for all x.
Examples: reflector, plug board

@ arotor o defines a set of permutations oy, ..., 025 Over Z

the rotor in posmon i implements permutatlon oj
such that o; = p' 0 o0 p~/ where p(A) =B, p(B) =C, ..., p(Z) = A

SV 2024-25 Ancient Cryptography CryptoSec 53 /1098

The Enigma Cipher (Mathematically)

Secret key: 3 components:
@ o (involution made of 6 pairs)
@ an ordered choice «, 3,7 € S of pairwise different
permutations (from a box of 5 rotors)
@ a number a (initial position of rotors)

Plaintext: x = xq,..., Xn
Ciphertext: y =y1,...,¥m
Encryption:

SRS BN R
Yi=o loq oﬁiz 07, ©omo o B, o aj, 0 o(X;)

where isiiy are the last three digits of the basis 26
numeration of j + a.

SV 2024-25 Ancient Cryptography CryptoSec 54/1098

Key Entropy in Enigma

@ o: number of involutions with 14 fixed points

14

= 9657700 x 11 x9x7x---x1

= 100391791500
237

@ «, 3,~: number of choices for the rotors
5x4x3=60r~2°
@ a: number of initial positions

26% = 17576 ~ 24

total: 57 bits

SV 2024-25 Ancient Cryptography

(26>><11><9><7><---><1

CryptoSec

55/1098

A Turing Machine

SV 2024-25 Ancient Cryptography CryptoSec 56 /1098

Can we reasonably assume that the adversary ignores
the cryptosystem?

SV 2024-25 Ancient Cryptography CryptoSec 57/1098

The Laws of Modern Cryptography

Law I: the Kerckhoffs Principle
security should not rely on the secrecy of the cryptosystem itself

@ motivation:
the adversary may get some information about the system (e.g.
by reverse engineering, corruption, etc)

@ meaning:
security analysis must assumes that the adversary knows the
cryptosystem

@ does not mean:
cryptosystem must be public

SV 2024-25 Ancient Cryptography CryptoSec 58 /1098

Kerckhoffs Principles

Kerckhoffs Principles

@ Le systéme doit étre matériellement, sinon mathématiquement,
indéchiffrable;

@ Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de I’ennemi;

@ La clef doit pouvoir en étre communiquée et retenue sans le secours de
notes écrites, et étre changée ou modifiée au gré des correspondants;

© Il faut qu'il soit applicable a la correspondance télégraphique;

@ |l faut qu'il soit portatif et que son maniement ou son fonctionnement
n’exige pas le concours de plusieurs personnes;

@ Enfin, il est nécessaire, vu les circonstances qui en commandent
I'application, que le systéme soit d’'un usage facile, ne demandant ni
tension d’esprit, ni la connaissance d’une longue série de régles a
observer.

SV 2024-25 Ancient Cryptography CryptoSec 59/1098

Kerckhoffs Principles - Translation

Google Translate:
o The system must be materially, if not mathematically, indecipherable;
e It must not require secrecy, and it must be able to fall between the hands of the enemy;

e The key must be able to be communicated and retained without the aid of written notes, and
be changed or modified at the discretion of the correspondents;

o It must be applicable to telegraphic correspondence;

e It must be portable and its handling or operation must not require assistance of several
people;

e Finally, it is necessary, given the circumstances which require its application, that the system
is easy to use, requiring neither mental tension nor knowledge of a long series of rules to
observe.

My translation:
o The system must be secure.
e Security must not depend on the secrecy of the algorithm.
e The cryptographic key must be easy to communicate or change.
o It must be compatible with telegraphic systems.
o It must be portable and usable by a single person.
@ !t should remain easy to use in stressful circumstances.

SV 2024-25 Ancient Cryptography CryptoSec 60/1098

Evolution

@ security by obscurity: private encryption algorithms
several techniques: substitutions and transpositions

© Kerckhoffs principle
— security should rely on the secrecy of the key only
(not on the secrecy of the algorithm)

© encryption with a configurable secret key
e.g., Vigenere, Enigma

SV 2024-25 Ancient Cryptography CryptoSec 61/1098

The Laws of Modern Cryptography

Law II: scalability — the n? Problem

in a network of n users, there is a number of potential pairs of users
within the order of magnitude of n?

@ we cannot assume that every pair of users share a secret key

@ we must find a way for any pair of users to establish a shared
secret key

SV 2024-25 Ancient Cryptography CryptoSec 62/1098

The Laws of Modern Cryptography

Law Ill: the Moore Law

the speed of CPUs doubles every 18—24 months
@ we should wonder how long a system must remain secure
@ we must estimate the speed of CPU at the end of this period
@ we assess security against brute force attacks

SV 2024-25 Ancient Cryptography CryptoSec 63 /1098

Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16 Core seARCTS
o Core core 7, J
2,600,000,000 1 K o0o
1,000,000,000 | S Bt e
core's
100,000,000 -
CUMve Shows transistor
) «count doubling eve AMD KE
5 10,000,000 | oyeas Sreniunn
8 i
=
2
.a 1,000,000
w0
=
]
[
100,000
10,000
wone
2,300 20018, e 10

1{;71 1980 19‘90 2000 2011
Date of introduction

SV 2024-25 Ancient Cryptography CryptoSec

64 /1098

Security by Key Length

@ a2007-PC could test 1000 000 keys per second
a 32Y times led to a 10° factor speed up

— f, =108 x 105 %" keys per second can be tested at time ¢

@ the number of keys we can try with one processor between time

foandtime fh + A is

h+A
/ f, ot
[

@ assuming that
e fiis correct,

Q

tg+A
/ 108 x 10%(1=2007) gt

)

6
107 4o to-2007) (10%A - 1)

5
35 In10
cte x 20-52x (to+A—2007)

o the key length is of 128 bits,

e and we have 2%° processors which we maintain up to date,

we need to run until f, + A = 2100 to break it

SV 2024-25

Ancient Cryptography

CryptoSec

65/1098

A 128-Bit Key

11000000 10010011 00000011 01001001
11010011 11110010 01111011 10100101
10101001 00110001 00110000 11011110
00101110 01001110 00011111 00100001

number of possible combinations:

128 times
2X2Xx2%X %2
2128

340282366 920938463463 374607 431768211 456
39 digits

SV 2024-25 Ancient Cryptography CryptoSec 66 /1098

Exhaustive Search on 128 Bits

@ in 2007, a standard PC could test 1 000 000 keys per second

@ to run exhaustive search within 14 billion years, we need 770 000
billons of 2007-PCs!

@ if the Moore law goes on, a single 2215-PC willdo itin a
second

@ better create the Big Bang and take 14 billion years of
vacations to solve the problem within a second!

SV 2024-25 Ancient Cryptography CryptoSec 67 /1098

Two Revolutions

@ communicating
information theory
mass communication (radio)
— we need standard crypto
@ computing
computer science
automata (electromechanic devices)
— adversaries have more power

SV 2024-25 Ancient Cryptography CryptoSec 68 /1098

@ Ancient Cryptography

@ Cryptography and Information Theory

SV 2024-25 Ancient Cryptography CryptoSec 69 /1098

Bitwise Exclusive Or

@ exclusive or (XOR) of two bits:

(e 0]1]
0O0f|1
11110
@ XOR: binary addition where carry bits are ignored
@ XOR: addition modulo 2
@ bitwise XOR of two bitstrings:

10010
@© 00111
= foiof
@ XOR properties
@ closure: the XOR of bitstrings is a bitstring
@ associative: (adb)dc=ad (bdc)
e commutative: adb=b® a
@ neutral element: a® [00---0] = a
o (self-)invertibility: a®®a=[00---0] (or + = —)

SV 2024-25 Ancient Cryptography CryptoSec 70/1098

Vernam Cipher

(o Oo]1]

0O1l0]|1
1 110
00111 ‘ Adversary | 00111
\ \
Message .- 0 N) RS Message
10010 10101 "———T 10101 10010

SV 2024-25 Ancient Cryptography CryptoSec 71/1098

Vernam Cipher

@ we use a uniformly distributed random

key K (a bitstring)

@ every message X requires a new K of
same size (one-time pad)

@ Encrypting X with K: compute X & K
@ Decrypting Y with K: compute Y & K

SV 2024-25

(X) 10010
® (K) 00111
= (Y) 10101
® (K) 00111
= (X) 10010

Ancient Cryptography

—'-‘OO

o‘_l._l.

CryptoSec

72/1098

When is this insecure?

SV 2024-25 Ancient Cryptography CryptoSec 73/1098

Using the Same Key Twice

Yi = XieK
Yo = XK

‘ Adversary ‘

| g/' |
Message Message
— " E D | U
Xr Xe i A vive | D Tk

YieYe=(XioK) o XeoK)=XioX) (Ko K) =X o Xe

leakage of the X; & Xs value

SV 2024-25 Ancient Cryptography CryptoSec 74 /1098

Visual Cryptography

Pixel coding Pixel XOR

0 HE 0®0 HE
1 HE 0d1
120 — [
1@1 —>E

Q

|
_

Q

SV 2024-25 Ancient Cryptography CryptoSec 75/1098

Example

SV 2024-25 Ancient Cryptography CryptoSec 76 /1098

Using the Same Key Twice

SV 2024-25 Ancient Cryptography CryptoSec 77/1098

Insecurity Cases in the Vernam Cipher

@ if K is smaller than X
Y = (XL ® K)||Xr

— insecure
@ if K is not uniformly distributed

Pr[K = k] high = Pr[X = y & k] high

— insecure
@ if K is used twice

Y, ® Yo = Xy & Xo = information about X; and X

— insecure

SV 2024-25 Ancient Cryptography CryptoSec 78/1098

Summary of Security Requirements

@ the key must have (at least) the same length of the message
@ the key must be uniformly distributed
@ the key must be thrown away after usage

@ ©: this makes no sense for most of applications!
e (: this provides perfect security

@ makes sense to prepare emergency communication (red
telephone)

keys are exchanged (through slow channels) before the
messages to transmit are known

@ bad news for other application: there is essentially no better
cipher with this strong security property

SV 2024-25 Ancient Cryptography CryptoSec 79/1098

Intuition on Why it is Perfectly Secure

@ if the adversary gets Y = y then for any x
PriX=x|Y =y]=PriX=x|X® K =y] =Pr[X =x]

because X and X @ K are statistically independent
the adversary gets no information about X in knowing that Y = y

SV 2024-25 Ancient Cryptography CryptoSec 80 /1098

Abelian Group Laws

Definition
An Abelian group is a set G together with a mapping from G x G to
G which maps (a, b) to an element denoted a + b and such that

1. [closure] for any a,b € G, we have a+ b € G

2. [associativity] for any a, b, ¢, we have (a+ b) +c=a~+ (b+c)
(notation: n.ameans a+ a+ --- + a (ntimes))

3. [neutral element] there exists an element denoted by 0 s.t. for
anya,a+0=0+a=a

4. [invertibility] for any a there exists an element denoted by —a s.t.
a+ (—a) = (—a) + a= 0 (notation: a— b means a+ (—b))

5. [commutativity] for any a,b € G, we have a+b=b+ a

@ Z with the regular addition
@ {0,1}" with @
a+b fatb<n

e {0,1,....,n—1} with (a,b)»—>{ a+b—n otherwise

SV 2024-25 Ancient Cryptography CryptoSec 81/1098

Useful Lemma

Lemma

Let X and K be two independent random variables in a given group.
If K is uniformly distributed, then Y = K + X is uniformly distributed
and independent from X.

Proof.
For any x and y:

Pr[X =

SV 2024-25

x,Y=y]

PrlY =y]

= PriX=x,K=y—X]

= PriX=x]xPr[K=y—x]
1

##group

= ZPr[X:x,Y:y]

1
#group

= Pr[X=x]

O

Ancient Cryptography CryptoSec 82/1098

Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source
producing elements in G

@ let K be uniformly distributed in G and independent from the
plaintext

@ given X, the encryption of X withkey Kis Y =K+ X
@ given Y, the decryption of Y withkey Kis X = (-K)+ Y
@ the key is used only once

Theorem
For any distribution of X over G, Y is independent from X. J

(perfect secrecy)

SV 2024-25 Ancient Cryptography CryptoSec 83/1098

Information Theory

Claude Shannon

[Claude Shannon]

SV 2024-25 Ancient Cryptography CryptoSec 84/1098

skip reminders on Shannon entropy
aD

CAUTION: in cryptography, “entropy” is often used in an informal way
by meaning some kind of “effective bit-length”

Reminder on the Shannon Entropy — i

@ H(X): number of bits of information to represent the value of X
@ H(X,Y): entropy of (X, Y)
@ H(X|Y)=H(X,Y)—H(Y)

HX) = = Pr[X =x]log,Pr[X = x|
HX,Y) = =) PrX=xY =y]log, PrX = x,Y = y]
X,y
HIXY) = =) PriX=x,Y =yllog, Pr[X = x|Y =]
X,y

SV 2024-25 Ancient Cryptography CryptoSec 86 /1098

Reminder on the Shannon Entropy — ii

@ a real function f is convex on [a, b] iff

VsetS Vt:S—[a bl Vp:S—]0,1]

pr =1= prf(tx) >f (prtx>

XeS xeSs xeS

@ it is strictly convex if we further have the property that equality
implies all , are equal

@ areal function f which has a second derivative on]a, b is strictly
convex on |[a, b] iff its second derivative is always > 0 on]a, b|

SV 2024-25 Ancient Cryptography CryptoSec 87/1098

Reminder on the Shannon Entropy — iii

Proposition
H(X) > 0 with equality if, and only if X is constant J

Proof.
@ f(t) = —log, t is strictly convex on [0, 1]
take ty = px = Pr[X = x] and get

H(X) > — log, (Z P§>

XES

clearly, 3", p2 < 1 so this log is positive

@ Assuming equality, we must have >, p2 = 1 so all p, must be
equal to 1 so there must be a single x (we cannot have two
different values with probability 1)
(i.e. X is constant equal to this x)

SV 2024-25 Ancient Cryptography CryptoSec 88/1098

Reminder on the Shannon Entropy — iv
Proposition
H(X,Y) > H(X) with equality if, and only if Y can be written f(X) J

Proof.
@ We write

H(YIX) =Y Pr[X =x])_Pr[Y = y|X = x]logy Pr[Y = y|X = x]
X y

We know that for each x the inner sum is > 0 with equality iff
there is a single y = f(x) for which Pr[Y = y|X =x] >0

@ Clearly: H(Y|X) >0

@ Assuming equality, for each x we define y = f(x) and get
Pr[Y = f(x)|X = x] = 1 for all x
so, Pr[Y = f(X)] =1

H(YIX) = =) PrX=x,Y =yllog, Pr[Y = y|X = x|
Xiy

SV 2024-25 Ancient Cryptography CryptoSec 89/1098

Reminder on the Shannon Entropy — v
Proposition J

H(X,Y) < H(X) + H(Y) with equality if, and only if X and Y are
independent.

Proof.
@ t+— tint has second derivative 1, so it is convex and

— Z PrlY = ylty logy t, < — <Z PrlY = y]ty> log, (Z PrlY = y]ty>
y y y

with equality iff all {,’s for Pr[Y = y] # 0 are equal

@ Applying this to f, = Pr[X = x|Y = y] yields
= > Pr[X =x,Y = yllog, Pr[X = x| Y = y] < — Pr[X = x] log, Pr[X = x|
y

with equality iff Pr[X = x|Y = y] does not depend on y
@ summing up for all x leads to H(X|Y) < H(X) with equality iff X

and Y are independent

O

SV 2024-25 Ancient Cryptography CryptoSec 90/1098

Reminder on the Shannon Entropy — vi

If Pr[X = x] # 0 for n values of x then H(X) < log, n with equality if,

Proposition
and only if all non-zero Pr[X = x] are equal to 1. J

Proof.
@ {— —Int has second derivative rlz so is convex and

Z Pr[X = x]log, tx < logs (Z Pr[X = x] tx>
X X
with equality iff all t,’s for Pr[X = x] # 0 are equal
@ Applying this to t, = 1/ Pr[X = x] yields
H(X) < logy n

with equality iff all nonzero Pr[X = x] are equal
O

SV 2024-25 Ancient Cryptography CryptoSec 91/1098

The Shannon Encryption Model

Enemy Cryptanalyst

Message | Message X | Encipherer Cryptogram Y .| Decipherer | X
source C c!
A A
Key K
Key
source

SV 2024-25 Ancient Cryptography CryptoSec 92/1098

The Shannon Encryption Model

@ message is a random variable with a given a priori distribution
for later: with any a priori distribution

@ key is a random variable with specified distribution, independent
from the message

@ correctness property: Pr[C ' (Ck(X)) = X] = 1

@ adversary gets the random variable Y = Cx(X) only
for other security models to be seen: other assumptions

SV 2024-25 Ancient Cryptography CryptoSec 93/1098

Perfect Secrecy — i

Definition

Perfect secrecy means that the a posteriori distribution of the
plaintext X after we know the ciphertext Y is equal to the a priori
distribution of the plaintext:

Vx,y Pr[lY=y]#0= Pr[X =x|Y =y] =Pr[X=x].

The adversary learns nothing about X by intercepting Y.
(Remark: this definition is relative to the distribution of X.)

SV 2024-25 Ancient Cryptography CryptoSec 94/1098

Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and
Y.

Proof.

Independence

— Yx,y PriX=x,Y=y]=Pr[X=x]Pr[Y =y].

Since Pr{X = x|Y = y] = P2 by definition, the result is

trivial! 0

SV 2024-25 Ancient Cryptography CryptoSec 95/1098

Perfect Secrecy - iii (skip)

Proposition
Perfect secrecy is equivalent to H(X|Y) = H(X). J

Proof.

Perfect secrecy is equivalent to statistic independence of X and Y.
Statistic independence of X and Y is equivalent to

H(X,Y) = H(X)+ H(Y).

Since H(X|Y) = H(X, Y) — H(Y) the result is trivial. O

SV 2024-25 Ancient Cryptography CryptoSec 96 /1098

Vernam Cipher Provides Perfect Secrecy

For any distribution of the plaintext, the generalized Vernam cipher

Theorem
provides perfect secrecy. J

SV 2024-25 Ancient Cryptography CryptoSec 97 /1098

Influence of the Plaintext Distribution

Theorem

Let Cx be a cipher with K following a given distribution. Let p and p’
be two distributions for X (independent of K) such that

support(p’) C support(p).

Ck has perfect secrecy with p = Ck has perfect secrecy with p'.

Proof. If p/(x) # 0 then p(x) # 0 and
PrIY = yIX = x] = Pr{Ck(x) = y] = Pr[Y = y|X = x] = Pr[¥Y = y]

1) T)
p'(x)#0 p(x) #£0 perfect secrecy
then
PriY =yl= Y PrY=yIX=x]p(x)
P xesupport(p’) P
= Y PAY =y () =Py =y]
xesupport(p’)

O

SV 2024-25 Ancient Cryptography CryptoSec 98 /1098

Shannon Theorem

Theorem (Shannon 1949)
Perfect secrecy implies H(K) > H(X). J

Proof. (skip)
@ we have H(Y) > H(Y|K)
@ knowledge of K makes X «» Y, thus H(Y|K) = H(X|K)

@ since X and K are independent, we obtain H(Y|K) = H(X)
we thus have H(Y) > H(X)

@ knowledge of X makes K — Y, thus H(Y, K| X) = H(K|X)
@ since X and K are independent, H(K|X) = H(K), so
H(Y,K|X) = H(K)
@ we have H(Y, K|X) > H(Y|X), thus H(K) > H(Y|X)
@ if we have perfect secrecy, we have
H(Y|X) = H(X]Y) + H(Y) — H(X) = H(Y)
thus, we have H(K) > H(Y) > H(X) O

SV 2024-25 Ancient Cryptography CryptoSec 99/1098

Other Form of the Shannon Theorem (Bad News)

Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as
the support of X.

Proof. Let y be such that Pr[Y = y] # 0.
@ since X and K must be independent

PriX = x,Y =y] =Pr[X = x, Ck(x) = y] = Pr[X = x] Pr[Cx(x) = y]

@ perfect secrecy implies for all x such that Pr[X = x] # 0,

@ consequently, for all x in the support of X we have
Pr[Ck(x) = y] # 0 so there exists one k in the support of K such
that Cx(x) = y. Let’s write it k = f(x).

@ for any x in the support of X we have C,_(;)(y) = X.
Clearly, f(x) = f(x’) implies x = x’.
Consequently, we have an injection from the support of X to the
support of K. O]

SV 2024-25 Ancient Cryptography CryptoSec 100 /1098

The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy, the number of possible keys
must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher

SV 2024-25 Ancient Cryptography CryptoSec 101/1098

Other Consequences (Bad News)

Theorem
Perfect secrecy implies that X has a finite support. J

Proof.
@letyst. p=Pr[Y=y]#0
® Pr[Ck(x) = y] = PrIX = x|Y = y]5E=4 = Pr[Y = y] due to
perfect secrecy, for all x in the support
@ since [C, ' (y) = x] <= [C«(x) = y], we have
PriCx'(y) = x] > Pr[Ck(x) = y] = p for all x in the support
thus

1> > Pr[C.'(y) = x] > p.#support

x€Esupport

1
@ #support(X) < >

SV 2024-25 Ancient Cryptography CryptoSec 102/1098

Leakage of Message Length

@ over the infinite domain {0, 1}*, if we pick K as long as X, the
length of X leaks

@ over the finite domain (J,,{0, 1 M (e.g. ¢ = 1TB), we should pick
K € {0, 1}’ to have security, which is a waste of bandwidth

SV 2024-25 Ancient Cryptography CryptoSec 103/1098

Summary on the Shannon Results

@ we have mathematically formalized the notion of perfect secrecy
@ Vernam Cipher achieves perfect secrecy

@ despite Vernam Cipher is expensive, there is no cheaper
alternative

Q: Can the theory of cryptography stop here?
A: Abg 1rg: jung zvffrf vf gur abgvba bs pbzcyrkvgl

SV 2024-25 Ancient Cryptography CryptoSec 104/1098

Information Theory vs Complexity Theory

Information Theory Complexity Theory

Is information there or not? How much does it cost to recover
information?

Is it possible to recover information? Is it doable to recover information?

security shall rather be based on lower bounding the complexity of
breaking the system

SV 2024-25 Ancient Cryptography CryptoSec 105/1098

The Early Days of Computer Science
Alan Turing

SV 2024-25 Ancient Cryptography CryptoSec 106 / 1098

Milestones of Modern Cryptography

@ Vigeneére (XVIth Century): secret key

@ Kerckhoffs (1883): algorithm known by the adversary

@ Shannon (1949): an info-theoretical approach of cryptography
@ Diffie-Hellman (1976): public-key cryptography

@ DES (1977): encryption standard for non-military applications

SV 2024-25 Ancient Cryptography CryptoSec 107/1098

Conclusion

@ in prehistory: security by obscurity

@ now a need for standard solutions

@ perfect security requires an unreasonable cost
@ conclusion: we must trade security against cost

SV 2024-25 Ancient Cryptography CryptoSec 108 /1098

References

@ Singh. The Code Book. Fourth Estate. 2000.
Easy reading stories
@ Kahn. The Codebreakers. Smith & Daniel. 1997.
Textbook about (pre)history of cryptography
@ Levy. Crypto. Penguin. 2001.
Easy reading story about the begining of public-key cryptography
@ Hinsley-Stripp. The Inside Story of Bletchley Park. Oxford
University Press. 1993.
@ Naor-Shamir. Visual Cryptography. In EUROCRYPT 1994,
LNCS 950.

@ Shannon. Communication Theory of Secrecy Systems. 1949.
Re-edited by Sloane-Wyner Eds in Claude Elwood Shannon
collected papers. |IEEE Press. 1993.

SV 2024-25 Ancient Cryptography CryptoSec 109 /1098

Must be Known

@ Kerckhoffs principle

@ the ACI trilogy (Authentication, Confidentiality, Integrity)
@ Vernam cipher

@ Shannon model of encryption

@ perfect secrecy

@ Shannon Theorem

SV 2024-25 Ancient Cryptography CryptoSec 110/1098

Train Yourself

@ Vigenere: final exam 2009-10 ex1

@ \Vernam:
midterm exam 2010-11 ex3
midterm exam 2015-16 ex1

@ entropy: final exam 2012—13 ex3
@ ciphertext length: midterm exam 2022-23 ex1
@ Enigma and perfect secrecy: midterm exam 2023-24 ex1

SV 2024-25 Ancient Cryptography CryptoSec 111/1098

© Ditfie-Hellman Cryptography

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 113/1098

Roadmap

@ reminders on arithmetics, groups, Z,

@ Diffie-Hellman key exchange over a group
@ reminders on rings, fields, Z;,

@ Diffie-Hellman key exchange, concretely
@ ElGamal cryptosystem

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 114/1098

© Diffie-Hellman Cryptography
@ Arithmetics and Z,

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 115/1098

Prime Numbers

Definition
A prime number is a positive integer which has exactly two positive
factors: 1 and itself.

2,3,5,7,11,13,17,19,23,29,31, ...

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 116 /1098

Unique Factorization

Theorem
Each integer n can be uniquely written

n=uxpy x---xp

where py < --- < p, are prime, u = +1, and o, . . ., o, are positive
integers. |
SV 2024-25 Diffie-Hellman Cryptography CryptoSec 117 /1098

Modulo n

Operation x mod n: remainder in the Euclidean division of x by n

x=8273 | 143 =n
—-715 57 = |x/n]
1123
—1001
Xmodn =122

8273 mod 143 = 122

8273 =122 + 143 x 57

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 118/1098

Euclidean Division

Theorem (Euclidean Division)

For any x € Z and any n > 0 there exists a unique pair (q,r) € Z?
suchthatx =qn+rand0<r<n.

We denote r = x mod n and have q = | |.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 119/1098

Two Notations for “mod”

@ without parentheses: x mod n
— a two-input operator
= remainder in the Euclidean division of x by n
@ with parentheses: a= b (mod n)
— an attribute to an equivalence relation (here: =)
means that b — a is divisible by n
or equivalently: amod n= bmod n

@ do not mix up

a=bmodn and a=b (mod n)

T T
asetto (b mod n) aand b are (equal modulo n)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 120/1098

Z, for Dummies (n > 1)

Z,={0,1,....n—1}

additionin Z,: alH b = (a+ b) mod n

multiplication in Z,: alk b = (a x b) mod n

useful lemma: (a+ (b mod n)) mod n = (a+ b) mod n
useful lemma: (a x (b mod n)) mod n = (ab) mod n

B and X closure: comes from x mod n € Z, forany x € Z
H associativity: comes from the lemma:

alB(blEc)=(a+ ((b+¢c) mod n)) mod n=(a+ b+ c) mod n...
@ X associativity: comes from the lemma:
aX (bX c) = (ax ((bc) mod n)) mod n = (abc) mod n...

@ neutral elements: 0 for B and 1 for X
@ invertibility for B: (—a) mod n, comes from the lemma:

atB((—a) mod n) = (a+((—a) mod n)) mod n = (a—a) mod n=10
@ distributivity: comes from the lemma:
aX ((b+ c¢) mod n) =(ax (b+c)) mod n=(ab+ ac) mod n...

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 121/1098

© Diffie-Hellman Cryptography

@ Some Notions of Groups Theory

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 122/1098

Definition of a Group

Definition
A group is a set G together with a mapping from G x G to G which
maps (a, b) to an element denoted a ® b and such that

1. [closure] forany a,b € G, we have a® b e G

2. [associativity] for any a, b, c, we have (a® b) ©c=a® (bo¢)

3. [neutral element] there exists an element e s.t. for any a,
ace=e0Ga=a
4. [invertibility] for any athere exists bs.t. aob=boa=e

Definition
An Abelian group is a set G together with a mapping from G x G to
G which maps (a, b) to an element denoted a ® b and such that
1-4. [group] it is a group
5. [commutativity] for any a,bwe have a© b=b® a

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 123/1098

Additive vs Multiplicative Notations for Groups

additive notations multiplicative notations

group G (G)
operation a+b ab
neutral element 0 1
inverse —a a’
exponential n.a a’

(aand b are group elements; nis an integer)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 124/1098

Group Homomorphism

Homomorphism: given two groups (G, x1) and (Gz, x2), a
mapping f from G; to G is a group homomorphism if
forany a,b € G

f(ax1 b) = f(a) x2 f(b)

Example: If g € G, the mapping ¢ : Z — G defined by
p(a) = g2 is a group homomorphism.
Va,beZ ¢(a+b)=p(a)p(b)

Isomorphism: a group homomorphism which is bijective is called an
isomorphism

isomorphism = change of notation
Property: A group homomorphism is injective iff
VYae Gy f(a)neutralin Go = aneutral in Gy

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 125/1098

Group Constructions: Subgroups

Subgroups: given (G, x), and given H C G which is nonempty and
closed by x and inversion, consider (H, x)

Example:
e52={..,-15-10,-5,0,5,10,15,...} is a subgroup of Z

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 126/1098

Subgroups of Z

Theorem

If H is a subgroup of Z and H # {0}, then H = nZ where n is the
smallest positive element of H.

Proof.

@ letac Handwritea=qgn+rwithg,reZand0<r<n
(Euclidean division)

@ since Hisagroupanda,ne Hwehaver=a—qgne H

@ since 0 < r < nand nis the smallest positive element of H we
must have r = 0, thus a= gn € nZ

@ therefore, H C nZ
@ conversely, rn must be in H for all r € Z, therefore H = nZ O

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 127/1098

Generators

@ Given a group (G, .), an element g generates/spans a subgroup
@={..9%9"6¢9.9¢. .1}
@ If (g) is finite, of cardinality n, then g” = 1 and
(9 =1{d%9"....g" "}
(see next slide)

e if x € (g), logy x is uniquely determined up to some multiple of n:

@ log, x is an element of Z,

e i g'is a group isomorphism between Z, and (g)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 128/1098

Finite Groups and Orders

Definition
If (G,.) is a group and if G is a finite set, then the cardinality of G is

called the group order.
If g generates a subgroup of order n, then nis called the order of g.)

Proposition

The order of g is the smallest j > 0 s.t. g' = 1.

Proof.

@ the set of all i € Z such that g’ = 1 is a subgroup of Z '
(preimage of subgroup {1} by group homomorphism i — g'...)

@ it must be of form nZ where nis the smallest among all j > 0

@ {1,9,9% ...,9" '} is a non-repeating exhaustive list of all {g)
elements O

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 129/1098

Consequence

if g is of order n...
e then (g) = {1,9,6°%,...,9" '}
ovi g =1<n|i
eVvij g=¢g <= i=j(modn)

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

130/1098

Group Constructions: Groups Product

Product groups: given (Gy, x1) and (G, x2), consider G = Gy x Gz
and (31782) X (b1,b2) = (31 X1 b1,32 Xo b2)
Power groups: given (G,) and /, consider G' and
(@)ier x (bi)ier = (@i * bi)ies
Example:
@ C*x{-1,+1} ={(z,8);z€ C*,s = £1} with
(z,8) x (Z/,8') = (zZ/, s5")
o z{ab.cl s the set of mappings from D = {a,b,c} to Zwith f + g
defined by (f + g)(x) = f(x) + g(x)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 131/1098

Functional vs Family Notations for Power Sets

functional notations family notations

function domain D index set /
function range R set S
finite domain f:{1,...,nf =R (X1, Xn)
infinite domain f-D—-R (X)ies
input xeD iel
image f(x)e R X €S
set RP Slor 8"

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 132/1098

Group Constructions: Quotient Group

Quotient groups: given a commutative group G and a subgroup H,
consider the set G/H of classes for congruence
modulo H with the law induced by +

@ aand bin G are said to be congruent modulo Hifb—ac H
notation: a= b (mod H)

@ the relation “...is congruent to ... modulo H” is an equivalence
relation (reflexive, symmetric, transitive)

@ notation: for a € G, a+ H is the set of all G elements which can
be written a + h for some h € H (elements congruent to a)

@ every class of equivalence can be written a+ H for some a€ G
ais called a representative for the class

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 133/1098

Quotient of an Abelian Group by a Subgroup

b+ H

at+b+H

(a+H)+(b+H)=(a+b)+H

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 134 /1098

Quotient Example: Z/6Z

6Z

1+6Z

.

146y

4 +6y

3+ 6y /

Z/H={HA1+H2+H3+H4+H5+H

SV 2024-25

Diffie-Hellman Cryptography

CryptoSec

246Z

3+ 6Z

135/1098

Lagrange Theorem

In any finite group, the order of any element is a factor of the order of

Theorem (Lagrange)
the group. J

Proof.
in G/(g) (set quotient), all a+ (g) have same number of elements so

#G@ (the order of G) is divisible by #(g) (the order of g) O

Consequence
Vge G g*G=1 J

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 136 /1098

Application: Generators in a Group of Prime Order

Theorem
if (G, .) has prime order, all elements (except 1) are generators J

Proof.
@ let p be the order of G
@ an element x € G such that x £ 1 has an order n > 1
@ due to the Lagrange Theorem, n|p, so n = p since p is prime
@ ¢° ...,9" " must be pairwise different, son < p
@ so n = p: g must generate G O

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 137/1098

The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)

Alice Bob

pick x at random
Xeg — X

—r pick y at random
Y+ g
K+ YX K+ XY
(K=9Y)

security requirement: given (g, g%, 9*), it must be hard to compute
g¥ (Computational Diffie-Hellman Problem)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 138/1098

Using the Diffie-Hellman Key Agreement Protocol

@ allows to set up a secret key over a public channel
(assuming authentication)

@ no further need to set up pre-shared keys: sets up keys when
needed

— public-key cryptography
Example of Diffie-Hellman groups:
@ Z; (compute g* mod p)
@ elliptic curves

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 139/1098

© Diffie-Hellman Cryptography

@ Algorithms for Big Numbers

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 140/1098

Addition with Big Numbers (in Decimal)

11 1

8 427 403
+ 12 951 842
= 21 379 245

Input: two integers a and b of £ digits
Output: one integerc =a+ b

1: r+<0

2. fori=0to/—1do

3: d«—a +b+r

4: write d = 10r + ¢; with ¢; < 10
5: end for

6: Co < r

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

141/1098

Addition in Binary

14+1=10

11

1001 001
+ 10011 000
= 11 100 001

Input: a and b, two integers of at most ¢ bits
Output: c, aninteger of at most £+ 1 bits representing

atb
Complexity: O(¢)
1: r«<0
2: fori=0to/—1do
3: d«—a +b+r
4: set ¢; and r to bits such that d = 2r + ¢;
5: end for
6: Co < r

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 142/1098

Addition (Binary/Hexadecimal/Decimal)

1010100 0x54 (84)
+ 10010010 0x92 146)
= 1T 11004110 Oxe6 30)

hexadecimal = compact way to represent bistrings
(bits groupped into “nibbles” = packets of 4 bits)

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

143 /1098

Definition of a Monoid

Definition
A monoid is a set G together with a mapping from G x G to G which
maps (a, b) to an element denoted a + b and such that

1. [closure] forany a,b € G, we have a+ b € G

2. [associativity] for any a, b, ¢, we have (a+ b) +c=a~+ (b+c)

3. [neutral element] there exists an element 0 s.t. for any a,
a+0=0+a=a

multiplication of a positive integer n by a monoid element a:

na=a+a+---+a
—_——

n times

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 144/1098

Multiplication

we want to multiply a monoid element (a = 12) by an integer
(n=100101 in binary):

12 x 100101

= 12x(1x2°40x2*+0x2%4+1x224+0x2+1)
= 12x(2°+2%+1)

= 12x2°+12x22+12x 1

multiplication by 2 consists of adding to itself
(= a shift left for addition over the integers in binary)
multiplication by 2’ consists of multiplying i/ times by 2

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 145/1098

Multiplication Algorithm

444

12 x 100101 = 444

11 00 0x00c (12)
x 10010 1 0x025 (37)
T 100 0x00c (12)
+ 0000 0%000 (0)
+ 1100 0x030 (48)
+ 0000 0%000 (0)
+ 0000 0%000 (0)
+ 1100 0x180 (384)
- 110111100 0x1bc (444)
1 0 0 ~ 0 ~
384—| DB [+=g5—| DB [+—55—| DB [+—$5-{ DB [+—5;—{DB [+
! Y Y
R 60 1

SV 2024-25

Diffie-Hellman Cryptography

CryptoSec

146 /1098

Double-and-Add From Right to Left

Input: ain monoid, ninteger of at most ¢ bits
(nin binary)
Output: c=axn
Complexity: O(¢) monoid additions
x<+0
Ty« a
:fori=0to/—1do
if nj =1 then
X+ X+Yy
end if
y<yt+y
: end for
c« X

©oN2ORON 2

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 147/1098

From Left to Right

12 x 100101 = 444

12 1 0 0] 0 1

0—{DB g+ 208} ~{DB} a5 (DBl oRDB] s {DBjy - 444
12 % 1

12 % 10 Q
12 % 100
12 x 1001

12 x 10010
12 x 100101

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 148/1098

Double-and-Add From Left to Right

Input: ain monoid, ninteger of at most ¢ bits
(nin binary)
Output: c=axn
Complexity: O(¢) monoid additions
1: X+ 0
2: fori=¢—1to0do
3: XX+ X
4 if nj =1 then
5: X<+ X+ a
6 end if
7: end for
8: C+ X

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 149/1098

From Double-and-Add to Square-and-Multiply

@ if we can compute a monoid law a + b in O(T) then we can
compute n.afor n € Nin O(T log n) instead of O(Tn) by trivial
algorithm

Example:
@ monoid (Z, +): a positive integer multiplied by a Z element
@ monoid (EC, +): an integer multiplied by a point
@ monoid (Zy, x): a Z, element raised to some integral power

Same with multiplicative notation:

@ if we can compute a monoid law ab in O(T) then we can
compute &" for n € Nin O(T log n)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec

150/1098

© Diffie-Hellman Cryptography

@ Z,: The Ring of Residues Modulo n

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 151/1098

Definition of a Ring

Definition
Aring is an Abelian group (R, +) together with a mapping from R x R
to R which maps (a, b) to an element denoted ab and such that
1-4. [group] R with + is a group
5. [Abelian] for any a, b, we have a+ b = b + a

6. [closure] for any a, b € R, we have ab € R
7. [associativity] for any a, b, ¢, we have (ab)c = a(bc)
8. [neutral element] there exists 1 s.t. forany a, al = 1a=a
9. [distributivity] for any a, b, ¢, we have a(b + ¢) = ab + ac and
(a+ b)c=ac+ bc)
Definition

A commutative ring is a ring R such that
1-9. [ring] itis a ring
10. [commutativity] for any a, b we have ab = ba

v

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 152/1098

Group of Units

@ not every element x in a ring R has an inverse for the
multiplication

@ we denote by R* the set of elements having a multiplicative
inverse
those elements are called units

@ R* with the multiplication is a group
this is the group of units of the ring R

common mistake: f~=-RH—6+}

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 153/1098

Group and Ring Constructors

@ sub-structure (sub-group, ideal)
subgroup: subset of a group stable by group law and inversion
ideal: subgroup of a ring stable by multiplication by any ring
element

@ spanned structure
set of all values generated by structure operations

@ product structure
set of pairs with inherited structure operations

@ power structure
set of tuples / set of functions of given domain with range in
structure

@ quotient (Abelian group by a subgroup, ring by an ideal)
structure induced by grouping “equivalent” elements

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 1541098

Example: Z

H W N =

© ©W 00 N O O

Z={..,-3-2,-1,0,1,2,3,..}

. Zis closed for the addition

. the addition is associative in Z

. 0is neutral for the addition

. for any a € Z we have —a € Z which is the inverse of a for

addition

. the addition is commutative in Z

. Z is closed for the multiplication

. the multiplication is associative in Z

. 1is neutral for the multiplication

. addition is distributive for multiplication
. the multiplication is commutative in Z

Z is a commutative ring of infinite size

SV 2024-25 Diffie-Hellman Cryptography CryptoSec

155/1098

Example: Z[X]

Z[X] = set of polynomials with coefficients in Z
example: (5X3 —3X2 + X —4)+ (X2 -2X+1)=5X3-2X2-X -3
1-5. Z[X] with the addition is an Abelian group (isomorphic to ZN))
6. Z[X] is closed under multiplication
7. multiplication is associative in Z[X]
8. the constant polynomial 1 is neutral for the multiplication
9

. distributivity: we have
A(X)(B(X) 4+ C(X)) = A(X)B(X) + A(X)C(X) for all
A(X), B(X),C(X) € Z|X]

10. multiplication is commutative in Z[X]
Z[X] is a commutative ring of infinite size

(same for R[X] for any commutative ring R)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 156/1098

Example: Modulo 9 Reduction of Large Numbers

296527 mod 9
(200000 + 90 000 + 6 000 + 500 + 20 + 7) mod 9

(2 x 100000 +9 x 10000 + 6 x 1000 +5 x 100 + 2 x 10 + 7) mod 9
(2x1054+9x10*+6x 103 +5x 102 +2 x 10 +7) mod 9

(2 x (10 mod 9)® 4+ 9 x (10 mod 9)* + 6 x (10 mod 9)3+

+5 x (10 mod 9)? 42 x (10 mod 9) 4 7) mod 9
(2x1°+9x1*+6x13+5x12+2x1+7)mod 9
(2+9+6+5+2+7)mod9

31 mod 9

(3+1) mod 9

4 mod 9

4

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 157/1098

“Preuve par 9”

mod9
5 2 6 4
X 2 8 X 1
4 2 0 8
+ 1 0 5 2
1 4 7 2 8 4

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

158 /1098

Example: the Ring of Residues Modulo n

A W NN =

© 00 N O O

10.

Z,=10,1,2,3,....,n— 1}

. Z, is closed for the addition modulo n

. the addition modulo nis associative in Z,, (next slides)

. 0 is neutral for the addition

. for any nonzero a € Z, we have n — a € Z,, which is the inverse

of a for addition modulo n (0 is self-inverse)

. the addition modulo n is commutative in Z,

. Z, is closed for the multiplication modulo n

. the multiplication modulo n is associative in Z,

. 1is neutral for the multiplication

. addition modulo n is distributive over multiplication modulo n

(next slides)
the multiplication modulo n is commutative in Z,

Z, is a commutative ring of n elements

SV 2024-25 Diffie-Hellman Cryptography CryptoSec

159/1098

Cerebral Z,

@ nZis an ideal of Z (with laws + and x) (ideal generated by n)
@ we can do the quotient Z/nZ of Z by nZ
@ congruence modulo nZ is written

a=b (modn) < a-benZ < amodn=>bmodn
@ an exhaustive list of equivalence classes is
0+nZ , 1+nZ , 2+nZ, ... ,(n—1)+nZ

@ note that (a+ nZ) + (b+ nZ) = ((a+ b) mod n) + nZ
@ note that (a+ nZ) x (b+ nZ) = ((a x b) mod n) + nZ

@ we simply write a (the representative in [0, n — 1]) instead of
a+nz

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 160/1098

Z, Tips

@ for any polynomial P(x) € Z[x] and any a, n € Z we have
P(a) mod n= P(amod n) mod n

can put “modn” reductions in the ground floor
@ if x has order min Z;, then forany i € Z

i mod m

x'mod n= x mod n

can put “modm” reductions in the upper floor

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 161/1098

Exercise

Z5 has order 15

@ We have (5) = {0,5,10}.
This is a subgroup of order 3
5 has order 3 in Z45

@ inZs: (2) ={0,2,4,6,8,10,12,14,1,3,5,7,9,11,13}.
in Z45, 2 has order 15 (so, 2 is a generator)

@ We have <1> =25
1 is a generator

° zilkS = {172747778711713714}

@ in Zi;, 2 has the order 4: (2) = {1,2,4,8}

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 162/1098

Z, Computations

Efficiently computable operations:
@ addition: (a+ b) mod n
@ multiplication: (a x b) mod n (double-and-add)
@ modulo: a mod n (Euclidean division)

@ inverse: a~' mod n (when gcd(a, n) = 1) (extended Euclid
algorithm)

@ power: a° mod n (for e integer only) (square-and-multiply)

Remaining problem: extracting roots: ¥/a mod n (or & mod n for r
rational)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 163/1098

Addition in Z,

Input: an integer n of ¢ bits, two integers a and
b less than n

Output: ¢, an integer which represents a +
b mod n

CompIeXIty o)

:addaand binc

compare ¢ and n

if c > nthen
subtract n from ¢

end if

remark: comparison and subtraction take O(¢) time as well

.U.‘.‘?F*?.'\?—‘

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 1641098

Multiplication in Z, From Left to Right

Input: an integer nof ¢ bits, a,b € Z,
(b in binary)

Output: c=ax bmodn
Complexity: O(¢?)

1: X+ 0

2. fori=¢—-1to0do

3: X 4 X+ X mod n

4 if bj = 1 then

5: X< X+amodn

6 end if

7: end for

8: C+ X

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 165/1098

Exponentiation From Left to Right
Square-and-Multiply

Input: a and n, two integers of at most ¢ bits, an
integer e (e in binary)
Output: x = a° mod n
Complexity: O(#? log €)
1: X 1
2: for i = |log, €] to 0 do
3: X+ X X Xmod n
4 if e, =1 then
5: X<+ Xxamodn
6: end if
7: end for

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 166 /1098

Euclidean Division

we can just adapt the algorithm we have learnt at school
(not trivial to implement!)

e forany a € Z and n > 0 there exists a unique pair (g, r) € Z2
suchthata=qgn+rand0<r<n
g=|2] andr=amodn

@ algorithm runs in O(¢?)
(¢ is the size of a, n < a)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 167/1098

Modular Inversion

Theorem
x € Z, is invertible if and only if gcd(x,n) = 1. J

Proof.

= if gcd(x, n) = d > 1 then d divides (x - ¥) mod nfor any y so
(x - y) mod n # 1 and x is non invertible.

< to be seen later

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 168 /1098

Euclid Algorithm

Input: a and b, two integers of at most ¢ bits
Output: d =gcd(a, b)

Complexity: O(¢?)

X« ay<«>b

: while y > 0 do

make an Euclidean division x = qy + r
do simultaneously x < y and y «+ x —qy
: end while

cd <+ x

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 169/1098

Example

We run the algorithm with a = 22 and b = 35. We obtain the following
sequence.

iteration | x y g
0| 22—-35x0

Vel

1| 35—-22x1

Vel

2| 22—13x1

Vel

3| 13— 9 x1

Vel

4| 9 —-4x2

Vel

5| 4—-1x4

Vel

6|1 O

Thus gcd(22,35) = 1.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 170/1098

Why does it Work?

@ it eventually stops (y strictly decreases and y > 0)
@ adivisor of x and y is a divisor of x — qy for all q
°© x=(x—qy)—(=q)y

@ ddivides x and y <= d divides y and x — qy

@ for any g, gcd(x, y) = gcd(y, x — qy)

@ gcd(x,0) = x

@ conclusion: the algorithm terminates with gcd(a, b)

@ to be discussed (in another course): runing time (complexity) is
quadratic

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 171/1098

Extended Euclid Algorithm

Input: aand b, two integers of at most ¢ bits

Output: d, u,v such that d = au + bv =
gcd(a, b)

Complexity: O(¢?)

X« (a,1,0), ¥ < (b,0,1)

while y; > 0 do
make an Euclidean division x; = qyy + r
do simultaneously X < yand y + X —qy

: end while

s (d,u,v) + X

@ ahwn

)?7}76{(&7B77);O‘:a'ﬂ+b'7}

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 172/1098

Example

We run the algorithm with a = 22 and b = 35. We obtain the following
sequence of vectors.

iteration X y q
0| (22,1,0) — (35,0,1) x0
|
1 (85,0,1) — (22,1,0) x1
4 I
2| (22,1,0) — (13,—-1,1) x1
/ I
3| (13,-1,1)— (9,2,-1) x1
/ I
41 (9,2,-1) — (4,-3,2) x2
/ I
5| (4,-3,2) — (1,8,—5) x4
s
6| (1,8,-5) (0,-35,22)

Thus 1 =22 x 8 — 35 x 5.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 173/1098

Modular Inversion

to compute the inverse of x modulo n:

@ run the Extended Euclid algorithm with input (x, n) and get u, v
such that ux + vn = d = ged(x, n)

@ if d # 1, x is not invertible: error!

© output u: itis such that ux mod n = 1
(Note: we may need to reduce u modulo n)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 174/1098

Modular Inversion

Theorem
x € Z, is invertible if and only if gcd(x, n) = 1. J

Proof:
@ = already seen (slide 168)

@ «:if gcd(x, n) = 1, run the Extended Euclid algorithm and get
an equation ux + vn = 1 then deduce ux mod n =1 OJ

Conclusion: the Extended Euclid algorithm is an inversion algorithm
with complexity O(¢2)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 175/1098

Arithmetics with Big Numbers (Recap)

@ addition (O(¥)): X,y — x+y
@ multiplication (O(¢2)): x,y + x x y
@ Euclidean division (O(#2)): x,n+ x mod n

@ Euclid Algorithm (O(£2)): x,y + u, v s.t. ux + vy = gcd(x, y)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 176 /1098

Modular Arithmetic (Recap)

@ addition (O(¥)): x,y,n+— (x+y) mod n
@ multiplication (O(¢2)): x,y,n+ (x x y) mod n
@ modulo (O(¢2)): x,n+ x mod n

o fast exponential (O(¢2 log €)): x, e, n > x® mod n

@ inversion in Z, (O(¢?)): x,n+ y s.t. xy mod n =1 (when
feasible)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 177/1098

FFT-based Multiplication

@ we could have better complexities with a better multiplication
algorithm

@ in this lecture, we limit to the values from the school-book
algorithm

@ in practice, this algorithm is sufficient for the lengths we use

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 178/1098

© Diffie-Hellman Cryptography

@ Orders in a Group

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 179 /1098

Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem
For all proper subgroup | of Z there exists n such that

I=nZ={...,-3n,—2n,—n,0,n,2n,3n, ...}

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 180 /1098

Element Order

Given x in a group G:
@ {ieZ;x' =1} is asubgroup of Z

@ s0, {i € Z;x' = 1} = nZ for some n which is the smallest positive
nsuch that x" = 1
nis called the order of x in G.

@ nis such that '
x' =1 < (ndivides i)

see slide 128

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 181/1098

Group Exponent

Given a group G:
@ {i€ZVxe Gx'=1}is asubgroup of Z
@ so, {i € Z;¥x € G x' = 1} = \Z for some) which is the smallest

positive A such that Vx € G, x* = 1
A is called the exponent of G.

@) is such that

(Vx eGx = 1) <= (\ divides /)

@ note that for all x, A € {i € Z; x' = 1} = nZ so X is a multiple of n,
the order of x

@ note that #G € {i € Z;Vx € G x' = 1} = \Z so0 \ is a factor of

#G
so, Vx € G order(x)|\|#G

@)\ is the Icm of all order(x), x € G

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 182/1098

Orders in Z;,

@ Z; is of order p(m) (example: Z35 is of order 24)
Z;, is of exponent \(m) (example: Z35 is of exponent 12)
for m = p{" x .- x p?" with pairwise different prime numbers
pi,...,Pr, We have

p(m) = (pr—1)p{" T xx (pr = 1)ppe!
A(m) = lem (A(P§"), -+ A(pE))
we have \(p*) = ¢(p*), except for p = 2 and a > 3 for which
Mp*) = 3¢(p%)
@ for any x € Z},, order(x)|\(m)|p(m)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 183/1098

Checking a Generator of a Group with Known
Order Factorization

Input: an element g in an Abelian cyclic group
of order with known factorization n = p{"' x
CeeX p;l’

Output: say if g is a generator

Complexity: O(r) exponentials

1: fori=1to rdo

2: y«gp

3: if y =1 then

4: abort: g is not a generator
5: end if

6: end for

7: g is a generator

Proof. The order of g is a factor of n. If it is no factor of any n/p; then
it must be n.]

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 184/1098

Discussion

@ for g arbitrary, we need the factorization of n

@ if g is randomly selected, we only need the small factors of n
because (to be seen in the next chapter)

n 1
P P = 1 = —

gr |:g i| Pi
which is small for p; large

@ if nis hard to factor, we can still find generators:
find the prime factors up to some bound B

@ application: generate a generator of Z; for a prime p
(we will see that it is cyclic)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 185/1098

Picking a Generator in a Cyclic Group with Known
Order

Input: the order n of an Abelian cyclic group, a
bound B
Output: a generator g of the group
1: find the list py, ..., ps of all prime factors of n
which are less than B

2: repeat

3 pick a random g in the group
4 b « true

5: fori=1tosdo

6 y g”/P/

7 if y = 1 then

8: b « false

9: end if

10: end for

11: until b

1
p < — |
rloutput g not a generator] < Blog B ogn

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 186/1098

Generating a Generator
We consider a cyclic group G of order n and we let n = [[/_, p with
pairwise different primes p;

° gisageneratorofGiffgpﬂf £1fori=1,...)r

9euG
(to be seen in next chapter with CRT)

@ work with an incomplete factorization: we let n = q]_[,s:1 p;
which includes all small factors p; < B (i.e. p; > Bforall i > s)

n 1 .
@ Pr |:gpi = 1} = o and these events are independent
i

we say that g passes the test if gﬂﬂf #1fori=1,...,s
Pr[not generator|passed] = Pr [3/ > S gPﬂf =1|Vi<s gpﬂf #1
1

< —(r—

< gr-9)

< _logq

~— BlogB

< logn

~ BlogB

example: n of 1024 bits, B = 2%2; Pr[not generator|passed] < 227

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 187/1098

© Diffie-Hellman Cryptography

@ The Z,, Field

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 188/1098

Definition of a Field

Definition
A field is a commutative ring (K, +, x) such that
1-9. [ring] K is a ring with + and x
10. [commutativity] for any a, b, we have ab = ba
11. [invertibility] for any a # 0 there exists b = a~' s.t. ab = ba = 1
example:
e QRC
@ Z, for p prime (next slide)
@ GF(2") (in Chapter 4)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 189 /1098

Z, Properties

Theorem (Z,, structure)
Let p be a prime number.
QzZ,={1,...,p-1}
Q (Little Fermat Theorem) for any x € Z},, we have xP~' = 1

(mod p)
Q Z;, is a cyclic group. So, there exist g such that

Z: ={9%9".9° mod p,...,g° " mod p}

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 190/1098

Proof

@ if1 < x < p-1,since pis prime, we must have gcd(x, p) = 1
thus x € Z;

@ due to the Lagrange Theorem, for any x € Z%, we have xP~' = 1
(mod p)
@ (hard)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 191/1098

An Interesting Group

the subgroup

of prime order g

(9)=1{1.9,...,97 '} < {0,1,...

SV 2024-25 Diffie-Hellman Cryptography

aq_1}:Zq

CryptoSec

192/1098

Example: the SSH2 Parameters

p = 219 2%0_ 1.4 2% 2847 1 129093

g = 2
_ P11
T2
try it with gp:

allocatemem(80000000)
\p 300
pP=2"1024-2"960-1+2"64*floor (27894*Pi+129093)
g=2
g=(p-1)/2
isprime(p)
isprime(q)
Mod(g,p)"q

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 193/1098

Algorithms To Be Seen Later

@ we can generate large prime numbers
@ we can verify the primality of a number

@ we can find (p, g, g) such that p and q are prime, g divides p — 1,
and g has order g in Z;,

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 194/1098

The Discrete Logarithm Problem

Definition (Discrete Logarithm (DL) Problem)

The DL problem, relative to Setup, is hard if for any PPT (probabilistic
polynomial-time) algorithm A, the probability that the following game
returns 1 is negl(\):

DL()\)

: Setup(1*) — (group, g,)

pick x € Z,

X+ g*

A(group, g, 9, X) — x’

return 1,_ .

A

Examples:
@ Z,: easy (use the Extended Euclid algorithm)
@ Z;: (maybe) hard
@ over an elliptic curve: (maybe) hard

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 195/1098

Is Logarithme Hard?!?

HP 35s
Scientific Calculator

RN
XEQ

INPUT
xoy

INTG

UNDO
-

Diffie-Hellman Cryptography

SV 2024-25

We can compute log

CryptoSec

196 /1098

The Notion of Game DL()):

: pick x € Z,

@ Given a PPT adversary A: P X g

Game(security parameter):
1: setup of parameters

a s wn =

return 1,_ .

. A(group, g, g, X) — X’

: Setup(1*) — (group, g, 9)

2: initialization of the game
3: A(what he should know) — result
4: return 1winning condition

@ Advantage of A:
Adv(security parameter) = Pr[Game — 1]

@ Security:
VPPT A Adv = negl

SV 2024-25 Diffie-Hellman Cryptography CryptoSec

197/1098

Negligible Function

f(A) = negl(\)

i)
vn () =0\

as A — +oo

Example:
@ f(A\) = ¢ is negligible (for ¢ > 1)
@ f(\) = \~1000000000 jg not negligible

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 198 /1098

Some Facts About The Discrete Logarithm
Problem

in a cyclic group of order g:
@ easy on a quantum computer:
— Shor algorithm
@ easy if g has only small prime factors (e.g. < 2'%):
— Pohlig-Hellman algorithm
@ best algorithm for a subgroup of Z; with p and g prime:
— General Number Field Sieve (GNFS) with complexity

e(Y %+o(1)>(lnp)1§(lnlnp)%

this is mostly precomputation (without X)

1 2
the computation from y takes (V3o (np)3 (ininp)3
@ generic algorithms in O(,/q):

— baby-step giant-step algorithm
— Pollard p algorithm

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 199/1098

Baby Step - Giant Step Algorithm

Input: g and X in a group G, B an upper bound for #G
Output: the logarithm of X in base g
Complexity: O(+/B) group operations
Precomputation

1: let £ = [V/B] be the size of a “giant step”

2: fori=0,...,/—1do

3 setT{g"} «i

4: end for
Algorithm

5. forj=0,...,/—1do

6: compute z = Xg~/

7: if T{z} exists then

gze — Xg—S

g3[

8: i+ T{z}

9: yield x = i¢ + j and stop >we get Xg~/ = g'*
10: end if

11: end for

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 200/1098

Attacks based on Precomputation

Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

over Z;, the discrete logarithm can be solved in

p length | precomputation attack
(bits) (core-time) (core-time)
512 10.2 years 10 minutes
768 36 500 years 2 days
1024 45 000 000 years 30 days

example: SSH2 uses a fixed p of 1024 bits...

SV 2024-25

Diffie-Hellman Cryptography

CryptoSec 201/1098

© Diffie-Hellman Cryptography

@ The Diffie-Hellman Key Exchange, Concretely

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 202/1098

The Diffie-Hellman Key Agreement Protocol (again)

Assume a group generated by some g

Alice Bob

pick x at random
Xegt X,

—r pick y at random
Y+ g
K+ YX K+ XY
(K=9Y)

security requirement: given (g, g%, 9*), it must be hard to compute
g¥ (Computational Diffie-Hellman Problem)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 203/1098

An Unavoidable Active Attack

Man-in-the-Middle Attack

Alice Eve Bob
X X'
—r —
PR A o Y
(K1) (K2)
[Mlk,

sendm ——— getm

make m’ receive m’

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 204 /1098

Passive Adversaries

@ passive adversary just listens to communications and tries to
decrypt communications (e.g. by recovering the key)

@ the Diffie-Hellman shall resist to passive attacks: given only g, X,
and Y, it must be hard to compute K

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 205/1098

The Computational Diffie-Hellman Problem

Definition (Computational Diffie-Hellman (CDH) Problem)

The CDH problem relative to Setup is hard if for any PPT algorithm A,
the probability that the following game returns 1 is negl(\):

CDH()):

. Setup(1*) — (group, g, 9)

: pick x,y € Z4

X< g5Y«—g

: A(group, q,9,X,Y) = K

return 1x_gv

(S AN I

hardness requires the Discrete Logarithm Problem to be hard (see
next slide)
Examples:

@ a subgroup of Z; of prime order q
@ an elliptic curve

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 206 /1098

B(group,q,9,X,Y) :
CDH hard —> DL hard))
The CDH Problem Reduces to the DL Problem 2: compute K = vy~
3: return K
@ assume CDH is hard
@ to prove DL hardness, consider a DL algorithm .4
@ construct B s.t. A wins DL = B wins CDH:

[CDHp game: 1
DL game: Setup — ..., g
Setup— ..., g pick x, y
pick x X+ g* B

Pr X g* — 1| <Pr Yo — 1| = negl

A, X) = X A, X) = X
return 1, . K« Y¥

L L return 1x_gx]

X:gx' — K=Y :gy"’:Xy:gxy
O

(More details on next slide.)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 207/1098

CDH hard — DL hard (details)

IN

Pr

SV 2024-25

DL game:
Setup— ..., g
pick x

X+ g~

A(. ., X) = X
return 1 X=g¥’

Setup—...,9]

pick x, y

X+ g~
Y+—g

A(-. o, X) = X
K« Y~
return 14_gv

Pr

Pr

B(group,q,g,X,Y):

1: A(group, g, g, X) — x'

2: K+ Y"
3: return K

Setup —...,g

pick x, y
X+ g*

Y+ 9

A, X) = X
K« Y~
return 1,
CDHj game:
Setup — ..., g
pick x, y
X+ g

Y+ 9

B(...,X,Y) = K

return 1x_go

X:gX/ — YX/ :gyx’ :X’V:ng

Diffie-Hellman Cryptography

CryptoSec

208 /1098

DDH Problem

Definition (Decisional Diffie-Hellman (DDH) Problem)

The DDH problem relative to Setup is hard if for any PPT algorithm A,
we have

Adv_4(\) = Pr[DDH(), 1) — 1] — Pr[DDH(, 0) — 1] = negl()\)

DDH(A b):

: Setup(1*) — (group. g. 9)
pick x, y,z € Z,4

if b=1then z + xy
X+—g, Y9, 2Z+9g*
A(group,q,9,X,Y,Z) = t
return ¢

O’C""P“"\’—“

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 209/1098

DDH hard — CDH hard — i

@ assume DDH is hard
@ consider
C(group,q,9,X,Y,2Z):
1: pick X' € Z,
2:return 1y 7y
negl = Adve = Pr[DDH¢(1) — 1]—Pr[DDH¢(0) — 1] = 1—% ~ 1
q q q
1 _
hence ; = negl(})

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 210/1098

DDH hard —- CDH hard — ii

@ to prove CDH hardness, consider a CDH algorithm A
@ we define a DDH algorithm as follows

B(group,q.9,X,Y,2):
1: run A(group, g, X, Y) = K
2: return 14_»

@ DDHg(1) — 1 is equivalent to CDH 4 — 1
Pr[DDHz(1) — 1] = Pr[CDH 4 — 1]
@ in DDHp(0), Z is uniform in (g) and independent from K

Pr[DDHp(0) — 1] = 15 = negl

@ hence, Advg()\) = Adv 4()) — negl
@ we know that Advi(\) = negl()) (since DDH is hard)
@ hence, Pr[.A wins] = negl(}\) O

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 211/1098

DDH Easy Case of a Group whose Order has a
Small Factor

G of order g such that g’ = I is small and ¢’ > 1:

let A(group, g, X,Y,Z) =1 iff
loggw Z" = (loggu X") x (loggw Y")

we have Adva(\) =1- %
Indeed,

‘ —_

Pr[DDH(),0) — 1] = Pr[DDH(A, 1) — 1] = 1

/)

Q

If ¢ > 1then ¢’ > 2 and Adv4(\) > } which is not negligible.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 212/1098

Hardness Depending on Groups

DL hard <= CDHhard <« DDH hard

easy if order is smooth easy if order has a
small factor (> 1)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 213/1098

Hard Cases

The DDH problem is believed to be hard relative to:
@ large subgroup of prime order of Z; (p prime)
1: pick a random prime q of size 2\
(so that generic algorithms have complexity > \)
2: pick a random p of size f(\) such that g|p — 1
(so that GNFS has complexity > \)
3: start again until p is prime
4: pick a random g in Z; of order q
@ large subgroup of prime order of a “regular” elliptic curve

(“pick a random prime” and Step 4 to be seen later)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 214/1098

Problems when not Checking Group Membership
Lim-Lee CRYPTO 1997

assume:
@ Bob uses a static key Y
@ Bob’s algorithm runs even though X does not belong to the group

we can select X outside of the group, with a small order ¢’

Adversary Bob
(Bob’s public key Y) (staticy, Y =¢)

pick X of small order g’ - X . K=X

* ct= EnCKDF(K)(pt)

find yg such that Decype v) (ct) makes sense
deduce y mod @’ = yy
(KDF to be seen later)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 215/1098

Man-in-the-Middle Attack Making K1 = Ko — i

(Using any group)
Alice Eve Bob

pick x, X + g* SN

X 1 X
———— picky, Y < ¢g¥
4 ,
e Y 1
K« (Y')* (K=1) K« (X')

after that, Eve remains passive
— we must check X #1and Y # 1

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 216 /1098

Man-in-the-Middle Attack Making Ki = K> — i

(Using groups of order divisible by w s.t. DL is easy in (g"})

Alice Eve Bob

pick x, X + g* X

X' — X" X,
—r pick y, Y «+ ¢
P Y oy
K« (Y'Y solve X' = g*'", K « y¥'v K« (X')
(K=g"")

after that, Eve remains passive
Yx’w _ gx’yw _ (gX’W)y _ X/y - K

— we should use groups of prime order

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 217/1098

Problems with Subgroups

Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

@ we can compute log X modulo the small factors of the order

1: set g the order of g
2: for all small prime factor r of g do
3 take Z = X7 >we have Z € (g*) of order r
4: find x; s.t. Z = (g7)* > easy because r is small
5: deduce log X mod r = x;:

> if X = g¥ then (g7)* = Z = (g7)* s0 x = x, (mod r)
6: end for

N

compute CRT(all x;) (explained in next chapter)
> from x mod r for all r, we can reconstruct x with CRT

@ we can deduce x = log X when it is small
(example: lazy servers which select a small x)

@ done for 159 DH servers (out of 3.4M) on the Internet in 2015

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 218/1098

Other issue: Weird Key Distribution

@ the final key K is random in (g) which has its own representation
E.g. (g) C Z;is a very small subset. So, the binary
representation of K is far from being uniformly distributed

@ we need a bitstring with a “reliable distribution”
@ solution: use a Key Derivation Function (KDF)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 219/1098

Summary: Problems with the Original DH Protocol

@ nobody is checking the group membership for X and Y
@ problems with subgroups of (g)

@ subgroup {1} (unavoidable): if either X or Y is 1, then K = 1 for
sure

o other subgroups (avoidable): the discrete logarithm problem may
become easy in subgroups

@ problem with g® having a bad distribution
(elements in (g) may be sparse, so there is a structured
information in g*)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 220/1098

Correct Diffie-Hellman Key Exchange

Assume a group (g) generated by some g of prime order g
Alice Bob

pick x € Z%, X + g* - x if X & (g)— {1}, abort

if Y & (g)— {1}, abort —r picky €Z,, Y« g¥
K + KDF(Y¥) K «+ KDF(XY)
(K = KDF(g"))

KDF: a Key Derivation Function

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 221/1098

RFC 2631

Diffie-Hellman Key Agreement Method

@ group parameters (p, q, 9):
p prime, q prime, q divides p — 1 (generation algo in a next slide),

g= h"7 mod p with hrandom until1 <h<p—-1and g > 1
@ secret keys: xu, Xg between 1 and g — 1
@ public keys: ya = g mod p, yg = g*8 mod p
@ 3 modes:

e ephemeral-ephemeral mode: both keys are fresh
@ ephemeral-static mode: recipient uses a static public key
@ static-static mode: both participants use a static public key

@ shared secret: ZZ = g**s mod p

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 222/1098

Exercise

@ group parameters (p, g, 9):
p prlme g prime, g divides p — 1,

g= h"% mod p with any hsuchthat1 <h<p—-1andg > 1
Show that g generates a subgroup of Z; of order q.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 223/1098

Group Parameter Generation in RFC 2631

SV 2024-25

1:
2:
3
4
5

6:
7
8
9
10

11:

12:
13:
14:
15:
16:
17:

m = required length for g, m" = [g |
repeat
pick a random seed
Uez[”:'(;‘ 21607 (SHAT(seed-+i) @ SHA1 (seed-+m’ +1)) mod 2™
g+ UOR1OR2™!
until g is prime

: L+ required length for p, L' + [+&5]
: counter < 0
: repeat

R + seed + 2m’ + (L' x counter)

W« (z,ﬁo 2160ISHAT(R + i)) mod 2L

X « WOR 2.1

p <+ X — (X mod (2q)) + 1

counter + counter + 1

if counter > 4096 [;| then abort (fail)
until p > 21-" and p is prime
return p, g, seed, counter

Diffie-Hellman Cryptography

CryptoSec

224 /1098

Parameter Validation in RFC 2631 (Group
Membership Verification Part)

Group parameters validation:
@ p and g are prime and q divides p — 1

@ (optional) p and g follow parameter generation algorithm from
seed and counter

@ g9gmodp=1andi<g<p
Public key validation:

@ check2<y<p-—1and y?modp=1
— this is enough to prove y € (g) — {1}! (see next slide)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 225/1098

Checking Group Membership

((g) is the unique subgroup of Z; of order q)

Theorem

Let p, q, g be integers such that p and q are prime, q divides p — 1,
gmod p#1,and g? mod p=1. Then

@ (g) is a subgroup of Z;, of order q
° (g) ={yeZ;yImodp=1}

Application to RFC 2631: we can check that y is in the group
generated by g by checking y9 mod p = 1

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 226/1098

@ (g) is a subgroup of Z; of order q: clear
@ (9) C{yeZ;yvmod p=1}: clear
o (

9) 2{y €Z;y9mod p=1}:
let y € Z; be such that y9 mod p = 1

]
("]
("]
]
("]
o

let 0 € Z;; be a generator of Zj, write g = 6% mod p, y = 6° mod p
since g7 = y9 =1 (mod p),we have ga=qgb=0 (mod p— 1)
S0, We can write @ = %a’ and b = %b’ with &,b' < q

since gmod p # 1,we have 1 < a < g

since q is prime, there exists ¢ such that a'c mod g = 1

we have

b'c _ pab’c __ pa'bc
=0 =0

g =y" =y =y (modp)

0, y € (9) O

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 227/1098

Example: Semi-Authenticated Key Exchange in
SSH2

@ /¢ and /s: negotiation of crypto algorithms
@ Ks: public key of the server (may come with a certificate)

@ for diffie-hellman-groupl-shal key exchange:
p=21024 _ 2960 _ 1 4 264 |28%: 1 129093|, g =2, g = 25"

Client Server

’ . Veile
version Vg, initial message I ——F——

Vg.ls . -
version Vg, initial message /s
pickx,e=g*modp —>
pick y, f = g¥ mod p, K = & mod p
H = hash(Vc|| VslllcllIs||Ksllellf]|K)
Ks.f,))
e s = Sig(H) (DSA using p, g, 9)
K = ¥ mod p, check Ks
H = hash(Vc|| Vslllcllls||Ksllel|f]|K)
VerKS(s, H
SV 2024-25 Diffie-Hellman Cryptography CryptoSec 228/1098

© Diffie-Hellman Cryptography

@ The ElGamal Public-Key Cryptosystem

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 229/1098

Public-Key Cryptosystem

Dec

‘ Adversary ‘
| |
Message
Enc
I | |
. AUTHENTICATION
Public K | |
ublic Key [INTEGRITY |
| |
| |
SV 2024-25 Diffie-Hellman Cryptography

Generator

Message

J Y
| Secret Key

CryptoSec 230/1098

Non-Deterministic Encryption

Encrypt Decrypt

Plaintext set Ciphertext set Plaintext set

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 231/1098

Semi-Static-DH to Public-Key Encryption

Towards ElGamal Encryption

Alice Bob
input: m secret key: y
public key: Y = g¥

pick x at random
X=g° —>—— K=KDFX)
K = KDF(Y*)
¢ =symEncy,(m) ————— m=symbDeck(c)

output: m

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 232/1098

The Plain EIGamal Encryption Case

In the original EIGamal cryptosystem:
@ in Z7, not of prime order...
@ no KDF...
@ symEnc is one-time-pad, adapted in the DH group

... this is all we should not do...
but wait: this is the basis of many cryptosystems...

In what follows: we work in (g) of order n
CAUTION: notation change

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 233/1098

ElGamal Cryptosystem

Public parameters: (g, n), a group (g) of order n generated by

Set up:
Message:
Public key:
Secret key:
Encryption:

Decryption:

SV 2024-25

some g
generate a random x € Z,, and compute y = g*
an element m € (g)

pk =y
sk =x
pick a random r € Z,,, compute u = g", and v = my"

The ciphertext is (u, v)

extract the u and v parts of the ciphertext and compute
m=vu*

Diffie-Hellman Cryptography CryptoSec 234/1098

ElGamal Cryptosystem

Semi-Static DH + Vernam Generalized

Alice Bob
input: m secret key: x
public key: y = g*

pick r at random
u=g9g" —

K=y’ K =u¥
v=mK —— Y % m=vK
output: m

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 235/1098

Plain EIGamal Encryption

Adversary

Message

vu—¥

Message
o 9 Encrypt Decrypt
x | | :
. AUTHENTICATION L
Public ke + + Secret ke
wlekeyy T INTEGRITY | | v X
‘ ‘ Generator
\ \ 7}
\
domain parameters:
g: a group generator y=9g

n: order of g

(assume m € (9))

SV 2024-25

Diffie-Hellman Cryptography

CryptoSec 236/1098

ElGamal Encryption Complexity

in subgroups of Z;; with p of length ¢:

@ Domain parameter selection: O(¢4)
(prime numbers generation to be seen in next chapter)

@ Generator: O(¢?)
@ Encryption: O(¢3)
@ Decryption: O(¢3)

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

237/1098

ElGamal Security: EIGamal Problems

EGKR (ElGamal Key Recovery Problem)

: Setup(1*) — (group, n, g)

: Gen(group, n,g) — (¥, X) > pick x € Z,, y = g¥
. A(group, n, g, y) — X’

return 1,_,.

A WD =

EGD (ElGamal Decryption Problem)

1: Setup(1*) — (group, n, 9)

2: Gen(group, n,g) — (¥, X) > pick x € Zp, y = g~
3: pick pt € (g9) > pick pt € (9)
4: Enc(y,pt) — (u,v) >pickreZ,u=g",v=pt-y
5. A(group,n,g,y,u,v) — m

6: return 1,

key recovery problem <= DL problem
decryption problem <= CDH problem [next slide]

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 238/1098

B(group, n,g,y,u,v
EGD hard — CDH hard 1(: Al .qy, U)JK
The EGD Problem Reduces to the CDH Problem 2: m+—v/K

3: return m

@ assume EGD is hard
@ to prove CDH hardness, consider a CDH algorithm A
@ construct B s.t. A wins CDH —> B wins EGD:

[EGDg game:]
[[CDH4 game: i Setup — ..., g
Setup — ..., 9 pick x, y < g*
pick x, y pick pt
Pr X+ g — 1| <Pr pick r, u+ g" — 1| =negl
Y+ ¢g¥ V+opt-y
A, X, Y) = K A(...,y,u) > K
L L return 1x_gv i m+«— v/K
| L return 1, i

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 239/1098

B(group,n, g, X, Y
CDH hard —> EGD hard AR
The CDH Problem Reduces to the EGD Problem 2: AL.., X, Y,v) = m
3 K«—v/m
4: return K
@ assume CDH is hard
@ to prove EGD hardness, consider a EGD algorithm A
@ construct B s.t. A wins EGD = B wins CDH:

- i} [CDHz game: i
EGD 4 game: SetuSi ...,g
S.etupﬁ.--,g pick x, y 7
pick x, y + g* X g

Py p!ck pt) S| <pr Y+ g — 1| =negl
pick r, ur% g pick v
Vpt-y A(..,X,Y,v) = m
A(‘~-7}/7U7V)—>m Kev/m

| L return 1, - . | [return 1x_gy i i

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 240/1098

ElGamal Encryption Security

@ key recovery is equivalent to solving DL
@ decryption is equivalent to the solving CDH

@ INDCPA security equivalent to solving DDH
(IND-CPA security defined on slide 785)

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 241/1098

Conclusion

@ Z,ring, Z, field: a nice playground for cryptography

@ algorithmic number theory: easy to add multiply, invert,
compute exponentials in Z, and Z,

@ DL, CDH, and DDH problems: some cryptosystems based on
their hardness

@ Diffie-Hellman key exchange: can set up a symmetric key over
a public channel, resist to passive adversaries

@ ElGamal encryption: an example of probabilistic cryptosystem

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 242/1098

References

@ Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb
Textbook on algebra for cryptographers and applications.

@ Menezes-van Oorschot-Vanstone. Handbook of Applied
Cryptography. CRC. 1997.
http://www.cacr.math.uwaterloo.ca/hac/

Reference book

@ Vaudenay. A Classical Introduction to Cryptography —
Applications for Communications Security. Springer. 2005.
http://www.vaudenay.ch/crypto/

Textbook on cryptography

@ Diffie-Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory vol. 22, 1976.

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 243/1098

http://shoup.net/ntb
http://www.cacr.math.uwaterloo.ca/hac/
http://www.vaudenay.ch/crypto/

Must be Known

@ groups, rings, fields:
@ orders + tricks to check/pick a generator
e Lagrange Theorem
@ Z, ring: invertibility
@ Z, field: the multiplicative group is cyclic
@ algorithmic number theory:
@ square-and-multiply
@ extended Euclid algorithm
@ Diffie-Hellman key exchange:
@ resist to passive adversaries
@ better on a goup of prime order
@ requires the hardness of DL
@ ElGamal encryption:
@ requires the hardness of CDH
@ encrypt group elements
@ better on a group of prime order

SV 2024-25 Diffie-Hellman Cryptography

CryptoSec

244 /1098

Train Yourself

@ subgroup issues: final exam 2016—17 ex5

@ variant of DH: midterm exam 2017-18 ex3

@ DDH mod pg: midterm exam 2022—-23 ex2

@ DLP in GGM: final exam 2022—-23 ex3

@ DH in comosite group: midterm exam 2023-24 ex2

SV 2024-25 Diffie-Hellman Cryptography CryptoSec 245/1098

e RSA Cryptography

SV 2024-25 RSA Cryptography CryptoSec 249 /1098

Roadmap

@ more on number theory
@ prime number generation
@ RSA cryptosystem

@ square roots

@ factoring problem

SV 2024-25 RSA Cryptography CryptoSec 250/1098

e RSA Cryptography
@ Euler and Other Chinese

SV 2024-25 RSA Cryptography CryptoSec 251/1098

Euler Totient Function

©(n) is the order of Z,

Theorem

Given an integer n, we have the following results.
@ fForallx € Z, we have x € Z}, <> gcd(x,n) = 1.
@ Z,is afield<—= Z; =2,\{0} < ¢(n) = n—1 <= nis prime
@ Forall x € Z}, we have x#(") =1 (mod n).

@ ifeis such thatgcd(e, p(n)) =1, we let d = e~' mod ¢(n). For
ally € Z, y9 mod n is the only eth root of y modulo n

4

SV 2024-25 RSA Cryptography CryptoSec 252/1098

Proof —i

For all x € Z, we have x € Z}, <> gcd(x, n) = 1. J

Proof.

= if gcd(x, n) = d > 1, then d divides (x - y) mod nfor any y so
(xy) mod n cannot be equal to 1.

< if gcd(x, n) = 1, the extended Euclid algorithm constructs an
inverse of x (see) O

SV 2024-25 RSA Cryptography CryptoSec 253/1098

Proof —ii

Z,is afield <= Z} =Z,\{0} <= ¢(n) = n—1 < nis prime)

Proof. By definition, Z, is a field <= Z}, = Z,\{0}.
Since Z}, C Z,\{0}, Z;, and Z,\{0} are equal iff they have the same
cardinality.
We have #Z* = ¢(n) and #Z,\{0} = n— 1, so we deduce
Z,=2Z,\{0} < p(n)=n-1.
Z,=2,\{0} <= Vvxe{l,...,n—1} gecd(x,n) =1
<= nisprime

(2, field <= n prime was seen on) O

SV 2024-25 RSA Cryptography CryptoSec 2541098

Proof — iii

For all x € Z; we have x#(" =1 (mod n). |

Proof. Due to the Lagrange Theorem, the order k of x divides the
order p(n) of Z}.
Let p(n) = k - r. We have x¥(") = xk7 = (xk)" = 1" =1. O

SV 2024-25 RSA Cryptography CryptoSec 255/1098

Proof — iv

“for y € Z¥, x = y9 is the unique root of equation y = x®”

If e is such that gcd(e, p(n)) = 1, we let d = e~ mod ¢(n). For all
y € Z:, y? mod nis the only eth root of y modulo n J

Proof. We have e- d =1+ k- ¢(n) for some k.
@ x=yd— x°=y'tkeln) = y 50 x = y?is a eth root of y.
@ If y = x¢, we have x € Z}, because

(y'™xx=1

we have y = x¢ = y? = x'+k¢(" = x s0 a eth root of y must
be unique.

SV 2024-25 RSA Cryptography CryptoSec 256 /1098

Application: RSA Cryptosystem

Message
X

Public key e, N*

SV 2024-25

‘ Adversary ‘

Encrypt

Message
Decrypt
y9 mod N
| |
AUTHENTICATION 4
t t Secret key d, N
T INTEGRITY | | y

Generator

pq
p—1)(qg—-1)

cd(e, ¢(N))

RSA Cryptography

CryptoSec 257/1098

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. For any
a,b € Z, there exists x € Z such that

X

a (mod m)
X = b (mod n)

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m=5,n=7,mn=385,a=3, b =4)
We find that x = 18 is a solution and for all solution, x mod (mn) = 18

SV 2024-25 RSA Cryptography CryptoSec 258/1098

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. We have

@ f:Zny — Zy x Z, defined by f(x) = (x mod m, x mod n) is a ring
isomorphism

e f~'(a,b) = an(n~! mod m) + bm(m~" mod n) (mod mn)
Example: (m=5,n=7, mn = 35)
f~1(3.4)

(83x7x (77" mod5)+4 x5x (5" mod 7)) mod 35
S..=18

Application: ¢(pgq) = (p — 1)(q — 1) when p and q are two different
primes

SV 2024-25 RSA Cryptography CryptoSec 2591098

Application 1: Count Soldiers

x = 3-11-(117"mod7)+9-7-(7"" mod 11) (mod 77)
83x22+9x56 (mod77)
31 (mod 77)

... there must be 108 soldiers

SV 2024-25 RSA Cryptography CryptoSec 260 /1098

Application 2: Equality Modulo Composite
Numbers

Theorem
For any a, b, m, n € Z such that gcd(m, n) = 1, then

a=b (mod m)

a=b (mod n) }@azb (mod mn).

Indeed, f(a mod (mn)) = f(b mod (mn)) hence
a mod (mn) = b mod (mn)

SV 2024-25 RSA Cryptography CryptoSec 261/1098

Application 3: Correctness of RSA

@ let N = pq be the product of two different prime numbers p and q
@ for any x € Z such that x mod p # 0 we have

(x¢ mod N)? mod N = x (mod p)

(comes from p — 1 divides ¢(N) thus ed mod (p— 1) = 1)
@ this also holds when x mod p=0
@ similarly: for any x € Z we have (x® mod N)? mod N = x (mod q)
@ from CRT (Application 2): for any x € Z we have

(x® mod N)? mod N = x (mod N)
e for any x € Zy we have (x® mod N)¥ mod N = x

SV 2024-25 RSA Cryptography CryptoSec 262/1098

Application 4: Exponentiation Acceleration

l
log, p ~ log, q = 5
(v mod p)d med (P=1) mod p \
CRT ¥ mod pg
(y mod @) ™ (=1 mod g /
3
2x0((4)°) o (&)

SV 2024-25 RSA Cryptography CryptoSec 263 /1098

Proof of CRT — i

Fact 1: f is a ring homomorphism from Z,, 10 2, x Z,
° f(X +Zmn y) = f(X) +Zm><Zn f(y)
indeed:
((x+y) mod (mn)) mod m = ((x mod m)+ (¥ mod m)) mod m
((x+y)mod (mn)) modn = ((x mod n)+ (y mod n)) mod n
° f(X szn y) = f(X) szxzn f(y)
(same)
e f(1)=(1,1)

SV 2024-25 RSA Cryptography CryptoSec 264 /1098

Proof of CRT —ii

Fact 2: f is an isomorphism

@ f(x) = (0,0) implies m and n divide x
since gcd(m, n) = 1, mn divides x (see next slide)
thus x mod (mn) =0

@ fisinjective: for all x,y € Zny, if f(x) = f(y) then
f(x —y) = (0,0) thus x — y mod (mn) = 0 hence x =y

@ fis anisomorphism: Z,,, and Z,, x Z, have the same cardinality
and f is injective thus f is a bijection
since f is further a homomorphism, f is an isomorphism

SV 2024-25 RSA Cryptography CryptoSec 265/1098

Null Kernel

m and n divide x and are coprime

@ let n=p{" --- pf" be the unique factorization of n into pairwise
different primes p;

@ write x = mx’ (since m divides x)

@ since ndivides x, each p;" divides x = mx’

@ since nis coprime with m, p; does not divide m

@ hence, p{" divides x’

@ each p;" divides x’ so n divides x’

@ write x’ = nx”

@ x = mnx": mn divides x

SV 2024-25 RSA Cryptography CryptoSec 266 /1098

Proof of CRT —iii

Fact 3: f(an(n~" mod m) + bm(m~" mod n))

an(n™" mod m)+ bm(m"modn) = a
an(n~' mod m) + bm(m~"modn) = b (mod n)

thus f of the left hand side is (a, b)

CryptoSec 267 /1098

SV 2024-25 RSA Cryptography

CRT Backward: Another Approach

Theorem (CRT Backward)
Let m and n be two integers such that gcd(m, n) = 1. Let
u=n(n~" mod m) and v = m(m~" mod n). The function

g : ZpxZ, — Zmnn
(a,b) +—— au+ bv mod (mn)

is well defined and is a ring isomorphism.

Note: g is well defined because

g : ZxZ — Zn
(a,b) — (a+im)u+ (b+ jn)v mod (mn)

does not depend on j or j
Consequence: (u+ v) mod (mn) = g(1,1) =1

SV 2024-25 RSA Cryptography CryptoSec 268/1098

Proof

g : Zpx2Z, — Znn
(a,b) +—— au+ bv mod (mn)
Proof.

@ g(a,b)+g(a,b)=gla+a,b+b") (mod mn) so g is a group
homomorphism

@ g(a,b) =0impliesamod m=0and bmodn=0so0 gis
injective

@ due to cardinality, g is bijective: so, a group isomorphism

@ g~ '(x) = (x mod m, x mod n) is homomorphic for x so we have
a ring isomorphism O]

SV 2024-25 RSA Cryptography CryptoSec 269 /1098

Euler Totient Function

Corollary

Let m and n be two integers such that gcd(m, n) = 1. We have
p(mn) = o(m)p(n).

SV 2024-25 RSA Cryptography CryptoSec 270/1098

Proof

Fact: f is a bijection from Z;;,, to Z};, x Z;; (thus o(mn) = (m)e(n)):

e if x € Z;;,, then f(x).f(x~') = f(1) = (1,1) so both components of
f(x) are invertible: f(x) € Z}, x Z};
so f maps Z},, to Z};, x Z},

@ conversely, if (a, b) € Z}, x Z, let x = f~'(a, b) and
y=fa"'b")
we have f(xy) = f(x).f(y) = (a,b).(a~",b~") = (1,1) = f(1) so
xy=1soxeZ;,,
so f from Z;,, to Z}, x Z}, is surjective

@ fis an injection on Z,,, so an injection on Z},,, as well

actually, Z3,, and Z;, x Z}, are isomorphic groups (and f is such
isomorphism)

SV 2024-25 RSA Cryptography CryptoSec 271/1098

Computation of Euler Totient Function

@ o(p) =p—1for pprime
@ ¢(mn) = p(m) x ¢(n) when ged(m, n) =1
@ ¢(p?) = (p— 1)p*" for p prime

o (P x - xpf) = (pr—1)pP T xx (=)P
(p1 —1) x - x(pr—1)
Pi X - X pr

_ a1 a,
= Py XX P

for pairwise different prime numbers py, ..., pr

SV 2024-25 RSA Cryptography CryptoSec

272/1098

For Generating a Generator
For g €y Gin a cyclic group G of order n = [];_, p;” with pairwise
different primes pj:
@ let h € G be a generator; due to CRT, there is an isomorphism f

fology,

p
log f
G2 Z,— Hzpja, SO g +—— (a,-)1§,-§, ST pr‘ X oo X Zp;x,
j=1

@ due to isomorphism,

r

gp =1 — /\Qa,-zO (mod p;”)
=t

— ﬂa,-zo (mod p;*')
Pi

< agmodp =0
@ a;’s are independent and uniform

n 1]
so Pr [gpf = 1} = — and these events are independent
geuG pi

SV 2024-25 RSA Cryptography CryptoSec

273/1098

a RSA Cryptography

@ Primality Testing

SV 2024-25 RSA Cryptography CryptoSec 274/1098

Trial Division Algorithm

SV 2024-25

Input: an integer n
Output: a list of prime numbers whose product

isn

Complexity: O(1/n) iterations (poly-time arith-

©oOoNOR N2

metic operations in each iteration)
X+n i+ 2

: while x > 1and i < |/x] do

while / divides x do
print i
X+ x/i

end while

i< i+1

: end while
. if x > 1 then print x

RSA Cryptography CryptoSec

275/1098

Fermat Test

Theorem (Little Fermat Theorem)

If nis prime, foranyb< {1,...,n—1},b" " mod n = 1.

|

pick b at random

A

Y

yes

C b mod n=1? k iterations)
no end
Y Y
n composite n maybe prime

SV 2024-25

RSA Cryptography

CryptoSec

276 /1098

Fermat Test

SV 2024-25

Parameter: k, an integer

Input: n, an integer of ¢ bits

Output: notification of non-primality or pseudo-
primality

Complexity: O(k¢?)

1: repeat

pick a random b suchthat0 < b < n

X < b" " mod n

if x # 1 then
output “composite” and stop

end if

7: until k iterations are made

8: output “maybe prime” and stop

RSA Cryptography CryptoSec

277/1098

Significance of the Fermat Test

@ False Negative: Pr[output : composite|n prime] =0

@ False Positive: there exist pathologic numbers n which are not
prime such that Pr[output : maybe prime|n] is high.
Carmichael Numbers n are composite such that for any b,
becZ) <= b"" mod n=1. Hence

. n k
Prloutput : maybe prime|n] = (%) .

SV 2024-25 RSA Cryptography CryptoSec 278/1098

Carmichael Numbers

Definition
We call Carmichael number any integer n which is a product of (at
least 2) pairwise different prime numbers p; such that p; — 1 is a factor

ofn—1.
4

Theorem

An integer n is a Carmichael number if and only if it is composite and
for any b s.t. gcd(b, n) = 1, we have b"~' =1 (mod n).

Proof.
@ =: get b mod p; = 1 then apply CRT

@ «: get b " mod p; = 1 for a genarator b of Z; sopi—1|n—1
PB to show that n is square-free (p;'s are pairwise different)

SV 2024-25 RSA Cryptography CryptoSec 279/1098

Carmichael Numbers: the 561 Case

Example: n =561 =3-11-17 is such that for all b s.t. gcd(b,n) =1,
we have b"~!' =1 (mod n).
n—1=560=2*x5x7isdivisibleby 3—1,11 -1,17 — 1

The Fermat test may be wrong with probability

(o) = (=) - (3)

SV 2024-25 RSA Cryptography CryptoSec 280/1098

Carmichael Numbers: the 949631589 089 Case

949631589089 = 6917 x 10193 x 13469
949631589088 = 2° x 73 x 13 x 19 x 37 x 9467

@ 6917 is prime, 6916 = 22 x 7 x 13 x 19

@ 10193 is prime, 10192 = 2% x 7% x 13

@ 13469 is prime, 13468 = 22 x 7 x 13 x 37
@ the test may be wrong with probability

k k
P\ [9aea*)
<n_1> _(9467 ~ (1 — 0.000317)

example: for k = 20 the error probability is approximately
1 —0.00631

SV 2024-25 RSA Cryptography CryptoSec 281/1098

Towards The Miller-Rabin Test

@ We write n — 1 = 25t with t odd

2
@ If nis prime, we have b"~' mod n = (L ((b1?2)2) mod n =1
@ If nis prime, +1 and —1 are the only possible square roots of 1

()

SV 2024-25 RSA Cryptography CryptoSec 282/1098

The Miller-Rabin Test

at most s

1 1 1 1
btmodni’SQ a SQi'"' i’SQ

1
a SQ—1

isit=—1?

Miller-Rabin test with basis b: check that the sequence
(bt, b2, ... b*t)is of form either (1,1,... 1) or (x,...,% —1,1,...,1)

SV 2024-25 RSA Cryptography CryptoSec 283 /1098

The Miller-Rabin Primality Test

Parameter: k, an integer 8: repeat
Input: n, an integer of ¢ bits 9: pickbe {1,...,n—1}
Output: notification of non-primality 10: X < b' mod n
or pseudo-primality 11: i+ 0
Complexity: O(k¢?) 12 if x# 1then
1: if n =2 then 13: while x # n—1do
2 return “prime” 14: X — x?mod n
3: end if 15: j—i+1
4: if nis even then 16: ifi=sorx=1then
5: return “composite” 17: return “composite”
6: end if 18: end if
7: write n = 2%t 4+ 1 with t odd 19: end while
20: end if

21: until k iterations are made
22: return “maybe prime”

SV 2024-25 RSA Cryptography CryptoSec 284/1098

Miller-Rabin Criterion

Theorem

An integer n is prime if and only if it passes the Miller-Rabin test for
allb e Z;,.

Proof (Sketch).
= trivial

< observe that passing Miller-Rabin implies passing Fermat
— just prove that Carmichael numbers do not pass O

SV 2024-25 RSA Cryptography CryptoSec 285/1098

Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of b € Z;, pass the Miller-Rabin test, then all
b € Z; do so.

Consequence: false positives are negligible:

Pr[output maybe prime|n composite] < 4%

SV 2024-25 RSA Cryptography CryptoSec 286 /1098

Prime Number Generation

Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in {2,3,...,N}. We
have p(N) ~ ﬁ when N increases toward the infinity.

— the probability that a random ¢-bit number is prime is ~ ;-
Example: a 512-bit random integer is prime with probability ~ 3;—5

— generating a random ¢-bit prime number takes O(¢* + k¢3)

(O(£3) for composite)

(O(ke®) for prime)

SV 2024-25

pick p at random

<

<

Y

is it prime?

yes
Y

)&

p found

RSA Cryptography

xO(¢)

CryptoSec 287/1098

Implementation

Input: ¢
Output: a random prime number less than 2°
Complexity: O(¢*) arithmetic operations

1: repeat

2: pick a random number n of ¢ bits

3: until a primality test with k iterations accepts

n as a prime number
4: output n

With k = %(Iogz ¢ — log, £) the probability that this algorithm outputs a
composite humber is less than e.

Pr[output not prime] < O(f) x 4% = O(¢)

(next slide)

SV 2024-25 RSA Cryptography CryptoSec 288/1098

Incorrectness Probability

@ p;: probability to make exactly i iterations and make an incorrect
response at the j-th iteration

@ Prfoutput not prime] = 3", p;

@ we have
pi < Pr[pick composite and be wrong] Pr[pick composite] "
< Pr[wrong—composite] Pr[pick composite]'~"
< 47k Pprlpick composite] "
@ hence
Prloutput not prime] = > p;
i

< 47" Prlpick composite] "
i

= 47/ Pr[pick prime]

= Of) x4k

SV 2024-25 RSA Cryptography CryptoSec 289/1098

a RSA Cryptography

@ RSA Basics

SV 2024-25 RSA Cryptography CryptoSec 290/1098

Plain RSA Cryptosystem

Public parameter: an integer ¢.
Set up: find two random different prime numbers p and q of

Message:
Public key:
Secret key:
Encryption:
Decryption:

SV 2024-25

size g bits. Set N = pg. Select e such that
ged(e, (p—1)(g—1)) = 1:
@ either pick a random e until it is valid
@ orpick e =17 or e = 2'6 + 1 if valid.
Setd=e""mod ((p—1)(g—1)).

an element x € Zy.

pk = (e, N).
sk = (d, N).
y = x® mod N.
x = y% mod N.

RSA Cryptography

CryptoSec

291/1098

Plain RSA

‘ Adversary ‘

Message
X

Message

Encrypt
y? mod N

Decrypt

,AUTHENTICATION
[INTEGRITY | |

A
Public key e, N* Secret key d, N

‘ ‘ Generator

\ \ J

SV 2024-25 RSA Cryptography CryptoSec 292/1098

RSA Correctness

Theorem (Euler)

Let p, q be two different primes and N = p x q.
For any x € {0,.. — 1} and any k, we have x*¢(N)+1 mod N = x.

Consequence: RSA decryption works!
Proof. from CRT...

SV 2024-25 RSA Cryptography CryptoSec 293/1098

RSA Complexity

RSA with a modulus of ¢ bits and a random e.
@ Generator: O(¢*) (prime numbers generation)
@ Encryption: O(¢3)
@ Decryption: O(¢3)
RSA with a modulus of ¢ bits and a constant e (e.g. e = 26 4-1).
@ Generator: O(¢*) (prime numbers generation)
@ Encryption: O(¢2)
@ Decryption: O(¢3)

SV 2024-25 RSA Cryptography CryptoSec 294/1098

ElGamal vs RSA

@ Complexity of Gen is much lower for EIGamal (EIGamal is better)
@ Complexity of Enc is lower for RSA (constant e) (RSA is better)
@ Problem: ElGamal encryption is length-increasing (RSA is better)

@ ElGamal can be easily adapted to other groups (e.g. elliptic
curves) (ElGamal is better)

@ ElGamal is probabilistic, (plain) RSA is deterministic

SV 2024-25 RSA Cryptography CryptoSec 295/1098

a RSA Cryptography

@ Quadratic Residuosity

SV 2024-25 RSA Cryptography CryptoSec 296 /1098

Square Roots in Fields

Lemma
LetK be a field. For any x € K we have

x=1
x>=1=71{ or

X =-1

Proof. Assume that x> = 1. We know that x> — 1 = (x — 1)(x + 1).
@ Case1: x—1=0thus x =1.

@ Case 2: x — 1 # 0 so we can divide 0 = x> — 1 by x — 1 and
obtain x + 1 = 0 thus x = —1.

Consequence: x> = g has at most 2 roots in a field

SV 2024-25 RSA Cryptography CryptoSec ~ 297/1098

Existence of Square Roots in Z,

Theorem

Let p be an odd prime number.
b € Z; has a square root if and only if b*z" mod p=1.
In that case, we say that b is a quadratic residue.

Proof:
o = ifc2=bthen bz =P 1 =1
@ <« since Zj is cyclic, let g be a generator and write b = g°
we have b"z' = 1 s0 25leis multiple of p — 1
thus e is even, let e = 2¢’ and we have b = g2¢' = (ge’)z sob
has a square root g¢
O

SV 2024-25 RSA Cryptography CryptoSec ~ 298/1098

Computing Square Roots in Z,, p = 3 (mod 4)

p+1

=% is integer!
Lemma
Let p be a prime number such that p = 3 (mod 4). For any x € Z, we
have 1

y=x"% (mod p)

y2=x (mod p) = { or
y= —x (mod p)
v

Proof.

InZ,, we have
pi1) 2 [z} 1 —1 2 2
(X4):)(2:yp+ :yp Xy-=y- =x

so x" ==y. O

SV 2024-25 RSA Cryptography CryptoSec 2991098

Example

square root of 5in Z4

@ remark that 11 mod 4 =3

@ remark that 5"z mod 11 =5 x (52)2 mod 11 = 1 so 5 has a
square root modulo 11

@ compute 5"+ mod 11 =5 x 52 mod 11 = 4
@ remark that 4> mod 11 = 5 so 4 is a square root of 5
@ other square rootis —4 mod 11 =7

SV 2024-25 RSA Cryptography CryptoSec 300/1098

Tonelli Algorithm

Input: a quadratic residue a € Z; where p > 3
is prime
Output: b such that b?> = a (mod p)
Complexity: O((log p)?)
1: repeat
2 choose g € Z; at random
3: until g is not a quadratic residue
4: let p — 1 = 25t with ¢ odd
5. e+ 0
6: fori:2tospgo
7 if (ag~¢) 7 mod p # 1 then
8 e—2""+e
9: end if
0: end for
1: b+ g t%a% modp

SV 2024-25 RSA Cryptography CryptoSec 301/1098

Square Roots in Z,, n = pg

Lemma

Let p, q be two different prime numbers and n = pq. Letx € Z,,, and a
and b such that

x = & (modp)
x = b? (modq)

We have

xX=y? (modn)<:>{ y==+a (modp%

y=+4b (modq

Consequence: in general, x has 4 square roots in Z,,.
Proof. Thanks to the CRT x = y? (mod n) is equivalent to

y? (mod p) & =y? (mod p) y=+a (mod p)
y? (mod q) }@{ b? =y? (mod q) }(:){ y==+b (mod Q)

O

SV 2024-25 RSA Cryptography CryptoSec 302/1098

a RSA Cryptography

@ The Factoring Problem

SV 2024-25 RSA Cryptography CryptoSec 303 /1098

Factoring Problem

Gen-Factoring Problem
Factoring(\):

1: Gen(1*) = n

2. A(n) — (p,q)

3: return 1p><q:n A p,geEf2,...,n—1}

Example: Gen generates an RSA modulus
(Note: this is the splitting problem, not the full factoring problem.)

SV 2024-25 RSA Cryptography CryptoSec 304 /1098

Record using the Number Field Sieve Algorithm

o ((In m)3 (Inn n)%)
Complexity: e

RSA768

=1230186684530117755130494958384962720772853569595334792197322452151726400507
2636575187452021997864693899564749427740638459251925573263034537315482685079
1702612214291346167042921431160222124047927473779408066535141959745985690214
3413

= 3347807169895689878604416984821269081770479498371376856891243138898288379387
8002287614711652531743087737814467999489
X
3674604366679959042824463379962795263227915816434308764267603228381573966651
1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on
one core 2.2GHz Opteron.

SV 2024-25 RSA Cryptography CryptoSec 305 /1098

Factorization Tomorrow

Factorization of n with complexity O((In n)2Inln nlnInIn n) by using
Shor’s algorithm

It only works on a quantum computer

SV 2024-25 RSA Cryptography CryptoSec 306 / 1098

Factoring Algorithms on Classical Computers

@ GNFS: factor n
complexity = o/ Fro()(n)b (nin)3

best algorithm for RSA moduli
@ ECM: finds a factor p

Complexity — e /2+0(1)(In p)% (Inin p)%

useful for numbers with a small prime factor

SV 2024-25 RSA Cryptography CryptoSec

307 /1098

Square Roots in Z,,

RSA-Gen: generates integers of form n = pg with p # q both prime

RSA-Factoring
Factoring(\):

1: RSA-Gen(1*) — n

2: A(n) — (p,q)

38: return 1,, 4—n A p.gef2,....n—1}

)

RSA-Square roots

Factoring(\):

1: RSA-Gen(1*) — n
: pick x € QR,
A(n,x) =y
return 1,2 .4 n—x

ENAI

SV 2024-25 RSA Cryptography

CryptoSec

308 /1098

Factoring n — Computing Square Roots in Z,

Input: n, x
Output: y such that y® mod n = x
Complexity: O((log n)?) + factoring n
B(n, x):
1: A(n) — (p,q) > A playing the factoring
game
2: find yp, a square roots of x modulo p by using
efficient algorithms
(e.g. for p mod 4 = 3 compute x% mod
p)
3: find yq, a square roots of x modulo q
4: return y = CRT, 4(Vp, ¥q)

Pr[B wins SQRT] > Pr[.A wins FACT]

SV 2024-25 RSA Cryptography CryptoSec

Computing Square Roots in Z, — Factoring n

Input: n @ since there are 4 square
Output: p, g prime such that roots, we have Pr[y =
n=pq Yoory =—yomod n] =}
Complexity: @ in other cases, y — y; is zero
O((log n)?) + |SQRT| modulo one of the two
B(n): factors but not modulo the
1: pick yo € {1,...,n—1} other: gcd(y — yo, n) is the
2: if yp ¢ Z;, then factor... former factor
3 X< yZmodn
4: y < A(n, x) > SQRT
5 ify=yory=—yomodn
then abort
6: p < gcd(y — yo, n)
7. g+ n/p

8: return (p, q)

Pr[B wins FACT] > % Pr[A wins SQRT]

SV 2024-25 RSA Cryptography CryptoSec 310/1098

Note

Lemma
For yo,y1 € Z;

Y5 = y§ (modn)
Yo # y1 (mod n) = gcd(yo — y1,n) & {1,n}
Yo 5_'5 —V1 (mod n)

Proof.
® yo—y1 #0=gcd(yo — y1,n) #n.
® y5—yZ=0= nl(yo—y1)(¥o + y1)-
@ If gcd(yo — y1, n) = 1 then n|yp + y4 which contradicts yp + y1 £ 0.
@ Hence ged(yo — y1,n) & {1, n}. O

SV 2024-25 RSA Cryptography CryptoSec 311/1098

RSA Security: RSA Problems

RSADP (RSA Decryption Problem)

: RSA.Gen(1*) — (n, e, d)
> pick x € Z,

y < x®mod n
A(n,ey) — z

:return 1,—,

[SENIAY N

RSAKRP (RSA Key Recovery Problem)

1: RSA.Gen(1*) — (n, e, d)
2: A(n,e) —» z
3: return 1,4

OMP (Order Multiple Problem)

1: RSA.Gen(1*) — (n, e, d)
2: A(n) — z
3: return 1 »(n) divides z and 20

SV 2024-25

RSA Cryptography

(implicit: n is product of two different large primes
and ged(e, p(n)) = 1)

GOP (Group Order Problem)

1: RSA.Gen(1*) — (n, e, d)
2: A(n) — z
3: return 1),

RSAFP (RSA Factorization Problem)

1: RSA.Gen(1*) — (n, e, d)
2: A(n) — (p,)
3: return 1,4-n,1<p,g<n

RSADP <« RSAKRP <« GOP
¢ ¥
OMP = RSAFP

CryptoSec 312/1098

RSAKRP — RSADP

RSAKRP 4 :
Gen — (n, e, d)
A(n,e) = d
return 14—y

0
]

Pr

RSADP; :

Gen — (n, e, d)
pick x

y < x®modn

// B(n,e,y) = x:

A(n,e) = d
X"+ y? mod n
return 1,_,/

1

1

because x = y mod n due to correctness

SV 2024-25

RSA Cryptography

CryptoSec

313/1098

GOP — RSAKRP

GOPA .

Gen — (n, e, d)
A(n) — z
return 1,

1
]

Pr

because d = e~! mod o(n)

SV 2024-25

RSA Cryptography

RSAKRP; :
Gen — (n, e, d)

// B(n,e) —d":

A(n) — z
d +— e '"modz
return 14_g

I
]

CryptoSec

314/1098

RSAKRP —- OMP

OMPB .
RSAKRP 4 : Gen — (n, e, d)
Gen — (n, e, d) // B(n)— z:
72 !/
P A(n,e) — d <Pr A(n, e) la d
return 1,_, z+ed —1
N return 1,n) divides z and z0
1
(- 1 -

because e >1,d >0, ed =1 (mod ¢(n))

SV 2024-25 RSA Cryptography CryptoSec 315/1098

RSAFP — GOP

GOPB .
RSAFP 4 : Gen — (n, e, d)
Gen — (n, e, d) // B(n) — z:
pr | AN = (p.q): <py| AM—=(P.9)

return 1p5—n 1<p,g<n - z+(p=1)x(q —1)

N return 1,,)—;

1 S

L 1 -

because ¢(n) = (p—1) x (g —1)

SV 2024-25 RSA Cryptography CryptoSec 316/1098

GOP — RSAFP

RSAFP; :
Gen — (n, e, d)

GOP_A :
B(n) — (p,q) :
Gen — (n, e, d) fél/(n)(l 5 (p.q)
Pr A(n) _>1Z <Pr| p,g+« rootsinZ of
return bk X2 (n—z+1)X+n=0

] return 1p,5—n1<p,g<n

1

because p+g=n—¢(n)+1andpxqg=n

SV 2024-25 RSA Cryptography CryptoSec 317/1098

OMP — RSAFP

RSAFP; :

Gen — (n, e, d)
OMPA)y &

B(n) — (p,q) :
Gen — (n, e, d) fél/(n)(l z #9
| Alm—z: < Pr| run “factor using ¢(n)”
return 1) givides z and z£0 algo using z
return 1p5-n.1<p.g<n
L 1 -

factorization using ¢(n) also works with any nonzero multiple of A\(n)

SV 2024-25 RSA Cryptography CryptoSec 318/1098

Factorization using \(n) Multiple

at most s

SQﬂm alk 8SQ all SQ—1

7i7

isit=—-17?

1 1
X’modn7£ SQ a

@ write z = 25t with { odd

@ pick a random x, replace x by x! mod N

@ iteratively square x, get the last x which is not 1

@ if x = —1, try again, otherwise, output gcd(x — 1, N)

SV 2024-25 RSA Cryptography CryptoSec 319/1098

Factorization using \(n) Multiple

Input: \(n) (n odd) Fact. For x € Z,,, if x> mod n =1,
Output: a non trivial factor of n x #1,x# n—1then
B(n): 1 < ged(n,x —1) < nwhichis a
1: A(n) — z non-trivial factor of n:
2: write z = 2°t with t odd @ ndivides (x — 1)(x + 1)
3: repeat . o
4: pick a random x in Z}, ° g.g.cd(n,x 1)=nthenn
) ¢ ivides x — 1 thus x =1
5: X < x"'mod n S
which is wrong
6: y<+1)
7. while x 1 do @ ifgcd(n,x — 1) =1thenn
8: Y x divides x +1thus x =n—1
o X < x2mod n which is wrong
10: end while
11: until y #1 and y # —1
(mod n)
12: f<«gcd(y —1,n)
13: return (f, n/f)

SV 2024-25 RSA Cryptography CryptoSec 320/1098

RSA Security

@ key recovery is equivalent to factoring n

@ decryption is the RSA problem
(not known to be equivalent to factoring)

@ knowing pk and sk in RSA implies factoring n

SV 2024-25 RSA Cryptography CryptoSec 321/1098

Conclusion

@ Euler ¢ function: to compute the order of Z},

@ Chinese Remainder Theorem: parallel Z,, and Z,

@ primality testing: efficient, used to generate prime numbers
@ RSA cryptosystem: public-key cryptosystem

@ factoring problem: believed to be hard

SV 2024-25 RSA Cryptography CryptoSec 322/1098

Computational Problems

easy hard (maybe)
@ gcd @ factoring
@ inverse modulo n @ discrete logarithm
@ exponential (sometimes)
@ square root mod n when @ square root mod n
factorization of n is known @ computing p(n), A(n)
@ Legendre/Jacobi symbol @ checking quadratic
@ checking primality residuosity
e finding a generator when @ computing order in group

group order is known

@ computing order when
factorization of group order
is known

SV 2024-25 RSA Cryptography CryptoSec 323/1098

References

@ Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb
Textbook on algebra for cryptographers and applications.

@ Menezes-van Oorschot-Vanstone. Handbook of Applied
Cryptography. CRC. 1997.
http://www.cacr.math.uwaterloo.ca/hac/

Reference book

@ Vaudenay. A Classical Introduction to Cryptography —
Applications for Communications Security. Springer. 2005.
http://www.vaudenay.ch/crypto/

Textbook on cryptography
@ Rivest-Shamir-Adleman. A Method for Obtaining Digital

Signatures and Public-key Cryptosystem. Communications of
the ACMvol. 21, 1978.

SV 2024-25 RSA Cryptography CryptoSec 3241098

http://shoup.net/ntb
http://www.cacr.math.uwaterloo.ca/hac/
http://www.vaudenay.ch/crypto/

Must be Known

@ Euler ¢ function: formula, properties
@ Chinese Remainder Theorem: how to use it

@ primality testing: properties, how to use to generate prime
numbers

@ RSA: why it works, complexity

@ quadratic residuosity: how to check, when it is easy to extract
square roots

@ factoring problem: some reductions to other problems

SV 2024-25 RSA Cryptography CryptoSec 325/1098

Train Yourself

@ Chinese Remainder Theorem:

midterm exam 2018-19 ex2 (RSA with Carmichael numbers)
midterm exam 2013-14 ex1

final exam 2012-13 ex1

midterm exam 2012—13 ex2

midterm exam 2011-12 ex2

midterm exam 2010-11 ex1

midterm exam 2010-11 ex2

midterm exam 2009-10 ex2

midterm exam 2008—-09 ex1

@ square roots, cubic roots:
midterm exam 2013—14 ex2
midterm exam 2009-10 ex1

@ quadratic residuosity:
midterm exam 2012-13 ex1

@ prime number generation:
midterm exam 2014-15 ex1

@ RSA variant:
final exam 2015-16 ex2
midterm exam 2017-18 ex1

@ arithmetic modulo 99 991: midterm exam 2023-24 ex3

SV 2024-25 RSA Cryptography CryptoSec 326/1098

0 Elliptic Curve Cryptography

SV 2024-25 Elliptic Curve Cryptography CryptoSec 329 /1098

Roadmap

Galois fields

elliptic curves over Z,

elliptic curves over GF(2)

using standard curves
Diffie-Hellman over elliptic curves
ElGamal over elliptic curves
pairing-based cryptography

SV 2024-25 Elliptic Curve Cryptography CryptoSec 330/1098

@ Elliptic Curve Cryptography
@ Galois Fields

SV 2024-25 Elliptic Curve Cryptography CryptoSec 331/1098

GF(p*) for Dummies

p: a prime number.

@ Euclidean division in Z,[x]: for any polynomials A(x) and P(x)
such that P # 0, there exists polynomials R(x) and B(x) such
that A(x) = R(x) + P(x) - B(x) and deg(R) < deg(P).

R(x) = A(x) mod P(x) is the remainder of A(x) in the division by
P(x).

@ Select a monic (i.e. with leading coefficient 1) irreducible (i.e.
who cannot be expressed as a product of polynomials with
smaller degree) polynomial P(x) of degree k in Z,[x].

@ Let GF(p*) be the set of all polynomials in Z,[x] of degree at
most k — 1.

@ Addition: regular polynomial addition modulo p.

@ Multiplication: regular multiplication in Z,[x] reduced modulo
P(x).

@ We can prove that this constructs a field.

SV 2024-25 Elliptic Curve Cryptography CryptoSec 332/1098

Example: GF(8)

In order to construct GF(23):
@ consider the ring Z»[x] of polynomials

@ take the monic irreducible (mod 2) polynomial P(x) = x3 + x + 1
of degree 3

@ construct
GF(2®) ={0,1,x,x+ 1, X2, x> + 1, x> + x, x> + x + 1}

Example: (x +1) + (x2 + 1) = x2 + x in GF(23).
Example: (x +1) x (xX* +1) = x3 + x2 + x + 1 = x2 in GF(23).

SV 2024-25 Elliptic Curve Cryptography CryptoSec 333/1098

Cerebral GF(p")

p: a prime number.

@ Z,[x] is a Euclidean ring.

@ Select a monic irreducible polynomial P(x) of degree k in Zp[x].

@ P(x) spans a maximal ideal (P(x))

@ Let GF(p) = Z,[x]/(P(x)) be the quotient of ring Z,[x] by ideal
(P(x))-

@ We obtain a field who inherits the addition and multiplication from
the ring structure of Z,[x].

SV 2024-25 Elliptic Curve Cryptography CryptoSec 334/1098

Galois Fields

Theorem
We have the following results.
@ The cardinality of any finite field is a prime power pk.

@ For any prime power p¥, there exists a finite field of cardinality
p". p is called the characteristic of the field.

@ Two finite fields of same cardinality are isomorphic, so the finite
field of cardinality p* is essentially unique. We denote it GF(p*)
as Galois field of cardinality p*.

@ GF(p") is isomorphic to a subfield of GF(p***).

@ GF(p*) can be defined as the quotient of ring of polynomials with
coefficients in Z, by a principal ideal spanned by an irreducible
polynomial of degree k: Zp[x]/(P(x)).

SV 2024-25 Elliptic Curve Cryptography CryptoSec 335/1098

Example:

GF(5)

GF(5) = Zs = {0,1,2,3,4}

AN = O+
AWN 2 OO
OB WN =
— o b WM
D= OB ww

WN—=O KPS
A WON=2OX

[cNeoNoNeNel el

APOON—=O =

W= DMNOMN

NP =2 WO W

“NDWhOM~

SV 2024-25

(GF(8), +) = (Zs, +) (GF(5)", x) ~ (24, +)

Elliptic Curve Cryptography

CryptoSec

336 /1098

Example: GF(4)

GF(4)={0,1,x,x+ 1} £ 24

+ 0 1 X X+ 1 X 0 1 X X+ 1
0 0 1 X X+ 1 0 0 0 0 0
1 1 0 X+ 1 X 1 0 1 X X+ 1
X X X+ 1 0 1 X 0 X X+ 1 1
X+1 | x+1 X 1 0 x+110 x+1 1 X

(GF(4),+) = (Z2 x 22, +) (GF(4), x) ~ (23, +)
P(x) = x2 + x + 1 irreducible in Zy[x], GF(4) = Z2[x]/(P(x))

SV 2024-25 Elliptic Curve Cryptography CryptoSec 337/1098

Example: GF(28)

Arithmetics in AES

Abyte a= a; ... a;ap represents an element of the finite field GF(28)
as a polynomial @y + a;.x + ... + az.x” modulo x® + x* + x® + x + 1
and modulo 2

byte polynomial
0x00 0

0x01 1

0x02 X

0x03 X+ 1
0x1b | x* + x3 + x + 1

Addition: bitwise XOR
Multiplication by 0x02: shift and XOR with 0x1b if carry

SV 2024-25 Elliptic Curve Cryptography CryptoSec 338/1098

Most Important Finite Fields

@ “prime field”: Z, for a large prime p
@ “binary field”: GF(2k)

Z, GF(25)
representation | integers fromQ0top — 1 polynomials in x of degree at
most k — 1 with binary coef-
ficients (k-bit strings)
requires the choice of an ir-
reducible polynomial P(x) of

degree k
addition addition modulo p bitwise XOR
multiplication multiplication modulo p ad-hoc algorithms

multiplication by 0x2: shift to
the left and XOR to a con-
stant if carry

SV 2024-25 Elliptic Curve Cryptography CryptoSec 339/1098

Characteristic 2 Tips

In GF(2K):

e1+1=0

@ minus = plus: —a=a

@ square is linear: (a+ b)? = & + b?

@ power 2/ is linear

o fork > 1,8 ' isthe unique square root of a

e trace function: Tr(a) = a+ &+ a8 +---+a €{0,1}
(traces are roots of z2 = z2)
Fact: Tris linear: Tr(a+ b) = Tr(a) + Tr(b)
Fact: for all ain GF(2%) we have Tr(a?) = Tr(a)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 340/1098

@ Elliptic Curve Cryptography

@ Elliptic Curves

SV 2024-25 Elliptic Curve Cryptography CryptoSec 341/1098

Elliptic Curves

SV 2024-25

C 1

Elliptic Curve Cryptography

(a

y2=x3+ax+b

—1,b=2)

CryptoSec

342/1098

Elliptic Curves - Point Addition

2
y y
P+Q
//4\)
RN
Q

SV 2024-25

Elliptic Curve Cryptography

=x34+ax+b
(a=-1,b=2)

CryptoSec

343 /1098

Elliptic Curves - Point Doubling

y2=x3+ax+b
(a=-1,b=2)

y
2P

Ay
<o

SV 2024-25 Elliptic Curve Cryptography CryptoSec 344 /1098

Elliptic Curves - Point Symmetric

y2=x3+ax+b
(a=-1,b=2)

y

|

SV 2024-25 Elliptic Curve Cryptography

CryptoSec

345/1098

Addition in Elliptic Curves

Chord and Tangent Formula
Eap = {0} U{(x,y)iy? = x* +ax + b}

@ we assume that E, »(K) is hon-singular:
when a point is non-singular we can define the tangent to this
point
singular point <= differential of y® — (x3 + ax + b) vanishes
<= y = 0 and x multiple root of x> + ax + b=0
curve non-singular < 4a° + 276 # 0

o \= };g%ﬁi is the chord slope
o \= %y’:a is the tangent slope
A=<= yp=0<=P+P=0)

@ the sum of the 3 roots x of the intersection between E; »(K) and
the straight line y = Ax + pis A2 = xp + Xg + Xg

SV 2024-25 Elliptic Curve Cryptography CryptoSec 346 /1098

Group Structure

Eap = {0} U{(x,y):y* = x* + ax + b}

@ Given P = (xp, yp), we define —P = (xp, —yp) and —O = O.

@ Given P = (xp, yp) and Q = (xq, Ya), if Q = —P, we define
P+Q=0.

@ Given P = (xp,yp) and Q = (Xq, Yq), if Q # —P, we let

v {g‘z’é’é ?fXP?éXO
By if Xxp = Xq

Xp = /\27XP7XQ

YR = (Xp—XR)A—yp

R = (xg,yg)and P+ Q = R.
@ In addition, P+ 0O =0 +P=Pand 0+ 0 = 0.

SV 2024-25 Elliptic Curve Cryptography CryptoSec 347/1098

Elliptic Curves are Abelian Groups

by restricting to x, y € K where K is a field (example: Q, R, C,
GF(p"))

1.
2.

Ea 5(K) is closed for the addition

the addition is associative in E; (K)
HARD (from the chord and tangent formula)

. O is neutral for the addition
. forany P € E,; »(K) we have —P € E, »(K) which is the inverse of

P for addition

. the addition is commutative

E. »(K) is an Abelian group

SV 2024-25 Elliptic Curve Cryptography CryptoSec 348 /1098

Remark on Points of Order 2 (Characteristic > 2)

@ order-2 points in elliptic curves:

P=(x,y)hasorder2 «<— P=-PandP#0O
«— y=0andx®*+ax+b=0

So, the number of points of order 2 is the number of roots of
x3+ax+binK
@ order-2 elements in cyclic groups:
being cyclic is equivalent to being isomorphic to some Z,
in Z,, we have one (n even) or no (n odd) element of order 2
@ conclusion:
the group is not cyclic if x3 + ax + b has two distinct roots in K

SV 2024-25 Elliptic Curve Cryptography CryptoSec 349/1098

Recap

(for characteristic > 3)

@ EC are curves (set of points whose coordinate satisfy an
equation)

@ the curve must be non-singular (A # 0 for some parameter A)

@ EC can (depending on the field) be defined by the equation
y? = x® + ax + b (need to add a point ©O)

@ EC have an addition rule, making a group structure
— can multiply a point by an integer
— some curves can be isomorphic
— contrarily to Z;, EC are not always cyclic
(but we can work on a cyclic subgroup)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 350 /1098

@ Elliptic Curve Cryptography

@ Elliptic Curves over a Prime Field

SV 2024-25 Elliptic Curve Cryptography CryptoSec 351/1098

Roadmap

@ same formulas, but over Z,

@ notion of twist: elliptic curves come in pairs

@ notion of j-invariant: an invariant value by isomorphism
@ cardinality close to p

SV 2024-25 Elliptic Curve Cryptography CryptoSec 352/1098

Addition over an Elliptic Curve (Characteristic
p > 3)
(Field K of characteristic p > 3)
E.b(K) = {0} U{(x,y) € K% y? = x® + ax + b}

Hypothesis: (discriminant) A = —16(4a% + 27b%) # 0
@ for P = (xp, yp), we let —P = (xp, —yp) and —O = O.
@ for P=(xp,yp) and Q = (Xq.Yq),if Q= —-Pwelet P+ Q= 0.
@ for P = (xp,yp) and Q = (xq, yq), if Q # —P we let

. { g%’g%g ?f Xp 7# Xa
By if Xxp = Xq
Xp = /\2 — Xp — Xq
YR = (Xp—XR)A—yp

R = (xg,yg)and P+ Q = R.
@ additionto O: P+O0O=0+P=Pand O+ 0O = 0.

SV 2024-25 Elliptic Curve Cryptography CryptoSec 353 /1098

Maybe Useful to Know (p > 3) —i

Hypothesis: field K of characteristic p > 3and A # 0
@ E,pand Ey, 6p are isomorphic (by (x,y) — (U2x, uly))

y2=x3+ ax+ b < (¥y)? = (t’x)® + (u*a)(uPx) + (u®b)
and addition is homomorphic:

Ya—yp (Wya)—(4yp)

A= { Xa_-Xp — (u>\) — (u?xq)—(LPxp)

3x3+a 3(Pxp)+(u'a)
2yp 2(u3yp)

xp=M —xp—Xg <= (UXR)=(uN?— (L’xp)— (U’XQ)
Ya=(Xp—xp)A—yp < (U’yr) = ((tPxp) — (U"XR))(UA) — (LPyp)

@ E,pand E,z, 5p are twist of each other if v is not a square
Remark: they become isomorphic in K[#]/(#? — v): an extension
of K where v becomes a square (v = 6?)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 354 /1098

Maybe Useful to Know (p > 3) —ii

Hypothesis: field K of characteristic p > 3and A # 0

@ #E,pis between g+ 1—-2,/gand g+ 1+ 2,/q where g is the
cardinality of K (Hasse Theorem)
Remark: for two twists, the average of #E, is g+ 1
indeed, if v is not a square, if we write & = v2a, b’ = v3b,
x" = vx, for any x, we have

#y V=X tax+ bl +#{y y? =x*+ax + b} =2

SO #Eap+ #Ex py =29+2

SV 2024-25 Elliptic Curve Cryptography CryptoSec 355/1098

Maybe Useful to Know (p > 3) — iii

Hypothesis: field K of characteristic p > 3and A #0
@ j-invariant: j = 1728433+ng2

same j-invariant <= same a’/b® < v & = v2a,b' =v3b
— isomorphic groups (over K or K[0]/(6? — v))

(converse is true as well)
to find v, write (Bezout) 3o +25 =1 (a« =1, 8 = —1) then

~(5)'(5) |
)" ()= (5)" (5 - o
MO

2
we have: v2 = (F (

2= ()7 (8=

@\Q o[,

SV 2024-25 Elliptic Curve Cryptography CryptoSec 356 /1098

Other Example

E; 3 over GF(7) = Z7 is isomorphic to Zg
y2=x3+x+3

6 L - - - 5Pe - @2P
5 ‘ ‘
| |
4 | |
3 ‘ . 0e
2 | |
| |
1 F---- PO - 4P
‘SP’
0 B

SV 2024-25 Elliptic Curve Cryptography CryptoSec 357 /1098

Recap

@ EC can be defined by the equation y> = x® + ax + b (plus a point
0)

@ twist: pair of non-isomorphic curves which become isomorphic
when defined over a larger field

@ j-invariant: parameter which is always the same for isomorphic
curves and for twists

@ the order of a curve is close to the cardinality of the field

SV 2024-25 Elliptic Curve Cryptography CryptoSec 358 /1098

@ Elliptic Curve Cryptography

@ Elliptic Curve and Factoring

SV 2024-25 Elliptic Curve Cryptography CryptoSec 359 /1098

Pollard p — 1 Factorization Algorithm

Input: ns.t. there exists a prime 5 0«1
factorpof nst. p—1is 6: while gcd(x —1,n) =1 do
smooth (the largest prime 7. x<x'modn »x{!"modn
factr of p — 1 is at most B) 8: [i+1
Output: a nontrivial factor of n 9: end while
Complexity: O(B) arithmetic 10: if x =1 then
operations 11: fail
1: pick x at random in 12: else
{2,...,n—1} 13: output gcd(x — 1, n) and
2: if gcd(x, n) # 1 then stop
3: output this gcd and stop 14: end if

4: end if

trick: if p — 1[i! then xI' =1 (mod p)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 360 /1098

Pollard p — 1 Factorization with n = 18923

initial x = 2347

— 18923 = 127 x 149

— L L L~~~

No abhwn =

X X X X X X X

= 2347
1816
= 4072
= 14891
18431
7247
13590

gcd
gcd
gcd
gcd
gcd
gcd
gcd

=127

(Notethatp —1=2x32x7andq—1=22x 37)

SV 2024-25

Elliptic Curve Cryptography

CryptoSec

361/1098

Potential Problem

The algorithm is essentially doing:

1: pick x € Zj, @ computation in Z; is done in
2: j 1 Z;

3: while x 7 1 do @ x = 1 testis done by

4 x<+x'inZ; ged(x — 1, n)

5: [i+1

6: end while

7

: deduce something about n

Wish: there is a factor p s.t. Z; has a smooth order
(so that #iterations is small)

If not, we would like to “randomize” the group Z;,

SV 2024-25 Elliptic Curve Cryptography CryptoSec 362 /1098

ECM Factorization

@ same algorithm as the p — 1 algorithm, but on a “random elliptic
curve” over Z, instead of Z

@ we use the probability that an elliptic curve over Z,, has a smooth
order

o Complexity: O (eV(T+e(Nespiozios?)

@ pretty good to find a small factor p!

SV 2024-25 Elliptic Curve Cryptography CryptoSec 363 /1098

ECM Factorization with n = 44023

pick a = 13 and X = (23482,9274), deduce b = 21375 from
y’=x¥+ax+b

Xi
Xz
X3
X4
Xs

1.X = (23482,9274)

2.Xy = (18935,21838)

3.Xo = (2.X2) + Xo = (15187,29168)
4.X3 = 2.(2.X3) = (10532,5412)
5X4 =(2.(2.X4))+ Xa = ... error

(2.(2.X4)) + X4 = (27556, 42335) + (10532,5412), but this requires

computing

42335 — 5412

=~ 27556 10532 "¢ "

and 27556 — 10532 = 17024 is not invertible modulo n:
gcd(17024,n) = 133... — n= 133331

SV 2024-25

Elliptic Curve Cryptography CryptoSec

364 /1098

ECM Factorization Algorithm

Input: n
Output: a nontrivial factor p of n
Complexity: O(B) arithmetic operations where

B~ E (max{prime factors of N})
Nelp—2+/p,p+2./p]

pick aand X = (x, y) at random in Z,
let b such that y? = x3 4+ ax + b (mod n)
i<+ 1
repeat
[i+1

X + i- X over the curve (modulo n)
until division error modulo n
if divisor multiple of n then fail
output gcd(divisor, n)

©oOoNSOR N2

SV 2024-25 Elliptic Curve Cryptography CryptoSec 365 /1098

@ Elliptic Curve Cryptography

@ Using Elliptic Curves

SV 2024-25 Elliptic Curve Cryptography CryptoSec 366 / 1098

Hardness of the Discrete Logarithm

@ DL is easy in anomalous curves over Z,

@ binary curves may be exposed to recent attacks

@ there are other families of weak curves

@ in a group of order n, Pollard Rho algorithm solves DL in O(v/n)

@ we can consider tradeoffs: , 1
run precomputation of O(n3) then compute any DL in O(n3)
(people tend to use the very same curves...)

@ in general, DL is harder than in Z; with similar size

Note: there are curves with easy DH problem and hard DL which may
be useful (e.g. pairing-based cryptography)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 367 /1098

Using Point Compression (Prime Field Case)

Elliptic curve equation:
v =x3+ax+b

A single x leads to two y which are opposite from each other.
— we can get y from
o X
@ the parity of y (y and p — y have different parity)
Format “hh hexstring”
@ hh = 00 point O (following: nothing)
@ hh = 02 point compression with y even (following: x)
@ hh = 03 point compression with y odd (following: x)
@ hh = 04 no compression (following: x and y)

SV 2024-25 Elliptic Curve Cryptography CryptoSec

368 /1098

Manipulating Elliptic Curves in Practice

A representation problem:
@ bit strings
@ byte strings
@ integers
@ polynomials
@ field elements
@ elliptic curve points

see http://www.secg.org/secl-v2.pdf for an example of
representation standard

SV 2024-25 Elliptic Curve Cryptography CryptoSec 369 /1098

http://www.secg.org/sec1-v2.pdf

Domain Parameters

@ afield

e either a prime number p
@ (or a power g of 2 together with an irreducible polynomial over
GF(2) of degree log, q)

@ field elements defining an elliptic curve E (coefficients)

@ apoint Gin E

@ the order n of G in E (may be smaller than the order of E)

@ (for pseudorandom curves) a seed s (to generate a j-invariant)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 370/1098

ECDSA Parameters Generation

(ECDSA to be seen later)
@ Choose the finite field F.

© Pseudo-randomly generate a ¢ from seed. Take an elliptic curve

defined by some a and b such that the j-invariant is
j = 6912 for q prime (i.e. ¢ = a*/b?) and j = 1 (i.e. c = b)
otherwise.

© For g prime, check that 4a% + 27b° mod g # 0. For g a power of
two, check that b # 0. If this is not the case, go back to Step 2.

© Count the number of points on the elliptic curve and isolate a
prime factor n greater than 216, If this does not work or if
n < 4,/q, go back to Step 2.

@ Check the MOV and anomalous condition for C. If this does not
hold, go back to Step 2.

@ Pick a random point on the elliptic curve and raise it to the
cofactor of n power in order to get G. If G is the point at infinity,
try again.

Set parameters to (g, representation, a, b, n, G, seed).

SV 2024-25 Elliptic Curve Cryptography CryptoSec 371/1098

ECDSA Parameters Validation

Parameters: (g, representation, a, b, n, G, seed).

@ Check that g is an odd prime or a power of 2 of appropriate size.
In the latter case, check that the field representation choice is
valid.

© Check that a, b, xg, ¥ (Where G = (xg, ¥g)) lie in Fy.

© Check that seed certifies a and b by generating ¢ again and
checking that ‘g = c or b = ¢ depending on the field type.

@ For g prime, check that 4a® + 27b° mod g # 0. For g a power of
two, check that b # 0. Check that G lies in the elliptic curve.
Check that n is a prime greater than both 216 and 4,/g. Check
that nG = O, the neutral element. Check the MOV and
anomalous condition.

SV 2024-25 Elliptic Curve Cryptography CryptoSec 372/1098

ECDSA Parameters Selection: Conclusion

@ making new parameters is not easy
@ rather use parameters from standards

SV 2024-25 Elliptic Curve Cryptography CryptoSec 373/1098

Standard Curves

@ pseudorandom curves over Z,
ey’ =x*t+ax+b
@ provide seed to generate j
— Discrete Log is assumed to be hard
@ ordinary curves over a binary field
o Y4 xy=x+ax®+as
o for pseudorandom curves: provide seed to generate j
o for special curves (Koblitz curves): as = 1, a» € {0, 1}

SV 2024-25 Elliptic Curve Cryptography CryptoSec 374/1098

NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use
Appendix D of FIPS186—-4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
@ pseudorandom over Z,: P192, P224, P256, P384, P521
@ ordinary curves over binary fields:

e pseudorandom: B163, B233, B283, B409, B571
o special: K163, K233, K283, K409, K571
(called Koblitz curves or anomalous binary curves (ABC))

SV 2024-25 Elliptic Curve Cryptography CryptoSec 375/1098

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

SECG Standard Curves (2010)

SEC2: Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

@ pseudorandom over Z,: secp192r1, secp224r1, secp256r1,
secp384r1, secp521r1i

@ special over Z,: secp192k1, secp224k1, secp256k1
(called generalized Koblitz curves)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 376 /1098

http://www.secg.org/sec2-v2.pdf

Other Standards

@ ANSI X9.62
o |IEEE P1363

SV 2024-25 Elliptic Curve Cryptography CryptoSec 377/1098

Example: secp192r1 = P192

secp192r1 = {O} U {(x,y) € Zp; ¥ = x* + ax + b}

p = 6277101735386680763835789423207666416083908700390324961279
= fEffffff fEFEEEFfFf FEFFEEEf fEfffffe fELFFFFE FELEFFES
a = p-3

6277101735386680763835789423207666416083908700390324961276
fEEEEEEF £EELFEFE SEEFELFE FEfFfffe FEFELFEF £EFEFEfC

b = 2455155546008943817740293915197451784769108058161191238065
n = 6277101735386680763835789423176059013767194773182842284081
G = 03 188da80e b03090£6 7cbf20eb 43a18800 f4ff0afd 82f£1012

03 : 602046282375688656758213480587526111916698976636884684818
seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

note that p = 2192 — 264 1, 2192 _ 2% « n < 2192 and nis prime

SV 2024-25 Elliptic Curve Cryptography CryptoSec 378/1098

Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports

SV 2024-25 Elliptic Curve Cryptography CryptoSec 379/1098

Example: Curve25519

Curve25519 = {0} U {(x,y) € Z,; y* = x® 4 486 662x° + x}

p = 2% _1q9
XG = 9
order(G) = 2% 4 27742317777372353535851937790883648493

Some X25519 function comes with it for ECDH
@ equation different than previous ones!
@ optimized implementations
@ made by no company or government agency
@ used in SSH, Tor, Signal, Bitcoin, ...

SV 2024-25 Elliptic Curve Cryptography CryptoSec 380/1098

@ Elliptic Curve Cryptography

@ Elliptic Curve Cryptography

SV 2024-25 Elliptic Curve Cryptography CryptoSec 381/1098

Elliptic Curve Cryptography

@ key agreement: ECDH
@ digital signature scheme: ECDSA
@ public-key cryptosystem: ECIES

SV 2024-25 Elliptic Curve Cryptography

CryptoSec

382/1098

ECDH: Elliptic Curve Diffie-Hellman

@ specified in SEC1 (http://www.secg.org/secl-v2.pdf) and
IEEE1363

@ used in Bluetooth 2.1
@ used in the PKI of Swiss biometric passports

@ used in EAC for epassports

SV 2024-25 Elliptic Curve Cryptography CryptoSec 383 /1098

http://www.secg.org/sec1-v2.pdf

ECDH . ——
Participants: U gfid V —> GF(27) = Z2[x]/(f(x))

@ U and V agree on domain parameters T = (p, a, b, G, n, h) or
T =(m, f(x), a, b, G, n, h) + make sure that T is valid
(his the cofactor 1 #E(GF(q)) with g = p or (g = 2™))

@ Uresp. V selects his secret key dy resp. dy € Z;; and compute
his public key Qy = dy.Gresp. Qy = dy.G

@ U and V exchange their public keys

@ both check Q € E(GF(p)), Q # 0, n.Q=0

@ both compute P = dy.Qy = dy.Qu

@ setz=xp

@ convert the field element z into a byte string Z

@ use a KDF as agreed to derive a key K

u v
Q
pickdy € Z;,Qy+ dy.G — 4 ifQy=0ornQy# 0, abort
a
if Qy = O orn.Qy # O, abort P A— pickdy € Z;, Qy < dv.G
Z <+ xcoord(dy.Qy) Z <+ xcoord(dy.Qu)

(Z = xcoord(dydy.G))

SV 2024-25 Elliptic Curve Cryptography CryptoSec

384 /1098

Checking Subgroup Membership

Lemma

Let G be an element of order n in a group of order hn with neutral
element O. If n is prime and is coprime with h, then

(G) ={Q € group; n.Q = O}

Proof. C is trivial
for D:
@ assume that Q € group and nQ = O
@ the mapping f : Z2 — group defined by f(u,v) = uG+ vQis a
group homomophism
@ finjective would imply that Z2 is isomorphic to f(Z2) which is a
subgroup of group
@ since #2Z2 does not divide #group, this cannot be injective
@ s0, there exists a nonzero (u, v) € Z2 such that uG + vQ = O
@ we must have v # 0 since G has order n, so v € Z}, and
Q= (-uv~'mod n).G
@ hence, Q € (G) O

SV 2024-25 Elliptic Curve Cryptography CryptoSec 385/1098

Problems without Membership Verification
The Case of Secure Simple Pairing (SSP) in Bluetooth

Device A Device B
pick ska € Z; pick skg € Z;
pk, < ska - G Phs pkg < skg - G
verify pkg # O Pke verify pk, # O

K < (ska - pkg)x K < (sksg - pkg)x
authenticate
(Pka)x and (pkp)x
using OOB
authenticate K
secure communication

scalar multiplication is done by the double-and-add algorithm, using
point addition

SV 2024-25 Elliptic Curve Cryptography CryptoSec 386 /1098

The Invalid Curve Attack on Bluetooth

Biham-Neumann; Breaking the BT Pairing: Fixed Coordinate Invalid Curve Attack
@ note: point addition does not depend on the curve equation
@ note: only the x-coordinates are authenticated
@ the adversary can replace y to make pk have degree 2
@ with probability 1 ...

Device A Device B
pick ska € Z; pick skg € Z3
pk, ¢ ska- G Pk (PKe)x.0) pkg < skg- G
verify pkg # O ((Ps)x.0) Pke verify pk, # O

Ka < (ska - pkg)x Kg + (kg - PKa)x
authenticate
(Pka)x and (pkg)x
using OOB
auth. Ko | | auth. Ks

SV 2024-25 Elliptic Curve Cryptography CryptoSec 387/1098

Principles of ECIES

@ proposed by Victor Shoup in 2001

@ in SEC1, IEEE1363a, ANSI X9.63, ISO/IEC 18033-2
@ use Diffie-Hellman to exchange a symmetric ke ku
@ use kg to encrypt

@ use ky, for integrity protection

this is a hybrid encryption:
we use public-key cryptosystem to exchange a symmetric key and
symmetric cryptography to transport the message securely

SV 2024-25 Elliptic Curve Cryptography CryptoSec 388/1098

ECIES (EC Integrated Encryption Scheme)

rez’
(e || ki) = KDF(rK ||extra;) (kellk) = KDF(S]|extra;)
¢ = Ency(m) m = Decy,(c)

d = MACy, (c|lextraz) Adversary d £ MACy, (c|lextraz)
\ \
Message Ciphertext Message
Encrypt Decrypt
m P ARl Alclld P m
\ \
' AUTHENTICATION [
Public k K* + + key k
ublic key fINTEGRITY 1 | Secret key
Generator
| | K = kG
select field, elliptic curve
G point of order n extra is context-based information (public)

nprime

SV 2024-25 Elliptic Curve Cryptography CryptoSec 389/1098

ECDSA Signature

ke 227 compare r and
r = xcoord(k.G) mod n ‘ ‘ i
5= Hd oy Adversary xcoord (%G+ gQ) mod n
\ \ Message
Message M
Sign
M 9 M,r,s M,r,s Ver
>
\ \ ok?
A
Secret key d | NAUTEES(?RC@I(ION‘ +Public key Q
Generator ‘ ‘
Q=daG | \

select field, elliptic curve

G point of order n
nprime

SV 2024-25 Elliptic Curve Cryptography

CryptoSec 390/1098

Exercise

identify the algebraic structure (group/ring/field), the corresponding
law(s) and neutral element(s)

("] 226---

@ the set of permutations over the alphabet...

@ secpi92ri...

o GF(2'28)...

SV 2024-25 Elliptic Curve Cryptography CryptoSec 391/1098

@ Elliptic Curve Cryptography

@ Pairing-Based Cryptography

SV 2024-25 Elliptic Curve Cryptography CryptoSec 392/1098

Pairing of Elliptic Curves

for some pairs of elliptic curves G; and G> we can construct a function
e:G1 x G2 — Gr

to a group Gr (with multiplicative notations) such that
@ eis bilinear: e(aP,bQ) = e(P,Q)® fora,bc Z, Pc Gi, Q€ G>
—e(P+P,Q)=¢e(P,Q)e(FP,Q)
—e(P,Q+ Q) =¢e(P,Q)e(P, Q)
@ eis non-degenerate: e(P, Q) # 1 forsome P Gy and Q € G»
(pairing is not available for all curves)

SV 2024-25 Elliptic Curve Cryptography CryptoSec 393 /1098

Types of Pairing

@ Type-1 pairing: we have G = G»
(common on supersingular elliptic curves)

@ Type-2 pairing: we have G # G» and there exists an efficiently
computable (non-degenerate) homomorphism from G to G4

@ Type-3 pairing: we have G # G, and there exists no efficiently
computable (non-degenerate) homomorphism between Gy and
Go

@ Type-4 pairing: we have same as Type-2 with efficient hashing
into gg
(those pairings are usually not efficient)

Type-1 and Type-3 are most common

SV 2024-25 Elliptic Curve Cryptography CryptoSec 394 /1098

Pairing-Friendly Elliptic Curves

@ q: cardinality of the field
@ r: (large prime) order of G

@ such that there exists a small k such that r divides g — 1
(embedding degree)

@ i, subgroup of all z € GF(g¥) such that z" = 1
@ we have Type-1 pairing with Gy = G> = (G) and Gr = u,

SV 2024-25 Elliptic Curve Cryptography CryptoSec 395/1098

Pairing of Elliptic Curves

consequences:

@ this may be bad for DDH-security in G; = G» as we can
distinguish (P, xP, yP, xyP) from (P, xP, yP, zP) by checking
e(xP, yP) = e(P, xyP)
we call Gy = G» a gap group because the computational
Diffie-Hellman problem may remain hard even though the
decisional Diffie-Hellman problem is easy

@ this may be bad for DL-security in G = G»

DL in Gy reduces to DL in G7 (MOV): log,(h) = logeg.o)(€(g, h))

@ good thing: this may create new cryptographic primitives

SV 2024-25 Elliptic Curve Cryptography CryptoSec 396 /1098

3-Party Diffie-Hellman Key Agreement in a Single
Round

let G generate a subgroup of order p of G; = G> such that
e(G,G) # 1
@ Alice picks a € Z;, and broacasts A = aG
@ Bob picks b € Z; and broacasts B = bG
@ Charly picks ¢ € Z; and broacasts C = cG
@ all compute K = (G, G)#**
Alice computes e(B, C)? = K
Bob computes e(C, A)® = K
Charly computes e(A, B)* = K

SV 2024-25 Elliptic Curve Cryptography CryptoSec 397 /1098

Popular Cryptographic Constructions based on
Pairings

@ Joux 2000: 3-party Diffie-Hellman key agreement in one round
@ Boneh-Franklin 2001: identity-based encryption

@ Boneh-Lynn-Shacham 2003: a signature scheme (short)

@ Boneh-Boyen 2004: a signature scheme (with no H)

@ Sahai-Water 2004: attribute-based encryption
secret keys have attributes (e.g. membership)
we can encrypt for sets of people who own some given attributes

SV 2024-25 Elliptic Curve Cryptography CryptoSec 398 /1098

Conclusion

@ elliptic curves are groups which can be used in cryptography
@ advantage: smaller parameters for the same security

@ better complexity than RSA

@ many standards are using elliptic curves

SV 2024-25 Elliptic Curve Cryptography CryptoSec 399/1098

References

@ Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press. 2005.
http://shoup.net/ntb

@ http://www.secg.org/secl-v2.pdf
@ http://www.secg.org/sec2-v2.pdf

SV 2024-25 Elliptic Curve Cryptography CryptoSec 400/ 1098

http://shoup.net/ntb
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf

Must be Known

@ understand how to add points with the help of the formulas (don’t
learn them!)

@ understand how to manipulate objects (field elements, points,
integers)

@ understand point compression

@ understand the standards

SV 2024-25 Elliptic Curve Cryptography CryptoSec 401 /1098

Train Yourself

@ finite fields: midterm 2008—-09 ex3

@ projective coordinates: midterm 2013-14 ex3

@ discrete logarithm: final exam 2013—-14 ex3

@ mapping a message to a point: midterm exam 2014—15 ex2
@ elliptic curve factoring method: midterm exam 2015-16 ex2
@ ECDSA: final exam 2016-17 ex1

@ pairing: midterm exam 2016 ex3

@ invalid curve attack: midterm exam 2018—-19 ex3

SV 2024-25 Elliptic Curve Cryptography CryptoSec 402 /1098

e Symmetric Encryption

SV 2024-25 Symmetric Encryption CryptoSec 409 /1098

Roadmap

@ block ciphers: DES, triple-DES, AES

@ modes of operations: ECB, CBC, OFB, CTR, XTS
@ stream ciphers: RC4, A5/1

@ exhaustive search and tradeoffs

@ meet-in-the-middle attack

SV 2024-25 Symmetric Encryption CryptoSec 410/1098

e Symmetric Encryption
@ A Cryptographic Primitive

SV 2024-25 Symmetric Encryption CryptoSec 411/1098

Cryptographic Primitive (Reminder)

components

cryptographic
primitive

functionality security

SV 2024-25 Symmetric Encryption

CryptoSec

412/1098

Symmetric Encryption

‘ Adversary ‘
Message
Encrypt Decrypt
X
\ \
A

Key+ . CONFIDENTIAL Key

TAUTHENTICATION!

INTEGRITY

Generator

SV 2024-25 Symmetric Encryption

Message

X

CryptoSec

413/1098

Symmetric Encryption (Informal)

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption

functionality security
Decrypt, (Encrypt, (X)) = X confidentiality is preserved

SV 2024-25 Symmetric Encryption CryptoSec 414/1098

Example: Vernam Cipher

components: Alice and Bob, a parameter n
@ Generator: select K € {0, 1}" uniformly at random
and set it up for Alice and Bob
@ Encrypt: for X € {0,1}", compute Y = X @ K,
send Y and discard K
@ Decrypt: for Y € {0,1}", compute X = Y ¢ K and
discard K
functionality: for any X we have Decrypt,(Encrypt, (X)) = X

security: perfect secrecy (X and Y have independent
distribution)

Warning: use K only once

SV 2024-25 Symmetric Encryption CryptoSec 415/1098

Two Categories of Symmetric Encryption

stream ciphers

block ciphers

RC4
GSM-A5/1
Bluetooth—EOQ
CSSs

DES
3DES
IDEA
BLOWFISH
RC5
AES
KASUMI
SAFER
CS-Cipher
FOX

SV 2024-25 Symmetric Encryption

CryptoSec

416 /1098

e Symmetric Encryption

@ Block Ciphers

SV 2024-25 Symmetric Encryption CryptoSec 417 /1098

DES: the Data Encryption Standard

@ US Standard from NBS (now NIST), branch of the Department of
Commerce in 1977

@ secret design by IBM based on a call for proposal

@ based on LUCIFER by Horst Feistel (from IBM)

@ design influenced by the NSA

@ rationales of the design published by Don Coppersmith in 1994

@ dedicated to hardware implementation
@ block cipher with 64-bit blocks
@ key of 56 effective bits

SV 2024-25 Symmetric Encryption CryptoSec 418/1098

DES

SV 2024-25

64 bits
X K
IP 56 bits
Y
e
Feistel schedule
Kie
Y AL 16 x 48 bits

P~

64 bits TY

Symmetric Encryption

CryptoSec

419/1098

DES '

SV 2024-25

lY K
P
Y ‘K16
Kis
Feistel schedule’
:K1
Y
P!

Symmetric Encryption

Feistel Scheme

@ transform function over {0, 1}# into permutations over {0, 1}"
@ inverse permutations have same structure

@ alternate round functions and halve swaps

@ final halve swap omitted

SV 2024-25 Symmetric Encryption CryptoSec 421/1098

(Direct) Feistel Scheme

V(Ff, Ffe Fre)

2 pits 3 bits

O <—1 F |e

S G

P +—

~n
A

SV 2024-25 Symmetric Encryption CryptoSec 422/1098

(Inverse) Feistel Scheme

VI(F Fle Floy = w(Fke Fle FR)

s

O <—1 F |e

S G

SV 2024-25 Symmetric Encryption CryptoSec 423/1098

(Direct + Inverse) Feistel Scheme

e e=coFSBd)e Fh(d)=c
o f=daoFf(e)=
(b® F'e(c)) @ F'e(c) = b
eg=eaFh(f)=ca F(b)=
(a® FK (b)) @ FK(b) = a

SV 2024-25 Symmetric Encryption CryptoSec 424/1098

DES: the Gory Details

SV 2024-25 Symmetric Encryption CryptoSec 425/1098

DES Round Function Overview

48 bits
round key
32 bits 32 bits
output«— P | S [&——a<—— E fex—input

@ E: expansion (32 to 48 bits)

@ @: bitwise XOR to a round key

@ S: eight 6-bit to 4-bit S-boxes (substitution boxes)
@ P: permutation

SV 2024-25 Symmetric Encryption CryptoSec 426/1098

DES Round Function

r round key 48 bits

P,

S 1 S— I:

Sy

S3 =
3 St = 3
3¢} —
3 =
E S5] g

86 L 1

S;

Sg t

P S ® E

SV 2024-25 Symmetric Encryption CryptoSec 427/1098

01 2 3 45 6 7 8 91011 12 13 14 15
10 0 914 6 315 5 11312 711 4 2 8
13 7 0 9 3 4 610 2 8 5 14 12 11 15 1
13 6 4 9 815 3 011 1 212 510 14 7
11013 0 6 9 8 7 41514 3 11 5 2 12
Example: S3(111000) = 0101:

111000 = 56

1100 = 12

10 = 2

0101 = 5

SV 2024-25 Symmetric Encryption CryptoSec 428/1098

DES Key Schedule

schedule(K)

1. K 2 (¢, D)

2: fori=1to0 16 do
3: C + ROLr;(C)
4: D + ROLr(D)
5: Ki + PC2(C,D
6: end for

K: 56-bit register

C, D: two 28-bit registers

Ki, ..., Kie: sixteen 48-bit registers

i
ri |

)

123 456 7 8 9 10 11 12 13 14 15 16
112222221 2 2 2 2 2 2 1

SV 2024-25 Symmetric Encryption CryptoSec 429/1098

DES Inverse Key Schedule

schedule’(K)

1. K 2 (e, D)

2: for i =16 down to 1 do
3: Ki + PC2(C, D)
4: C + RORr;(C)
5: D + RORri(D)
6: end for
K: 56-bit register
C, D: two 28-bit registers
Ki, ..., Kig: sixteen 48-bit registers

i‘12345678910111213141516
nft1 22222212 2 2 2 2 2 A1

SV 2024-25 Symmetric Encryption CryptoSec 430/1098

Security Notions

® 6 6 ¢

adversary objective: learn confidential information
typically: key recovery
ciphertext only attack: using ciphertexts in transit only

known plaintext attack: same + know (or guess) the
corresponding plaintexts

chosen plaintext attack: force the sender to encrypt some
messages selected by the adversary

chosen ciphertext attack: force the receiver to decrypt some
messages selected by the adversary

SV 2024-25 Symmetric Encryption CryptoSec

431/1098

Attacks on DES

@ weak keys (1977)

@ optimized exhaustive search (Hellman 1980)

@ study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
@ chosen plaintext attack with 247 chosen plaintexts (Biham-Shamir
1992)

known plaintext attack with 243 known plaintexts (Matsui 1994) or
actually a little less 24° (Junod 2001)

optimized exhaustive search within 4 days on a dedicated
hardware (EFF 1998)

SV 2024-25 Symmetric Encryption CryptoSec 432/1098

AES: the Advanced Encryption Standard

@ US Standard from NIST, branch of the Department of Commerce
in 2001

@ public process based on a call for proposal
@ standard version of Rijndael

@ Rijndael was designed by Joan Daemen and Vincent Rijmen in
Belgium

@ dedicated to software on 8-bit microprocessors
@ block cipher with 128-bit blocks
@ key of length 128, 192, or 256

@ cartoon: www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

SV 2024-25 Symmetric Encryption CryptoSec 433/1098

www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Rijndael Skeleton

@ 128-bit block — 4 x 4 square matrix of bytes

@ Nr =10, 12 or 14 rounds depending on the key size of 128, 192
or 256 bits

AES encryption(s, W)

: AddRoundKey(s, W)
: forr=11to Nr—1do
SubBytes(s)
ShiftRows(s)
MixColumns(s)
AddRoundKey(s, W)
: end for

: SubBytes(s)

: ShiftRows(s)

: AddRoundKey(s, W)

O WO®NOUOAW®N =

—_

SV 2024-25 Symmetric Encryption CryptoSec 434/1098

One Non-Terminal Round of Rijndael

SubBytes ShiftRows MixColumns AddRoundKey
L il 1 L @L

SV 2024-25 Symmetric Encryption CryptoSec 435/1098

SubBytes

SubBytes(s)

1: fori=0to 3 do

2 forj=0to 3 do

3: Sjj S-bOX(S,‘)/')

4 end for

5: end for
S0,0 | So,1 | So,2 | So,3 S(sp,0) | S(sp,1) | S(s0,2) | S(s0,3)
S10| S1,1 | S12| S1,3 S(s1,0) | S(s1,1) | S(s1,2) [S(s1,3)
S20 | S2,1 | S22 | S2.3 S(sp,0) | S(s2,1) | S(s2,2) | S(s2,3)
S3.0 | S3,1 | S3,2 | S3,3 S(s3,0) | S(s3,1) | S(s3,2) | S(s3,3)

SV 2024-25

Symmetric Encryption

CryptoSec

436 /1098

ShiftRows

ShiftRows(s)
1: replace [S170, S51,1,51,2, 51 ,3] by [31,1 ,581,2,81,3, 3170]
2: replace [Sg’o, S2,1,82,2, 32’3] by [52’2, 523,520, 3271]
3: replace [3370, 83,1, 83,2, 33,3] by [33,3, 83,0, 53,1, 33’2]

S0,0 | So,1 | So,2 | So,3 S0,0 | So,1 | So,2 | So,3

S10| S1,1 | S12| S1,3 S11 | S12|S13] S1,0

S20 | S21 | S22 | S2.3 So2 | S23 | S2,0 | S2,1

S3,0 | S3,1 | S3,2 | S3,3 S3,3 | S3,0 | S3,1 | S3,2
SV 2024-25 Symmetric Encryption

CryptoSec

437 /1098

AddRoundKey

AddRoundKey(s, k)
1: for i=0to 3 do
2 forj=0to 3 do
3: Sjj < Sij &P k,')/'
4 end for
5. end for
S0,0 | So,1 | So,2 | So,3
S0,0 30,1 SO,Z 30,3 @k0,0 Dho 1 | ©ko 2 EBkO,S
S1,0 S1,1 S1,2 51,3
Sto | St [Si2] Si3 Dk1,0 | DKi1 | BKi 2 [Bki 3
52,0 52,1 S22 2.3
SZ,O 32,1 82,2 32,3 ®ko.o EBsz ®ko p EBKZ,S
$3,0 S3,1 $3,2 53,3
S30 [S31 [S32 | S33 ©k3,0 | D3 1 | Bka 2 | Dk3 3

SV 2024-25

Symmetric Encryption

CryptoSec

438/1098

Introduction to GF Arithmetics in Rijndael

look at

@ we use the following representation rule
byte | bitstring | polynomial
B ‘ b7 -+ - baby by ‘ b7.X7+"'+b2.X2+b1.X+bo

@ we reduce everything modulo 2

— monomial coefficients are binary
@ we reduce everything modulo x8 + x* + x3 4+ x + 1

X =x* 4+ x3 Fx41,

X=xxx=x*+ x4+ x+1) xx=x>+ x4+ x2 + x,

— polynomials have degree at most 7

SV 2024-25 Symmetric Encryption CryptoSec 4391098

Examples

@ 0xb5c + 0x2a = 0x76

byte | bit string | polynomial
0x5c | 01011100 X+ xF 4+ x3+ X2
+ 0x2a | 00101010 x5+ x3 4+ x
= x84+ x5+ x*+2x3 4+ x2 +x
= 0x76 | 01110110 XX+ x* X%+ x
@ 0x9%e X 0x02 = 0x27
byte | bit string polynomial
0x9e | 10011110 X+ x4+ x3+x7+x
x 0x02 | 00000010 X

— X8 4 x5+ x4+ x3 4 x2
XS+2xt+2x3+x2+x+1
0x27 | 00100111 X5+ x2 4+ x + 1

SV 2024-25 Symmetric Encryption CryptoSec 440/1098

GF Arithmetics

Abyte a= ay...asa represents an element of the finite field GF(28)
as a polynomial @y + a;.x + ... + az.x’” modulo x® + x* + x3 + x + 1

and modulo 2

byte | bit string polynomial
0x00 | 00000000 0

0x01 | 00000001 1

0x02 | 00000010 X

0x03 | 00000011 X +1
0x1b | 00011011 | x* 4+ x3 + x + 1

Addition: a simple XOR
Multiplication by 0x01: nothing
Multiplication by 0x02: shift and XOR with 0x1b if carry
Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02

SV 2024-25

Symmetric Encryption CryptoSec

441/1098

MixColumns

MixColumns(s)
1: fori=0to 3 do
2: let v be the 4-dimensional vector with co-
ordinates sp jS1,iS2,iS3,i
3: replace s ;Sy,iS2,iS3,;i by M x v
4: end for

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

M:

SV 2024-25 Symmetric Encryption CryptoSec

442/1098

MixColumns

SV 2024-25

Symmetric Encryption

X 8.

M x S.1

M x S{ng X 8.3

CryptoSec

443 /1098

InvMixColumns

InvMixColumns(s)
1: fori=0to 3 do
2: let v be the 4-dimensional vector with co-
ordinates sp jS1,iS2,iS3,i
3: replace Sy iS1,iS2S3,i by M~ x v
4: end for

0x0e 0xOb 0x0d 0x09
0x09 0x0e 0xOb 0x0d
0x0d 0x09 0x0e O0x0b
0xOb 0x0d 0x09 0x0e

M- =

SV 2024-25 Symmetric Encryption CryptoSec

444 /1098

AES Decryption

AES decryption(s, W)

: AddRoundKey(s, Wy,)

: for r=Nr—1downto 1 do
InvSubBytes(s)
InvShiftRows(s)
AddRoundKey(s, W;)
InvMixColumns(s)

: end for

: InvSubBytes(s)

: InvShiftRows(s)

: AddRoundKey(s, W)

O ©W®NOUOA N =

—_

SV 2024-25 Symmetric Encryption CryptoSec 445/1098

Key Expansion

@ we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60)
rows (32-bit words) w

@ we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows

@ the w; are iteratively loaded:

o the first w; are loaded with the key

@ w; is loaded with w;_nk @ wi_4

o every Nk iterations, the w; is modified before the XOR
o for Nk = 8, we add an extra modification

SV 2024-25 Symmetric Encryption CryptoSec 446 /1098

Key Expansion

KeyExpansion(key, NK)
1: fori=0to Nk — 1 do

2 w; < key;

3: end for

4: fori=Nkto4(Nr+1)—1do

5: b+ wi_q

6: if i mod Nk = 0 then

7: replace [t1 , b, 13, t4] by [tz, s, g, t1] int
8: apply S-box to the four bytes of t

o: XOR x//Nk=1 (in GF) onto the first byte

of t

10: else if Nk = 8 and /i mod Nk = 4 then
11: apply S-box to the four bytes of t
12: end if
13: Wi Wi_nk Dt
14: end for

SV 2024-25 Symmetric Encryption CryptoSec 447/1098

Modes of Operation

@ transform a block cipher into a symmetric encryption with
variable message length

@ encrypt and decrypt “on the fly” (online encryption)

@ (in some sense: transform a block cipher into a stream cipher)
@ may require an Initialization Vector (IV)

@ typically: message length must be multiple of the block length

SV 2024-25 Symmetric Encryption CryptoSec 448/1098

ECB Mode

Xq Xo X3
C C C
34 Y2 %]
SV 2024-25 Symmetric Encryption

Yn

CryptoSec

449 /1098

ECB Decryption

Xq Xo X3
Cc1 Cc1 Cc!
34 Y2 %]
SV 2024-25 Symmetric Encryption

Xn

T

|

Yn

CryptoSec

450/1098

ECB vs CBC

original ECB - CBC

en.wikipedia.org

SV 2024-25 Symmetric Encryption CryptoSec 451/1098

CBC Mode

Lo |
RIERE 1
e |

SV 2024-25 Symmetric Encryption CryptoSec 452/1098

CBC Decryption

bt
NIENE
— ¢

SV 2024-25 Symmetric Encryption

CryptoSec 453 /1098

Note on the CBC Mode

Three possibilities for dealing with IV

@ Using a (non secret) constant IV
example: MRTD (V= 0)
(not a good idea)

@ Using a secret IV which is part of the key
example: TLS
(ok if used only once like in TLS)

@ Using a random IV which is sent in clear with the ciphertext

Property

If y; is corrupted, only x; and x;., 1 are badly decrypted.
If y; is lost, only x; is incorrect (and one block is missing).

SV 2024-25 Symmetric Encryption CryptoSec 454 /1098

OFB Mode

X1 X2 X3

SV 2024-25 Symmetric Encryption

CryptoSec 455/1098

OFB Decryption

SV 2024-25 Symmetric Encryption

CryptoSec 456 /1098

Note on the OFB Mode

@ IV must be new for every plaintext!

@ two possibilities:
@ Use a random one which is sent in clear...
@ ... or use a counter-based IV

@ Can easily handle message length not multiple of the blocklength

@ These are not only specific properties of the OFB mode:
properties of stream ciphers

@ OFB actually transforms a block cipher into a stream cipher
@ Interesting property: can encrypt incomplete blocks

IV is used as a nonce (number used once)

SV 2024-25 Symmetric Encryption CryptoSec 4571098

CTR Mode

X-
t 1
D
\
iz
SV 2024-25

NS I

X
s °
(&)
\
3

Symmetric Encryption

S+®

CryptoSec

458 /1098

CTR Decryption

SV 2024-25 Symmetric Encryption CryptoSec 4591098

Note on the CTR Mode

@ t; must be new for every block! (a nonce)

Example 1: t; = nonce||blk_counter

with nonce = msg_counter or random

Example 2: t; = t; + (i — 1) where £ is the last ¢, plus 1

Example 3: t; = t; + (/ — 1) where t; is a (unique) nonce
@ Can easily handle message length not multiple of the blocklength
@ CTR also transforms a block cipher into a stream cipher

@ advantage over OFB:
can be parallelized
random restart on any

Example from the GCM mode: GCTRk((nonce||0%'1), msg) with
GCTRk(ct, X) = trunCengtn(x) (Ck(ct)||Ck(ct +1)[|Ck(ct +2)---) & X

(do not encrypt 232 blocks...)

SV 2024-25 Symmetric Encryption CryptoSec 460 /1098

XTS Mode

@ used to encrypt a hard disk

@ hard disks are made of “sectors” of various lengths
lengh may not be a multiple of the block length

@ requirements:
encryption shall not increase space
encryption shall allow random access with small overhead

@ uses two keys (Ki, Kz)
@ for a block of index j in sector of index i

yij =Encij(xi)) = C,(xij@ tij) & tij tij=0al x Cl(i)

in a GF structure, with a constant «
@ use ciphertext stealing for the last two blocks

SV 2024-25 Symmetric Encryption CryptoSec 461/1098

XTS

i—{ Ce

Xi.0 Xi1
1 N
— @ — ©
N3 N
Ck, Ck,
1 I
— D — ©
N {
Yio YiA

SV 2024-25 Symmetric Encryption

Ck,

L3 @
+
Yiz2

CryptoSec

462 /1098

Ciphertext Stealing

@ used to encrypt two blocks x and x’ (typically, the last two) with
Enc and Enc’ respectively
@ Case 1 (easy): if x and x’ have regular length, encrypt normally
y = Enc(x), y' = Enc’(x")
@ Case 2: if X’ is shorter than usual.
1: split Enc(x) = y’||u with y’ of same length as x’
2: y = Enc'(x'||u)
3: give y and y’
to decrypt y and y’:
1: split Dec’(y) = x’||u with x” of same length as y’
2: x = Dec(y’||u)
3: give x and x’

SV 2024-25 Symmetric Encryption CryptoSec 463 /1098

Ciphertext Stealing

| X | L
!
Enc
!
Iz |l|1|
I}
L x [ul
Il
Enc
!
| y |
|
\L/
| y | LY]

SV 2024-25 Symmetric Encryption CryptoSec 464 /1098

To Be Known About Modes of Operation

@ ECB should be avoided

@ CBC requires IV

@ OFB (stream cipher) requires a nonce
@ CTR (stream cipher) requires a nonce

SV 2024-25 Symmetric Encryption CryptoSec 465 /1098

Classical Skeletons for Block Ciphers

@ Feistel schemes
...and extensions
DES, 3DES, BLOWFISH, KASUMI

@ Lai-Massey scheme
IDEA, FOX

@ Substitution-permutation network (SPN)
SAFER, CS-Cipher, AES

SV 2024-25 Symmetric Encryption CryptoSec 466 /1098

The Symmetric Encryption Zoo
@ fauna: ARMADILLO BEAR BLOWFISH DRAGON FOX FROG LION
MOSQUITO RABBIT SERPENT SHACAL SHARK TWOFISH
@ flora: CAMELLIA LILY SEED

@ pantheon: ANUBIS MARS KHAFRE KHUFU LUCIFER MICKEY
SHANNON TURING

@ the gastronomics: COCONUT GRANDCRU KFC MILENAGE
PEANUT WALNUT
@ the elements: CRYPTON ICE ICEBERG RAINBOW SNOW

@ the originals: ABC ACHTERBAHN AKELARRE CAST DEAL DECIM
EDON FEAL FUBUKI GOST HELIX HIEROCRYPT IDEA KASUMI
KATAN KHAZAD KTANTAN LEX LEVIATHAN LOKI MACGUFFIN

MADRYGA MAGENTA MIR MISTY NIMBUS NOEKEON NUSH PHELIX

PRESENT PY QUAD REDOC RIJNDAEL SAFER SALSA SCREAM
SFINKS SKIPJACK SMS4 SQUARE SOBER SOSEMANUK XTEA
3-WAY YAMB

@ the uninspired: A5 AES BMGL C2 CJCSG CMEA CS-CIPHER DES
DFC EO0 E2 FCSR HPC MMB Q RC2 RC4 RC5 RC6 SC TSC WG

SV 2024-25 Symmetric Encryption CryptoSec

The Symmetric Encryption Zoo ...in practice

EO

SV 2024-25

BLOWFISH

MILENAGE

IDEA KASUMI

SAFER

A5 AES DES
RC4

Symmetric Encryption CryptoSec 468 /1098

Block Ciphers Characteristics

cipher release block key # rounds comment
DES 1977 64 56 16 secretly developed
3DES 1985 64 112,168 48 pragmatic solution
IDEA 1990 64 128 8.5
SAFER K-64 1993 64 64 6
BLOWFISH 1994 64 0-448 16
RC5 1996 2-256 0-255 0-255 64/128/12 recommended
CS-Cipher 1998 64 0-128 8
AES 2001 128 128,192,256 | 10,12,14 | dependent parameters
KASUMI 2002 64 128 8 dedicated
FOX 2003 64,128 0-256 12-255

SV 2024-25

Symmetric Encryption

CryptoSec

469 /1098

e Symmetric Encryption

@ Stream Ciphers

SV 2024-25 Symmetric Encryption CryptoSec 470/1098

Stream Ciphers

@ adapt the Vernam cipher

@ use a pseudorandom generator to generate a key stream
the PRNG avoids having to store large secret keys

@ seed the PRNG with a fixed secret key and a nonce: a number
to be used only once
the nonce avoids reuse of the same keystream

@ variant 1: participants are synchronized to a nonce (e.g. a
counter or the clock value)
Problem: stateful

@ variant 2: the encrypting nonce is sent in clear with the ciphertext
(asynchronous)
Problem: nonce becomes under the control of the adversary
(at least for decryption)

SV 2024-25 Symmetric Encryption CryptoSec 471/1098

Stream Ciphers from a High Level

(= Vernam cipher with a pseudorandom key)

key— pseudorandom keystream)
»D—-ciphertext stream
generator A

nonce —»

plaintext stream

nonce = number which can be used once
(necessary to avoid re-using a keystream)

SV 2024-25 Symmetric Encryption CryptoSec 472/1098

RC4

Designed at MIT in 1987 by Ronald Rivest
Trade secret of RSA Security Inc.

illegally disclosed in 1994

well known to be used in SSL/TLS

(]

dedicated to software on 8-bit microprocessors
stream cipher with bytes streams
key length from 40 bits to 256 (¢ = 5 to 32 bytes)

SV 2024-25 Symmetric Encryption CryptoSec 473/1098

RC4 (Alleged)
Key

!

init (KSA)

!

@ registers i and j

Qpermutatlon j
s[o], S[1], ..., S[255]

automaton (PRGA)

1: [< i+ 1 mod 256

2: j + j+ S[i] mod 256

3: swap S[i] and SJj]

4: b= S[S[i] + S[j] mod 256]

output byte b

SV 2024-25 Symmetric Encryption CryptoSec 474/1098

RC4 Key Schedule (KSA)

:j«0

: fori=0to 255 do

S[i] « i

: end for

: fori=0to 255 do

j < j+ S[i] + K[i mod ¢] mod 256
swap S[i] and S[j]

: end for

i+~ 0

:j«0

—_

SV 2024-25 Symmetric Encryption CryptoSec 475/1098

RC4 in Security Protocols

@ In SSL/TLS:

@ key is used only once
o state is kept from one message to the other

@ In WEP:

@ key is the concatenation of a 3-byte nonce (sent in clear) and a
5-byte or 13-byte key

SV 2024-25 Symmetric Encryption CryptoSec

476 /1098

Known Weaknesses

@ some correlations between some output bytes and key bytes
when the nonce is known
— (passive) key recovery attack in WEP after seeing 22500
packets

@ output bytes are not uniformly distributed
— ciphertext-only decryption attacks in TLS if a plaintext is
encrypted several times (e.g. secure http cookies)

@ speculations that some state agencies can break RC4
@ RC4 is now prohibited (RFC 7465 and similar recommendations)

SV 2024-25 Symmetric Encryption CryptoSec 477/1098

Case Study: WiFl: WEP/WPA/WPA2

SV 2024-25 Symmetric Encryption CryptoSec 478 /1098

GSM A5/1

@ Designed at ETSI by the SAGE group
@ Trade secret of the GSM consortium
@ reverse engineered

@ dedicated to lightweight hardware
@ stream cipher with bit streams
@ 64-bit key and 22-bit counter

SV 2024-25 Symmetric Encryption CryptoSec 479/1098

A5/1 from a High Level

KC— 64 bits
init >

automaton

114 bitg —-ciphertext frame
i

Count —

plaintext frame

SV 2024-25 Symmetric Encryption CryptoSec 480/1098

Linear Feedback Shift Register (LFSR)

@ when CLK = 1, increment t, load R; with R;, 1 and Ry_41 with a

XOR of some R;’s

SPR O +— D <+
Xt+10 T T T
Ry Rs Ry R Rs Ry Rs Ry R Ro Xt
— - | —
Xt+9 Xt+8 Xt+7 Xt+6 Xt+5 Xt+4 Xt+3 Xt+2 Xt+1 Xt

@ attime t, Rj = X¢

@ X;ig = Ag_1Xtrd_1 @ -~ D apx; for any t (linear recursion)
@ AuXp g ® - Darxe 1 Dagxy=0forany t(ag=1)
@ connection polynomial: agx? + - - + ay x + ap
example: x10 + x® + x2 + x + 1
@ maximal period <= primitive polynomial —> irreducible
polynomial

SV 2024-25

Symmetric Encryption

CryptoSec

481/1098

A5/1 Automaton

Y

-—D
A

X104 X184 X174 x4 4 4
X224 x21 41
X2 4 x2 4 x4 x8 41

CLK;

re
e RRRRRNNRACERRNNNRRSS
[T

SD—D

CLK3

e

¥
¢||||||||||le||||||||||<—

53]

CLKj

¥
—{ [T TTTTTTTT T
(11 !

SeRSY

D

asynchronous: CLK; = CLK if f; = majority(t, &2, t3), 0 otherwise

SV 2024-25

Symmetric Encryption

CryptoSec 482/1098

A5/1 Initialization

CLK;

r's
ARNRERERENERENEENEEE e
KRR

r'd
||¢|||||||||||||||||||||<—@<——
L@ CLKj

e
ARNEERENENENENENENRENEE o,
K K \

synchronous: CLK; = CLK; = CLK3 = CLK

SV 2024-25 Symmetric Encryption CryptoSec 483 /1098

A5/1 Initialization

1: set all registers to zero

2: fori=0to 63 do

3 R1[0] «+ R4[0] @ KCI]

4 R2[0] — RQ[O] %) KC[I]

5: R3[0] + Rs[0] ® KCIi]

6 clock registers (synchronous)
7. end for

8. fori =010 21 do

o: R1[0] < R;4[0] & Count[i]

10: R>[0] < R2[0] @ Count[/]

11: R3[0] < R3[0] @ Count[/]

12: clock registers (synchronous)
13: end for

14: for i =010 99 do

15: clock registers (asynchronous)
16: end for

SV 2024-25 Symmetric Encryption CryptoSec 484 /1098

Known Weaknesses

@ key recovery known plaintext attack
(kind of time-memory tradeoff)

@ active attacks on GSM (chosen cipher attack)

@ ciphertext-only key recovery attack
(optimized bruteforce)

SV 2024-25 Symmetric Encryption

CryptoSec

485/1098

e Symmetric Encryption

@ Bruteforce Inversion Algorithms

SV 2024-25 Symmetric Encryption CryptoSec 486 /1098

Example: Opening a Safe

For any k, we can ask the safe whether the key K is equal to k

yes/no

attack

k

——key

This attack makes online queries to test k

SV 2024-25 Symmetric Encryption

CryptoSec

487 /1098

Key Recovery Game - Online (with no Clue)

“online with a stop-test oracle ©”

Game: O(query):
1: pick K €p K 4: return 1x_query
2. A9 > k

3: return 14_x

notation A algorithm .A who can query oracle O
(independent subroutine)

SV 2024-25 Symmetric Encryption CryptoSec 488 /1098

Variations

@ K is uniform
@ K follows a known distribution D
@ K follows an unknown distribution D

SV 2024-25 Symmetric Encryption

CryptoSec

489 /1098

Exhaustive Search Algorithm (Uniform Case)
(online, with no clue, D uniform)

Input: a set of possible keys K = {ki, ..., kn}
Challenger interface: input is an element of £,
output is Boolean

1: foralli=1to Ndo

2 query k;

3 if answer is yes then

4: yield k; and stop

5 end if

6: end for

N
E(#iterations) = > Pr[K = ki
i=1

SV 2024-25 Symmetric Encryption CryptoSec 490/1098

Exhaustive Search Algorithm (Optimal Case)
(online, with no clue, D known)

Input: a set of possible keys K = {ki, ..., kn}
Challenger interface: input is an element of KC,
output is Boolean
1: take the permutation o of {1,..., N} sorting
k(i by decreasing order of likelihood
2: foralli=1to Ndo
3 query K,y
4 if answer is yes then
5: yield k,(;y and stop
6 end if
7: end for

N
E(#iterations) = min (Z PriK = ko(f)]/>

i=1
which is sometimes called the guesswork entropy of D

SV 2024-25 Symmetric Encryption CryptoSec 491/1098

Exhaustive Search Algorithm (Any Case)

(online, with no clue)

Input: a set of possible keys K = {ki, ..., kn}
Challenger interface: input is an element of K,
output is Boolean
1: pick a random permutation o of {1,..., N}
2: foralli=1to Ndo
3 query Kq(jy
4: if answer is yes then
5 yield k,(;y and stop
6 end if
7: end for
N
E(#iterations) =~ E(Pr[K = k,])i

since o is random we have E(Pr[K = k,(;]) = 4 for all i:

1. N+1

E(#iterations) = Z N=

SV 2024-25 Symmetric Encryption CryptoSec 492/1098

Complexity Analysis (All Cases)

key of distribution D in a set of N elements

worst case complexity N iterations
average complexity | D uniform | M1 jterations
D known smaller
D unknown | M1 iterations
memory complexity constant
success probability 1

SV 2024-25 Symmetric Encryption CryptoSec 493/1098

Key Recovery Game - With Clue

Online Key Recovery with Clue: O(query):

pick K €ep K 5: return 1x_query
W <« clue about K

AP (W) — k

return 1,4

Rob=

Offline Key Recovery with Clue:
: pick K ep K

W <« clue about K

AW) — k

return 1,_x

R

SV 2024-25 Symmetric Encryption CryptoSec 494 /1098

Offline Attack with Clue

A uses W to emulate a stop-test oracle

w

A /

| I

[_k ‘

I |stop test[” | algorithm :—> key

: yin |

C . _ = I

Examples:
witness stop test

known plaintext attack W = (x, Ck(x)) Ck(Wy) =W,
ciphertext only attack W = ciphertext C, (W) meaningful
salted key hash W = (F(K,salt), salt) F(k, Wo) = W,

SV 2024-25 Symmetric Encryption CryptoSec 495/1098

Cases for Deterministic Clues

@ chosen plaintext attack:
get W = Ck(x) for some fixed x chosen by the adversary

o fixed plaintext attack / deterministic hash:
get W = Ck(xp) for some constant xo (e.g. xo = 0)

SV 2024-25 Symmetric Encryption CryptoSec 496 /1098

Cases for Non-Deterministic Clues

@ no chosen plaintext attack:
known plaintext attack with random W = (x, Cx(x)) pair
ciphertext only attack with redundant plaintexts

@ randomized key hash:
leak W = (F(K, salt), salt) with salt randomly selected by the
challenger
(salt to be seen on)

SV 2024-25 Symmetric Encryption CryptoSec 497 /1098

Access Control

@ Enrolment
Enter user ID and password
Register user ID and a clue about password

@ Access Control
Enter user ID and password
User ID and password are verified using the clue

— any key passing the test is enough to break
example: clue = password hash

SV 2024-25 Symmetric Encryption CryptoSec 498/1098

Password Hash Inversion

W = F(K) (hash)

attack |—— kst F(k)=W

the adversary has to find one password with correct hash
(the problem is to invert F, i.e. to find a preimage)

SV 2024-25 Symmetric Encryption CryptoSec 499 /1098

Game: Key Recovery vs Inversion

Offline key recovery:

R

: pick K ep K
: W+ F(K)
A(W) = k
return 1,_x

SV 2024-25

Offline inversion:
1: pick K ep K
2: W+ F(K)
3 AW) = k
4: return 1F(k):W

Symmetric Encryption CryptoSec 500/ 1098

Two Forms of Bruteforce Attack with Clue

@ key recovery in symmetric encryption

@ chosen plaintext attack (— clue)
e known plaintext attack (— clue)
@ ciphertext only attack (— clue)

we want to find K given a clue
@ preimage recovery from a password hash (— clue)

@ deterministic hash
@ salted hash

we want to find any password consistent with a clue

SV 2024-25 Symmetric Encryption CryptoSec 501/1098

Inversion by Exhaustive Search

Goal: find any preimage of w (but preimages may not exist!)

Input: animage w
1: shuffle K with a random permutation
2: foralli=1to Ndo
3: if F(k;) = w then

4 yield k; and stop
5: end if
6: end for

If F: K — Y is a uniformly distributed random function, #K = N,
#Y =M:
forany w ey Yy

Er [Prlcomplexity > i]] = (1 - 1)i

SV 2024-25 Symmetric Encryption CryptoSec 502/1098

Complexity of an

E(complexity) =

Pr[> 0] Pr[> 1] Pr[> 2] =
Pr[1]

Pr[2] + Pr[2]

Pr[3] + Pr[3] + Pr[3]

SV 2024-25

Inversion Attack

N

> iPrlcomplexity = i]

i=0

N-1

> Pricomplexity > i]

i—0
1

(> rows)
(> columns)

1
thx=1-—
with x i

asﬂ—>+
M 0.}

M(1-e¥)

M for N> M

Symmetric Encryption CryptoSec

503 /1098

Dictionary Inversion Attack (Full Book)

(assume a deterministic function F)

Game: AF: (preprocessing)
1: setup F 1: for all candidates k do
2. AF — dict 2. compute F(k)
3: pick K ep K 3: dict{ F(k)} < k
4: w <+ F(K) 4: end for
5. Ab(dict, w) — Kk 5: return dict
6: return 1F(k):w

AF (dict, w): (attack)
6: return dict{w}

SV 2024-25 Symmetric Encryption CryptoSec 504 /1098

Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F)

Game: AF: (preprocessing)
1: setup F 1: for M candidates k do
2. AF — dict 2. compute F(k)
3: pick K ep K 3: dict{ F(k)} < k
4: w <+ F(K) 4: end for
5. Ab(dict, w) — Kk 5: return dict
6: return 1F(k):w

AF (dict, w): (attack)
6: return dict{w}

SV 2024-25 Symmetric Encryption CryptoSec 505/1098

Metrics of Algorithms

for comparing algorithms, we must look at:
@ precomputation time
@ memory complexity
@ time complexity
@ number of online queries
@ probability of success

SV 2024-25 Symmetric Encryption CryptoSec 506 /1098

Complexity Analysis

Precomputation time M
Memory complexity M
Time complexity ~ 1

Probability of success (with randomly selected dictionary keys)
M/N

SV 2024-25 Symmetric Encryption CryptoSec 507 /1098

Summary of Single-Target Brute Force Attacks

key search: N = # key space
inversion: N = # output range

strategy preprocessing memory time success proba.
exhaustive search 0 1 N 1
dictionary attack N N 1 1
tradeoffs N N3 N3 cte
partial ex. search 0 1 M M/N
dictionary attack M M 1 M/N

SV 2024-25 Symmetric Encryption CryptoSec 508 /1098

Application to DES

strategy preprocessing memory time
exhaustive search 0 1 256
dictionary attack 256 256 1
tradeoffs 2% 237 237

— the key of DES is too short!

SV 2024-25 Symmetric Encryption

CryptoSec

509 /1098

Security of Passwords with less than 48 Bits of
Entropy

An 8 i.u.d. random characters password in {a,...,z,A,...,Z,0,...,9}
has less than 48 bits of entropy

@ classical conventional cryptography may require about 300
cycles on a P4 2GHz to check a guess (= 222 guesses per
second)

— 256d to find a password with a PC

@ time-memory tradeoffs (complexity N5 + precomputation N)
[cracked a 36-bit entropy password within a few seconds]
— 1hto find a password (+ a year of precomputation)

@ special purpose hardwares
[cracked 56-bit keys within a day]

— 5 min to find a password

@ distributed.net

[cracked 64-bit keys in 2002 after 1757 days]
— 40 min to find a password

SV 2024-25 Symmetric Encryption CryptoSec 510/1098

Extension: Multi-Target Dictionary Inversion
Attack

(assume a deterministic function F)

Game: AF: (preprocessing)
1: setup F 1: for M candidates k do
2: A — dict 2 compute F(k)
3. pick Ki,...,Kr €p K 3. dict{F(k)} « k
4w+ F(K)fori=1,...,T 4: end for
5. A5 (dict,wy,...,wr) — (i,k) 5: return dict
6: return 1F(k):vw

AF (dict, wy, ..., wr): (attack)
6: fori=1to T do
7: if dict{w;} exists then
8: return dict{w;}
9: end if

10: end for

11: return L

SV 2024-25 Symmetric Encryption CryptoSec 511/1098

Complexity Analysis

Precomputation time M

Memory complexity M

Time complexity T

Probability of success 1— (1 — #) ~ 1 %
This is quite interesting when M ~ T ~ v/N...

SV 2024-25 Symmetric Encryption CryptoSec 512/1098

Password Recovery from a Salted Password Hash

Password K \ \ Password k
Salt | f\\ |
RN
Y y
Hash] Hash
as as
o | /) | -
4 = F(K, Wp) Wy = F(k, W)
\ \
\ \ i
T
\ \
EN\=a
Enrolment | Record | Control

SV 2024-25 Symmetric Encryption CryptoSec 513/1098

Offline Inversion Attack with Salt

Input: a set of possible keys £ = {ki,...,kn}, @
salted witness W = (W;, Wh) (salt is Wa)
Challenger interface: input is an element of K,

output is Boolean
shuffle I with a random permutation
- foralli=1to Ndo
if F(k;, Wo) = W, then
yield k; and stop
end if
: end for
search failed

No ahrodh=

SV 2024-25 Symmetric Encryption CryptoSec 514/1098

The Role of Salt

@ mitigates dictionary attacks (or dictionaries are bigger)
@ mitigates tradeoffs
@ mitigates multitarget attacks

SV 2024-25 Symmetric Encryption CryptoSec 515/1098

e Symmetric Encryption

@ Subttle Bruteforce Inversion Algorithms

SV 2024-25 Symmetric Encryption CryptoSec 516 /1098

Double DES

Y

X— DES DES —Y

T 3

K = (Ki, Kz)

this is not much more secure than single DES

SV 2024-25 Symmetric Encryption CryptoSec 517/1098

Double Encryption

Y

X—> C ¢ Y

ek kek't

K = (Ki, Kz2)

this is not much more secure than single encryption

SV 2024-25 Symmetric Encryption CryptoSec 518 /1098

Meet-in-the-Middle Attack

Input: two encryption schemes C’ and C” with
two corresponding sets of possible keys K’
and K", an (x, y) pair with y = Cj¢ (Cj (x))

1: for all ky € K’ do

2 compute z = C; (x)

3 insert kq in dict{z}

4: end for

5: for all ko € K” do

6: compute z=C".'(y)
7 for all k¢ in dict{z} do

8 yield (kq, ko) as a possible key
9 end for
10: end for

SV 2024-25 Symmetric Encryption CryptoSec 519/1098

Complexity Analysis

Memory complexity #K’ (2% for double DES)
Time complexity #K' + #K" (257 for double DES)
Probability of success 1

SV 2024-25 Symmetric Encryption

CryptoSec

520/1098

Triple DES

X— DES » DES™' > DES —>Y
2 kK Ks
K = (K1, Kz, K3)

a 3DES chip can do

@ 3-key triple DES: K1, Kz, K3

@ 2-key triple DES: Ky = K3, K>

@ DES: Ki = Ko = Ks

SV 2024-25 Symmetric Encryption CryptoSec 521/1098

Generic Attacks on Triple DES

2 keys 3 keys
@ key length: 112 @ key length: 168
@ chosen plaintext (x2%): @ known plaintext (x3):
time complexity 257 time complexity 2113
memory complexity 257 memory complexity 256
[Merkle-Hellman 1981] [meet-in-the-middle]

[exercise 2.5 in exercise book]
@ known plaintext (x23%2):

time complexity 288

memory complexity 257

[van Oorschot-Wiener 1990]

SV 2024-25 Symmetric Encryption CryptoSec 522/1098

Time-Memory Tradeoffs — i

Input: a deterministic function F

Parameter: ¢, m,t

Preprocessing

1: fors=1to /do

2: pick a reduction function Rs; at random
and define fs : k — Rs(F(k))

3: fori=1tomdo

4: pick k" at random

5: k+— K

6: forj=1totdo

7: compute k « fs(k)
8: end for

9: Ts{k} + K
10: end for
11: end for

SV 2024-25 Symmetric Encryption CryptoSec 523/1098

Precomputed Tables

f f f f f f
1 1 1 1 1 1 1 1 11
Kio | = K1 = Ko = Kig = oo = Koo | Ky (ki 1> K1 0)
f f f f f f
1 A 11 1 1 1 1 1 [
kz,o = k2,1 = k2,2 = kz,s = kz,rq = kz,z (kz,n kz,o)
f f f f f f
. 1 1 R 1 1 1 1 1 1
Tiil ko | = Ky = Ko = kgg = 0 o kg o | K | = (K kg)
f f f f f f
1 11 1 R 4 1, 1 1 1 1 1
km 0 = km,1 = km,z = km,3 = s = kS,t—1 = km t (km,h km,o)
f f f f f f
‘ ‘) (- ‘ ‘ 0 gL
Kio o ki s ki = kia B K 11 s kit (Kt K10)
f [f f f l
) (- [¢ [(A [‘ 0 gL
kz,o — k2,1 = kz,z H kz,s = k2,t—1 = kz,z (kz,n kz,o)
f f f f f f
. i ¢ [0) [‘ A
Te:| Kso = ks = ks > k33 o Kgi_1 = | kst | = (Ksp kso)
Koo | W5 Khy 5 Kh, 5 K S Bk | K Ko oo KL
'm,0 m, 1 m2 7 Kps — - 3,t—1 m,t (m,t> m,())

SV 2024-25 Symmetric Encryption CryptoSec 5241098

Time-Memory Tradeoffs — ii

Attack

Attack input: W = F(K)

1. fors=1to/do
2 setito0
3 set k to Rs(W)
4: while Ts{k} does not exist and j < t do
5: increment J
6: k + fs(k)
7 end while
8: if Ts{k} exists then
9: K « Ts{k}
10: while F(k’) # Wand i < t do
11: increment i
12 K« fs(k")
13: end while
14: if F(k') = W then
15: yield k’ as a possible key
16: end if
17: end if
18: end for

SV 2024-25 Symmetric Encryption

CryptoSec

525/1098

Complexity Analysis

N = # output range of F

Precomputation time ¢ x m x t

Memory complexity ¢ x m

Time complexity ¢ x t

Probability of success can be shown to be greater than % for
l~m~t~YN

time and memory complexity of N

SV 2024-25 Symmetric Encryption CryptoSec 526 /1098

e Symmetric Encryption

@ Pushing the Physical Limits

SV 2024-25 Symmetric Encryption CryptoSec 527 /1098

Order of Magnitudes

for exhaustive search on a 128-bit key:

@ # clock cycles needed to perform a typical cryptographic
operation (encryption of one block): 300

@ clock rate in 2007: 2GHz
@ age of the universe: 14BY= 14 x 10%Y~ 440 x 10"%s
@ # machines to do the exhaustive search within 14BY: 115 x 10'2

SV 2024-25 Symmetric Encryption CryptoSec 528/1098

Moore’s Law
@ Gordon Moore 1965: # transistors / IC doubles every year
@ Gordon Moore 1975: # transistors / IC doubles every 2 years
@ popular version: speed of CPU’s doubles every 18 months

Microprocessor Transistor Counts 1971-2011 & Moore's Law

T

six-core coreir \

R — Pt S
i

1,000,000,000

100,000,000 4

curve shows transistor
count doubiing every
wo years

10,000,000 -

1,000,000

Transistor count

100,000 -

10,000

2,300~ 40048 /rga 1002

Date of introduction

SV 2024-25 Symmetric Encryption CryptoSec

529 /1098

Better Strategy (of Metaphysical Interest)

remember:

create the universe then take 14BY of vacations

humankind will create itself, invent computers, and solve the problem

SV 2024-25 Symmetric Encryption CryptoSec 530/1098

Energy Bill

@ minimal energy spent to erase one bit: kT In2 [Landauer 1961]
k = 1.38 x 10~23J/K (Boltzmann constant)
T: absolute temperature (absolute 0 is —273C)

@ example: assume we run an exhaustive search with 2'28 loops
but we erase 128 bits per loop
assume the computer operates at 3uK (very cold!)
energy bill: 1.2 x 10%J
if we want to do it within 1s we need a 1 200MW nuclear
powerplant

@ we can compute without burning energy! [Bennett 1973]
need supraconductors and invertible computation gates

but all computations must be invertible!
exhaustive search must keep lots of garbage in memory

SV 2024-25 Symmetric Encryption CryptoSec 531/1098

Fully Reversible Exhaustive Search

@ define
INC: (x,y,k,z,t) — (x,y,k+1,z,1)
ENC: (x,y,k,z,t) — (x,y,k,z® Enc(k,x),t)
CMP: (x,y,k,z,t) — (x,y,k,z,t®&k-1,_3)

@ The sequence ENC, CMP, ENC, INC does
<Xay7kvzv t> — <Xay,k + 1,2,['@ K- 1y:z€BEnc(k,X)>

@ If we do it 228 times on (x, y, 0,0, 0), we obtain the XOR of all
keys such that y = Enc(k, x).

@ assuming K is unique, we get (x, y,0,0, K)

SV 2024-25 Symmetric Encryption CryptoSec

532/1098

Grover Algorithm

@ if the input domain of F has size N and y has a unique preimage

@ the Grover algorithm finds F~(y) in complexity O(v/N)
F-equivalent evaluations

@ it only runs on a quantum computer
@ this may be a motivation to use 256-bit AES

SV 2024-25 Symmetric Encryption CryptoSec 533/1098

e Symmetric Encryption

@ Formalism

SV 2024-25 Symmetric Encryption CryptoSec 534 /1098

Block Cipher

Definition

A block cipher is a tuple ({0, 1}¥,{0,1}", Enc, Dec) with a key
domain {0, 1}¥, a block domain {0, 1}”, and two efficient deterministic
algorithms Enc and Dec. It is such that

VK € {0,1}% vX €{0,1}" Dec(K,Enc(K, X)) = X

Write Cx(-) = Enc(K,.) and C'(-) = Dec(K,.).

(operate on bitstrings)

Remark: for all K, X — Enc(K, X) is a permutation of {0,1}"

SV 2024-25 Symmetric Encryption CryptoSec 535/1098

Variable-Length Symmetric Encryption

Definition

A (variable-length, length-preserving) symmetric encryption
scheme is a tuple ({0, 1}*, D, Enc, Dec) with a key domain {0, 1}, a
plaintext domain D C {0, 1}*, and two efficient deterministic
algorithms Enc and Dec.

It is such that

K Dec(K,Enc(K,X)) = X
VK € {0,1}* VX eD { Enc(K,X)| = |X|

Write Cx(-) = Enc(K,.) and C'(-) = Dec(K,.).

— can be made from block ciphers using a mode of operation

SV 2024-25 Symmetric Encryption CryptoSec 536/1098

Nonce-Based Symmetric Encryption

Definition

A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}%, D, N, Enc, Dec) with a key
domain {0, 1}*, a plaintext domain D C {0, 1}*, a nonce domain \/,
and two efficient deterministic algorithms Enc and Dec.

It is such that

Dec(K, N,Enc(K, N, X))=X

vKe {1} wxeD wew { [Enc(K, N, X)|=|X

v

N is supposed to be used only once for encryption

random nonce (beware of random repetitions), counter, sent in clear
or synchronized

— could be a mode of operation (IV...), a stream cipher

SV 2024-25 Symmetric Encryption CryptoSec 537/1098

Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}*, D, \/, Enc, Dec) is secure
against key recovery under chosen plaintext attacks (CPA) if for
any algorithm A limited to a time complexity t and to g queries, the
advantage Adv is bounded by &, where

Adv = Pr[game returns 1]

Game Oracle OEnc(N, X):
1 K& {0, 1}k 5: if N € Used then return 1
2: Used + 0 6: Used + Used U {N}
3: ACEC _, K/ 7: return Enc(K, N, X)
4: return 1,_g-

SV 2024-25 Symmetric Encryption CryptoSec 538/1098

CPCA Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}*, D, \/, Enc, Dec) is secure
against key recovery under chosen plaintext/ciphertext attacks
(CPCA) if for any algorithm A limited to a time complexity ¢t and to g
queries, the advantage Adv is bounded by e, where

Adv = Pr[game returns 1]

Game Oracle OEnc(N, X):
1 K& {0, 1}k 5: if N ¢ Used then return L
2: Used + () 6: Used + Used U {N}
3: AOEnc.ODec _, K 7. return Enc(K, N, X)
4 return Ty—x Oracle ODec(N, Y):

8: return Dec(K, N, Y)

SV 2024-25 Symmetric Encryption CryptoSec 539/1098

About Nonce Reuse in Decryption

@ the sender who chooses the nonce can make sure it does not
repeat
example: a counter (stateful)
example: time
example: a random nonce (large enough)

@ the receiver cannot enforce non-reuse of nonces

SV 2024-25 Symmetric Encryption CryptoSec 540/1098

CPCA Security is Stronger than CPA Security

@ assume we have CPCA security
@ to prove CPA security, consider a CPA adversary A

@ we define a CPCA adversary B = A
(same adversary who just never use decryption queries)

@ B and A have the same advantage
@ since the one of B is bounded by ¢, the one of A as well O

CPA-breaking = CPCA-breaking
CPCA-secure —> CPA-secure

SV 2024-25 Symmetric Encryption CryptoSec 541/1098

Not Good Enough Security

Not good enough security: what follows is correct and secure!
@ Enc(K,N,X)=X
@ Dec(K,N,Y)=Y

SV 2024-25 Symmetric Encryption CryptoSec 542 /1098

Security against Decryption

Definition

A symmetric encryption scheme ({0, 1}*, D, N, Enc, Dec) is

(g, t,2)-secure against decryption under CPA resp. CPCA if for any
algorithm A limited to a time complexity t and to g queries, the
advantage Adv is bounded by ¢.

Adv = Pr[game returns 1]

Game Oracle OEnc(N, X):

1 K& {0, 1}k 1: if N € Used then return L
2 X &, No SN 2: Used + Used U {N}

3: Used « {No} 3: return Enc(K, N, X)

4: Yo < Enc(K, No, Xo) Oracle ODec(N, Y):

5. AOFNCOPC(Np, Vo) — X a: if (N, Y) = (No, Yo) then re-
6: return 1x_x, turn L

5: return Dec(K, N, Y)

SV 2024-25 Symmetric Encryption CryptoSec

543 /1098

Example: Vernam-Based Ciphers

Enc(K, N, X) = X & PRNG(K, N)

CPCA decryption attack:
A(No, Yo):

Rob=

pick Y’ of same length as Yy
query ODec(Np, Y') — X’
X+~YaYaX

return X

SV 2024-25 Symmetric Encryption

CryptoSec

544 /1098

Decryption Security is Stronger than Key

Recovery Security B (Yo)
1 A = K
2: X + Dec(K’, Yo)
(nonce-less cipher here) 3: return X
@ assume decryption security
@ consider a key recovery adversary A

@ define a decryption adversary B...

[[OW=xz game:
pick K
KRx 4 game: pick Xo
pick K Yo < Enc(K, Xp)
Pr A s K — 1] <Pr /] B (Yo) — X : -1 <e
return 1,_x/ A = K
X < Dec(K’, Yo)
L L return 1)(:)(0]]
O

SV 2024-25 Symmetric Encryption CryptoSec 545 /1098

Not Good Enough Security

@ some parts of the plaintext may be more private than others
how about a cipher letting half of the plaintext in clear and
strongly encrypting the other half?
it would be secure against decryption

Enc(K,N,X) = Enco(K, N, lefthalf(X))|righthalf(X)
Dec(K,N,Y) = Deco(K,N,lefthalf(Y))|righthalf(Y)
Exercise:

If ({0,1}%, Dy, N, Encg, Decy) is secure, then
({0,1}%, D, N, Enc, Dec) is secure.

SV 2024-25 Symmetric Encryption CryptoSec 546 /1098

The Ideal Cipher

(assume Enc: {0,1}¥ x V' x D — D)

@ the “ideal cipher”: taking K random is equivalent to picking a
random length-preserving permutation My over D for every N

Enc(K,N,X) = TNuy(X)
Dec(K,N,Y) = Ny'(Y)

@ security would mean that we cannot tell the real cipher and the
ideal one apart from a black-box usage

SV 2024-25 Symmetric Encryption CryptoSec

547 /1098

Security against Distinguisher

Definition

A symmetric encryption scheme ({0, 1}*, D, N, Enc, Dec) is

(g, t,2)-secure against distinguishers under CPA resp. CPCA if for
any algorithm A limited to a time complexity t and to g queries, the
advantage Adv is bounded by ¢.

Adv = Pr[l'y returns 1] — Pr[ly returns 1]

Game Iy, Oracle OEnc(N, X):
1. K & 10,11k 1: if N € Used then return
2: for every N, pick a length- 2 Used < Used U {N}
preserving permutation My 3 if o= 0then return lMy(X)

over D 4: return Enc(K, N, X)

3: Ugggcag)c Oracle ODec(N, Y):

4; ACEnc, —Z 5: if b = 0 then return N, (Y)
5: return z 6: return Dec(K, N, Y)

SV 2024-25 Symmetric Encryption CryptoSec 548/1098

Security against Distinguisher (Equivalent Form)
Definition

A symmetric encryption scheme ({0, 1}*, D, N, Enc, Dec) is

(g, t,2)-secure against distinguishers under CPA resp. CPCA if for
any algorithm A limited to a time complexity t and to q queries, the
advantage Adv’ is bounded by «.

Adv’ = Pr[T returns 1] — 15
Game I Oracle OEnc(N, X):
1: pick b € {0,1} 1: if N € Used then return L
2. K& 10,1}k 2: Used < Used U {N}

3: for every N, pick a length- ~ 3: if b =0 then return My(X)
preserving permutation My 4 return Enc(K, N, X)

over D Oracle ODec(N, Y):
4: Ug%ﬁicgmg)c 5: if b= 0 then return My (Y)
5. AZES —Z 6: return Dec(K, N, Y)

6: return 1,_,
4

SV 2024-25 Symmetric Encryption CryptoSec 5491098

Equivalence

Adv' = Pr[I'—>1]—%
- 1P[F%1\b—1]+1P[F%1|b—O]—1
- 2 - 2" - 2

1 1 1

N —

1 1

= PN = 1]+ 5 (1= Prifo = 1]) -
1 1

= Pl = 1] = 5 Prro = 1]

= %Adv

SV 2024-25 Symmetric Encryption CryptoSec 550/ 1098

Distinguisher Sec is Stronger than Decryption Sec
@ assume distinguisher security
@ consider a decryption adversary A
@ we define a distinguisher B as follows

B: s s OEnc ODec
1: Xo <+~ D, No <N
2: Yy OEI’]C(NO7 Xo)
3: run ACEM0Pe’ (NG yo) 5 X B
4: return 1x,_x ODec’
ODec/(N, Y) : /
5. if (N, Y) = (No, Yo) then A
return L

6: return ODec(N, Y)

@ Pr[l'¥ — 1] = Pr[Aea Wins decryption]
@ Pr[I'5 — 1] = Pr[Aigear Wins decryption]

@ Pr[Aigea Wins decryption] < ;&1 (believe me...)

g+1
@ Advs < e hence Advy < e+ Zp—g O

SV 2024-25 Symmetric Encryption CryptoSec 551/1098

Security Notions

key recovery decryption distinguisher
CPA | weakest security

CPCA strongest security

@ if we can recover the key, we can decrypt
@ if we can decrypt, we can recognize from the ideal cipher
@ if we can break without chosen ciphertext, we can also break with

SV 2024-25 Symmetric Encryption CryptoSec 552/1098

Conclusion

@ symmetric encryption: stream ciphers (RC4, A5/1), block
ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CTR,
XTS)

@ bruteforce inversion within complexity O (#domain)

@ tradeoffs within complexity O ((#domain)g) after
precomputation with complexity O (#domain)

SV 2024-25 Symmetric Encryption CryptoSec 553/1098

Ciphers to Remember

cipher | release | block key design
DES 1977 64 56 Feistel scheme
3DES 1985 64 112,168 triple DES
RC4 1987 8 40-256 stream cipher
AES 2001 128 128,192,256 | SPN

SV 2024-25

Symmetric Encryption

CryptoSec

554 /1098

Several Types of Symmetric Encryption

o fixed message length vs variable message length
block ciphers: use fixed message length
modes of operation: adapt to variable message length
stream ciphers: encrypt messages “on-the-fly”

@ deterministic vs probabilistic
most common case for symmetric encryption: deterministic

@ synchronous (stateful) vs asynchronous (stateless)
@ authenticating or not (not in this chapter)

SV 2024-25 Symmetric Encryption CryptoSec 555/ 1098

Stream Ciphers vs Block Ciphers

stream cipher

block cipher

@ small granularity (encrypt
bits or bytes)

@ based on the Vernam
cipher, requires a nonce
(number to be used only
once)

@ very high speed rate, very
cheap on hardware

@ low confidence on security

@ large granularity (encrypt
blocks of 64 or 128 bits),
require padding techniques
for messages with arbitrary
length

@ high rate, nice for software
implementation, can be
adapted to various
platforms (8-bit, 32-bit, or
64-bit microprocessors)

@ well established security

SV 2024-25

Symmetric Encryption

CryptoSec

556 /1098

References

@ Schneier. Applied Cryptography. Wiley & Sons. 1996.
Crypto for dummies!

@ Ferguson-Schneier. Practical Cryptography. Wiley & Sons.
2003.
Crypto for dummies!

@ Oechslin. Making a Faster Cryptanalytic Time-Memory
Trade-Off. In CRYPTO 2003, LNCS 2729.

SV 2024-25 Symmetric Encryption CryptoSec 557/1098

Must be Known

@ types of symmetric encryption

@ parameters of block ciphers: DES, 3DES, AES
@ modes of operation: ECB, CBC, OFB, CTR

@ Feistel scheme

@ parameters of stream ciphers: RC4

@ exhaustive search

@ meet-in-the-middle

SV 2024-25 Symmetric Encryption CryptoSec 558/1098

Train Yourself

@ encryption:
midterm exam 2011-12 ex3
midterm exam 2012—13 ex3
final exam 2013—-14 ex1

@ modes of operation:
midterm exam 2009-10 ex3
midterm exam 2011-12 ex1

@ Moore’s law:
final exam 2008-09 ex1

@ multitarget password recovery:
final exam 2014—15 ex3

@ meet-in-the-middle:
midterm exam 2016—17 ex1
midterm exam 2017-18 ex2

@ security:
midterm exam 2016—17 ex2

@ design challenge:
midterm exam 2018-19 ex1

SV 2024-25 Symmetric Encryption CryptoSec 5591098

e Integrity and Authentication

SV 2024-25 Integrity and Authentication CryptoSec 561/1098

Roadmap

@ hash functions: SHA-2, SHA-3

@ message authentication codes: HMAC, CBCMAC, WC-MAC
@ other primitives: commitment, key derivation

@ birthday paradox

SV 2024-25 Integrity and Authentication CryptoSec 562/1098

Message Authentication Code

Message
X

SV 2024-25

‘ Adversary ‘

\ \ Message
Auth Verify X
—
\ \ ok?
X
Key+ iAS_?NFIDENT_IrAOLN i Key
IFECKITY
‘ ‘ Generator

Integrity and Authentication

CryptoSec 563 /1098

Message Authentication Code (Informal)

Alice and Bob, Generator, MAC, Check
components

MAC

functionality security
Verify,(Authx (X)) = (X, ok) cannot forge

SV 2024-25 Integrity and Authentication CryptoSec 564 /1098

Hash Function (Informal)

Setup, H
components
hash
function
functionality security
fixed output length many

SV 2024-25 Integrity and Authentication

CryptoSec

565/1098

@ Integrity and Authentication
@ Commitment Scheme

SV 2024-25 Integrity and Authentication CryptoSec 566 / 1098

Playing Rock-Paper-Scissors

damn, |
lose

“rock” é)

Bob

Alice “paper”

Bob should not see Alice’s move before making his choice

SV 2024-25 Integrity and Authentication CryptoSec 567 /1098

Playing Rock-Paper-Scissors

damn, |
lose
| chose
Alice papet Bob
“scissors”

Alice should not be able to change her mind after Bob made his
choice

SV 2024-25 Integrity and Authentication CryptoSec 568 /1098

Commitment to Play Rock-Paper-Scissors

damn, |
lose

what'’s
inside?

commit(“rock”)

Alice “paper” Bob

open to “rock”

@ cheat 1: Bob guesses Alice’s play and adapts his own play to win
@ cheat 2: Alice changes her play after seeing Bob’s play

SV 2024-25 Integrity and Authentication CryptoSec 569 /1098

Commitment

X = rock

—_——
r random

Commit

Y

——L_(delay] F——>
L (delay)

SV 2024-25

Open

X = rocl§

Integrity and Authentication

CryptoSec

570/1098

Using a Commitment Scheme

X = rock y = paper
pick r at random
(¢, k) « Commit(x; r)

commit : store ¢

open : open(c, k) = x

SV 2024-25 Integrity and Authentication CryptoSec 571/1098

Commitment Scheme (Informal)

Alice and Bob, Setup, Commit, Open
components

commitment
scheme

functionality security
if Commit(X; r) = (c, k) hiding, binding
then Open(c, k) = X

@ hiding: Bob does not get a clue on X from ¢

@ binding: Alice cannot produce c, k, k' such that
Open(c, k) # Open(c, k')

SV 2024-25 Integrity and Authentication

CryptoSec

572/1098

Application Example: Tossing a Coin

how to toss a coin:

Alice Bob
pick x € {0,1} commit(x)
Y pick y € {0,1}
open ,
verify
Z=X®Yy
output: z output: z

z is the outcome of the tossed coin

SV 2024-25 Integrity and Authentication CryptoSec 573/1098

Application Example: Playing Dice

how to throw a 6-face die:
Alice Bob

pick x € {1,...,6} committx)
Y pick y € {1,...,6}
open verify
z=1+((x+y) mod 6)
output: z output: z

z is the outcome of the thrown die

SV 2024-25 Integrity and Authentication CryptoSec 574/1098

Examples

@ a BAD one: Commit(x; r) = (Enc,(x), r)
(not binding)

@ a BAD one: Commit(x; r) = (H(x), x)
(not hiding)

@ a not-too-bad one: Commit(x; r) = (H(r||x), (x,r))
(problem: most likely, H was not designed for that)

SV 2024-25 Integrity and Authentication

CryptoSec

575/1098

Pedersen Commitment (Based on DL)

setup generates two large primes pand g s.t. g|(p— 1), an
element g € Z; of order g, a € Z3, and h = g# mod p
Domain parameters: (p, q, g, h)
commit Commit(X;r) = gXh" mod p for r €y Z,
unconditionally hiding Commit(X; r) = gX*2 is uniformly
distributed in (g) and independent of X
computationally binding commiting to X and opening to X’ # X
leads to solving g¥Xh" = gX'h” (mod p) hence
a=)fl:rf(mod g
This is equivalent to solving the discrete logarithm
problem with the domain parameters

SV 2024-25 Integrity and Authentication CryptoSec 576/1098

@ Integrity and Authentication

@ Key Derivation Function and Pseudorandom Generator

SV 2024-25 Integrity and Authentication CryptoSec 577 /1098

Pseudorandom Number Generator (PRNG)

new state

Y

sag] Gen

nb

SV 2024-25 Integrity and Authentication CryptoSec 578 /1098

PRNG (Informal)

Gen
components
PRNG
functionality security
Gen(state) = (nb, new state) indistinguishable from

truly random

SV 2024-25 Integrity and Authentication CryptoSec 5791098

PRNG Examples

@ stream ciphers: RC4, A5/1...
@ block ciphers with OFB or CTR mode of operation

SV 2024-25 Integrity and Authentication CryptoSec 580 /1098

Famous Failure Cases

@ early version of SSL (Goldberg-Wagner 1996):
initial seed computed from the time in microseconds and the pid
and ppid numbers (not enough entropy)
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

@ Debian OpenSSL implementation until 2008:
initial seed computed from the pid (15 bits) (other randomness
removed due to complains by the compiler purify tool)
http://metasploit.com/users/hdm/tools/debian-openssl/

int getRandornNumbGrO

return 4. // chosen by fair dice roll.
J/ quaranteed to be random.

SV 2024-25 Integrity and Authentication CryptoSec

581/1098

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://metasploit.com/users/hdm/tools/debian-openssl/

Possible Threats

@ bad coins during key generation makes the secret key guessable

@ bad coins during signing may expose the secret key
example: DSA, ECDSA
stealing an ECDSA key may mean stealing all bitcoins...

SV 2024-25 Integrity and Authentication CryptoSec 582/1098

Other Famous Failure Case

@ DSA (Bleichenbacher 2001): the 160-bit random number was
reduced modulo a 160-bit prime number g so that the final
distribution was biased

q 2160 mod g

3. 2158 2158

2159

SV 2024-25 Integrity and Authentication CryptoSec 583 /1098

Pseudorandom Function (PRF)

F
components
PRF
functionality security
Fi(+) indistinguishable from

truly random function
(as a black-box)

SV 2024-25 Integrity and Authentication CryptoSec 584 /1098

PRF: PseudoRandom Function

PRF: a deterministic function with a secret looking like random
(when the key is randomly set up)

output \ f\ input
y = ’;{)i)/- secret key

Application:
@ pseudorandom generator: generation = f;(counter)
@ key generation: key = f;(nonces, params)
@ encryption: ct = pt @ f;(nonce)
@ message authentication: tag = f;(message)
@ peer authentication: response = f;(challenge)
° ..

SV 2024-25 Integrity and Authentication CryptoSec 585/1098

PRF Security Definition

A A
(b=0) (b=1)
pick F pick s € {0, 1}*

. x . T S
many many
times y times y

ey =F(x) ey =1(x)

z V4

r—»Adv(A) =Pr[z=1b=1] - Pr[z=1|b=0]
advantage g queries, complexity t
Definition
The PRF is (g, t,)-secure if for all bounded A, Adv(.A) is negligible-

(game-based definition: see) less than e

SV 2024-25 Integrity and Authentication CryptoSec 586 /1098

Key Derivation Function (KDF)

KDF
components
KDF
functionality security
KDF(stuff) = random key min-entropy

Generate some random key from some secret (password, output from
key agreement protocols) and non-secret objects (salt, domain
parameters, exchange messages)

SV 2024-25 Integrity and Authentication CryptoSec 587 /1098

KDF Examples

@ typically: a hash function

@ PKCS#5/RFC 2898
example:

PBKDF1(password, salt, ¢, ¢) = trunc,(H°(password||salt))

where H¢ is H iterated ¢ times
NB: ¢ shall not be larger than the H length

e HKDF (RFC 5869)

HKDF(salt,input,extra, L) = trunc, (K1HK2||---||K(L)

HMAC _length
PRK = HMACsa(input)
Ki HMACepgk (extral|0)
I‘(,'+1 = HMACPRK(K,-HeXtraHi)

SV 2024-25 Integrity and Authentication CryptoSec 588/1098

@ Integrity and Authentication

@ Cryptographic Hash Function

SV 2024-25 Integrity and Authentication CryptoSec 589 /1098

Cryptographic Hashing

La cigale ayant
chanté tout [I'été
se trouva fort
dépourvue quand
la bise fut venue
pas un seul petit— Hash |— 928652983652
morgeau de mouche
ou de vermisseau
elle alla trouver
famine chez la four-
mie sa voisine ...

@ can hash a string of arbitrary length
@ produce digests (hashes) of standard length (e.g. 256 bits)

SV 2024-25 Integrity and Authentication CryptoSec 590 /1098

A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings
of fixed length.
Application: instead of specifying digital signature
algorithms on set of bitstring with arbitrary length, we
specify them with bitstrings of fixed length and use the
hash-and-sign paradigm.
Unique indexing: “uniquely” characterizes a bitstring without
revealing information on it.
Application:
@ commitment which is binding and hiding.
@ integrity check
Pseudorandom generator: generate bitstrings from seeds which
are unpredictable.

Application: generation of cryptographic keys from a
seed.

SV 2024-25 Integrity and Authentication CryptoSec

591/1098

Integrity Preservation

‘ Adversary ‘
Message
Message X
Hash Check
X
—’.
\ \ ok?

SV 2024-25 Integrity and Authentication CryptoSec 592/1098

Constructing Other Primitives with Hash

Functions
@ commitment:

Commit(X;random) = (H(Key),Key = X||random)
X if H(X|[random) = ¢
1 otherwise

Open(c, X|[random) = {
@ PRNG:
(seed||counter) — (seed||counter + 1) , H(seed|/counter)
@ KDF:
seed — trunc (H(seed||1)||H(seed|2)||H(seed||3)]| - - -)

@ domain expander for authentication (MAC or signature):

Authenticate(H(X))

SV 2024-25 Integrity and Authentication CryptoSec 593 /1098

Security for Hash Functions: Wishlist

Collision resistance: hash function h for which it is hard to find x
and x’ such that h(x) = h(x’) and x # x’.
— digital fingerprint of the bitstring
One-wayness: hash function h for which given y it is hard to find

even one x such that y = h(x).
— witness for a password

Pseudo-randomness: output “looks like random”
(how to formalize?)
— pseudo-random generation

SV 2024-25 Integrity and Authentication CryptoSec 594 /1098

Popular Threat Models for Hash Functions

Collision attack: find x and x’ s.t. x # x” and h(x) = h(x’).
example: substitution in commitment/signature

1st preimage attack: given y find x s.t. y = h(x).
example: password search based on hash

2nd preimage attack: given x find x’ s.t. x # x” and h(x) = h(x’).
example: substitution in the integrity check process

SV 2024-25 Integrity and Authentication CryptoSec 595/ 1098

Bruteforce First Preimage Attack

Input: access to a hash function h, an image y
Output: x such that h(x) =y
1: pick a random ordering of all inputs x1, Xo, . ..
2: for all i do
3 compute h(x;)
4: if h(x;) = y then

5: yield x = x; and stop
6: end if
7: end for

8: search failed
complexity: O(|output domain|)

SV 2024-25 Integrity and Authentication CryptoSec 596 /1098

Bruteforce Second Preimage Attack

Input: access to a hash function h onto a do-
main of size N, an input x

Output: x’ such that x # x” and h(x) = h(x’)
1: compute h(x)
2: pick a random ordering of all inputs x1, xz, . ..
3: for all / such that x; # x do
4 compute h(x;)
5: if h(x;) = h(x) then
6 yield x’ = x; and stop
7 end if
8: end for
9: search failed

complexity: O(|output domain|)

SV 2024-25 Integrity and Authentication CryptoSec 597 /1098

Cryptographic Hashing
@ “Message Digest” (MD) devised by Ronald Rivest
@ “Secure Hash Algorithm” (SHA) standardized by NIST
@ MD4 in 1990 (128-bit digest)
@ MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
@ SHA in 1993 (160-bit digest) (obsolete, sometimes called SHAO)
@ SHA-1 in 1995 (160-bit digest)
@ theoretical attack on SHAO (Chabaud-Joux 1998)
@ collision found on MD4 (Dobbertin 1996)
@ preimage attack on MD4 (Dobbertin 1997)
@ SHA-2 in 2002: SHA256, SHA384, SHA512 (size of digest)
@ collision found on SHAO (Joux+ 2004)
@ collision found on MD5 (Wang+ 2004)
@ theoretical attack on SHA1 (Wang+ 2005)
@ SHA-3in 2015
@ collision found on SHA1 (Stevens+ 2017)

SV 2024-25 Integrity and Authentication CryptoSec 598 /1098

Cryptographic Hashing

message

SHA2

256

SV 2024-25 Integrity and Authentication

CryptoSec

599 /1098

Encryption to Hashing

On-line hashing:
@ the message is padded following the Merkle-Damgard scheme;

@ each block is processed using an encryption function C in a
feedback mode according to the Davies—Meyer.

message[512 | [512 |
v v v
initial 2506 256
value Cr— C Cr—1

SV 2024-25 Integrity and Authentication CryptoSec 600 /1098

Merkle-Damgard’s Extension

1 64
pad — 0 0 ‘ length |
message|[512 | [512] .-
v v Y
initial 256 ~, , e o256,
value ¢ c ¢

Note: maximal length is 264 — 1 bits

2841

SHA1: |] {0,1}* — {0,1}%®
£=0

SV 2024-25 Integrity and Authentication CryptoSec 601/1098

Merkle-Damgard Theorem

Theorem (Merkle-Damgard 1989)

We construct a cryptographic hash function h from a compression
function C' by using the Merkle-Damgard scheme. If the compression
function C' is collision-resistant, then the hash function h is
collision-resistant as well.

Proof. Assume a colision h(X) = h(X")
Case 1: messages of different length
Case 2: messages of same length

SV 2024-25 Integrity and Authentication CryptoSec 602/1098

Proof of Merkle-Damgard Theorem - Case 1

Xm
x [x_J[X 1 -+ [Tpad
Y Y v
v —{ c — - —
X;
x X JL_x] -+ [pad] %
Y Y v
v —{ ¢ c — - —

C/(Hm»Xm) = C’(H;,,X,’,)

SV 2024-25 Integrity and Authentication CryptoSec 603 /1098

Proof of Merkle-Damgard Theorem - Case 2

Xn

XH)glllem

|

|

|
J H

< X
l:
Q ix
Q iss
H
Q = [Jpss

C'(H:, X;) = C'(H;, X))
where j is the last index such that H; # H; or X; # X/ O

SV 2024-25 Integrity and Authentication CryptoSec 604 /1098

Davies—Meyer Scheme

message block

encrypt — + —

chaining value
v

chaining value
digest

+ is a group law

SV 2024-25 Integrity and Authentication CryptoSec 605/1098

Bitwise Boolean Functions in SHA1

fi(b,c,d) = ifbthencelsed

= (b AND c) OR (NOT(b) AND d)
f(b,c,d) = bXORcXORd
fz(b,c,d) = majority(b,c, d)

(b AND ¢) OR (¢ AND d) OR (d AND b)
fy(b,c,d) = bXORcXORd

SV 2024-25 Integrity and Authentication CryptoSec 606 /1098

Implementation of SHA-1 Compression

Input: an initial hash a, b, ¢, d, e, 7:

a message block xg, ..., X5 8:
Output: ahash a,b,c,d, e 9:
1: for i =161t0 79 do 10
2: 11:
X; < ROTL (x;_3 XOR X;_g XOR Xi_14 12:
XOR x;_16) 13:

3: end for 14:
4: fori=1t04do 15:
5: forj=0to 19do 16:
6: t + ROTL®(a) + 17:
f/(b, c, d)+ e+x20(,_1)+,-+k,- 18:

e«~d
d«c

¢ + ROTL*(b)

b« a
a+t
end for

end for
a < a-+ anitial
b < b+ binitial
C < C + GCiitial
d < d + dhitia
€ < €+ Enitial

SV 2024-25 Integrity and Authentication

CryptoSec

607 /1098

SHA-3 based on Keccak

@ (Keccak has many possible instances, SHA-3 only kept four)

@ designed by Bertoni, Daemen, Peeters, and Van Assche
(STMicroelectronics and NXP Semiconductors, Belgium)

@ based on a sponge construction

@ uses a permutation Keccak-f[b] (or just f) with
b= 1600 = 25 x 25 (could use b = 25 x 2¢ with 0 < ¢ < 6)

@ operates on states bitstrings s represented as 3-dimensional
5 x 5 x 2¢ arrays a of bits

axy., = s[2'(5y + x) + 2]

in what follows, x, y, z are taken modulo their dimension
@ fis a sequence of n, = 12 4+ 2¢ rounds

R=toxomopob

SV 2024-25 Integrity and Authentication CryptoSec 608 /1098

One Round of f — i

R=1oxomopob
@ 0 is a linear diffusion layer using the parity of columns

4 4
0(@)xy.z = axy: &P a1 0 P aci1jz-1
j=0 j=0

@ p permutes some lanes

X 0 1\ /1
@y =2,z wpn win (5)=(53) ()

fort =0,...,23 (+ use p(a)o’o’z = a0’07z)

SV 2024-25 Integrity and Authentication CryptoSec 609 /1098

One Round of f —ii
R=toxomopol

@ 7 permutes the slices

. X 1 3
W(a)x,)@z:ax’y’z with < v > = < 10 > <

@ x has degree two
X(@)xy.z = @xyz® (Axi1y.z ® 1)axi2y.z
@ ;adds aconstantforx =y =0

«(a) _ [a0,0:®RCli], ifx= y = 0
X2 axy.z otherwise

where j; is the round index

SV 2024-25 Integrity and Authentication

CryptoSec

610/1098

The Sponge

| message||10([10*1 | | truncatey
[[[[[X /Y /Y
I _
DU > >
f f f

Y
Y
Y

rfo »o
f
cfo

algo r c d
SHA3-224 1152 448 224
SHA3-256 1088 512 256
SHA3-384 832 768 384
SHA3-512 576 1024 512

...absorb | squeeze. ..

r + ¢ = b: state s is split into two values of r and ¢ bits

SV 2024-25 Integrity and Authentication CryptoSec 611/1098

Hash Functions to Remember

SV 2024-25

algorithm | release digest comment
MD5 1991 128 broken
SHA1 1995 160 broken
SHA2 2001 224, 256, 384, 512
SHA3 2015 224, 256, 384, 512

Integrity and Authentication

CryptoSec

612/1098

Case Study: Block Chains

SV 2024-25 Integrity and Authentication CryptoSec 613/1098

@ Integrity and Authentication

@ Message Authentication Codes

SV 2024-25 Integrity and Authentication CryptoSec 614 /1098

MAC

‘ Adversary ‘
\ \ Message
M
essage Auth Verify X
X
>
\ \ ok?
CONFIDENTIAL A
Key* iAUT \JJON ‘ Key
INFEGKRY

‘ ‘ Generator

SV 2024-25 Integrity and Authentication CryptoSec 615/1098

MAC Primitive

Alice and Bob, Gen, Auth, Verify
components

MAC

functionality security
Verify,(Authx (X)) = (X, ok) unforgeability
Typically:
Auth: compute ¢ = MACk(X) and send (X, ¢)
Verify: parse (X, c) and check ¢ = MAC(X)

SV 2024-25 Integrity and Authentication CryptoSec 616/1098

Security

@ adversary objective: forge new messages
@ typically: key recovery

@ known message attack (previous picture): using authenticated
messages in transit only

@ chosen message attack: force the sender to authenticate some
messages selected by the adversary

SV 2024-25 Integrity and Authentication CryptoSec 617/1098

Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of ¢ bytes for a message X with a key K using a
Merkle-Damgard hash function with block size B bytes, digest size L
bytes. (t = L by default.) E.g. H = SHA256, B =64, L = 32.
@ If K has more than B bytes, we first replace K by H(K).
(Having a key of such a long size does not increase the security.)

@ We append zero bytes to the right of K until it has exactly B
bytes.

@ We compute
H((K & opad)||H((K & ipad)|| X))

where ipad and opad are two fixed bitstrings of B bytes. The ipad
consists of B bytes equal to 0x36 in hexadecimal. The opad
consists of B bytes equal to 0x5c¢ in hexadecimal.

© We truncate the result to its t leftmost bytes. We obtain
HMAC k (X).

SV 2024-25 Integrity and Authentication CryptoSec 618/1098

HMAC [RFC 2104]

ipad 6‘9

message

C

SV 2024-25

)(
I

Integrity and Authentication

CryptoSec

619/1098

Examples

SV 2024-25

algo | hash | B [L] t]
TLS

MD5 MD5 64 | 16 | 16
SHA SHA1 64 | 20 | 20
SHA256 SHA256 | 64 | 32 | 32
SHA384 SHA384 | 128 | 48 | 48
SSH

hmac_md5 MD5 64 | 16 | 16
hmac_md5_96 MD5 64 | 16 | 12
hmac_shail SHA1 64 | 20 | 20
hmac_sha_96 SHA1 64 | 20 | 12

Integrity and Authentication

CryptoSec

620 /1098

HMAC Security

@ (Bellare 2006) If the compression function is a PRF, then HMAC
is a PRF

@ (Kim et al. 2006) Distinguishing attack between a random
function and HMAC with HAVAL, MD4, SHA-0, or a reduced
version of MD5 or SHA-1

@ (Wang et al. 2009) Distinguishing attack between a random
function and HMAC with MD5 (needs 2°7 queries)

SV 2024-25 Integrity and Authentication CryptoSec 621/1098

CBCMAC - (A Bad MAC)

X1 Xo X3 cee Xn
\ \ \

— @ — EB PN > @

¥ ¥ ¥
CK CK CK CK

A e N e

MAC

= last ciphertext block of CBC encryption (IV = 0)

SV 2024-25 Integrity and Authentication CryptoSec 622/1098

Property of CBCMAC

X1 Xo Xn B
l s]

o] | [ex

CBCMAC(x1,..., Xn) CBCMAC(x4,..., Xn,B)

CBCMAC(X||B) = Cx (CBCMAC(X) & B)

SV 2024-25 Integrity and Authentication CryptoSec 623/1098

A MAC Forgery

Xy = random MAC(X;) = ¢
X = random MAC(Xz) = ¢
Xs = Xi|B MAC(Xs) = Cx(ce® B)
Xa = X2||B/ MAC(X4) = CK(C/ (5] BI)
B = Bacacd MAC(X:) = MAC(Xs)
Xi B B’ Xz
: l
o s
[ceemac] | [c] lck| | [cBOMAC]
¢ Ck(coB) Ck(cdaB) lod

SV 2024-25

Integrity and Authentication

CryptoSec 624 /1098

Other Attack with 1 Known Message

@ Xi = By||---||By arbitrary

@ ¢ = MAC(X1)

@ Xo = Xq||B'||Bz]| - - - || B with B = ¢ & By
@ forgery: ¢ = MAC(Xz)

B Bg,...,B,—, B’ Bg,...,B,—,

o] | e

SV 2024-25 Integrity and Authentication

CryptoSec

625/1098

Result on CBCMAC

@ insecure when used alone as a MAC
@ secure when restricted to messages of same fixed length
@ might be secure if encrypted (next constructions)

SV 2024-25 Integrity and Authentication CryptoSec 626 /1098

EMAC (Encrypted MAC) - (CBCMAC Variant)

X1 X2
\
— @
, ¥
Ck, Ck,

[

beware of ¢

SV 2024-25

X3

\

_>@

¥
Ck,

[

ollision attacks:

L

Integrity and Authentication

Xn
\/
> D
y

Ck,

Ck,

MAC

CryptoSec

627 /1098

ISO/IEC 9797 - (Another CBCMAC Variant)

X1 X2
\
— @
, ¥
Ck, Ck,

[

X3

\

_>@

¥
Ck,

[

L

slightly better resistance to collision attacks

SV 2024-25

Integrity and Authentication

Xn
\/
> D
y

Ck,

Ck,

trunc

!

MAC

CryptoSec

628 /1098

CMAC [RFC4493] - (Best CBCMAC Variant)

X1 X2 X3
\ \

— D — D

, ¥ ¥
Ck Cxk Ck

[

[

L

Ck: AES with 128-bit key K

SV 2024-25

Integrity and Authentication

Xn(|[pad)
\

> O <*—Kcage

Y
Ck

trunc

MAC

CryptoSec 629 /1098

CMAC

(previously called OMACH1)
@ case 1: x, was not padded

@ case 2: the message length is not multiple of the block length
pad it with a bit 1 and as many bits 0 as required to reach this
length

@ L = Ck(0) (encryption of the zero block)

@ ki is L shifted to the left by one bit XOR a constant if any carry
ko is ky shifted to the left by one bit XOR a constant if any carry
constant:
0x000000000000001b for 64-bit blocks and
0x00000000000000000000000000000087 for 128-bit blocks

@ actually, this is the GF multiplication by the variable x

@ (lwata-Kurosawa 2003)
if C is a pseudorandom permutation then CMAC is unforgeable
(existential forgeries under chosen message attack)

SV 2024-25 Integrity and Authentication CryptoSec 630/1098

PMAC

parameter: ¢, the MAC length
input: K and the message split into blocks x1, ..., x,
(last block can be incomplete)
1:

n—1
Yo (x,- @2 cK(O)) @ Xp © 2" C(0)
i=1

2: if last block complete: ¥ «+ ¥ @ 2~' . Ck(0) return the first ¢ bits
of Cx(X)

@ 2'. x: multiplication of x by 2/ in GF (like for OMAC)
(i.e. i times a shift with XOR if carry)

@ (Black-Rogaway 2002)
if C is a pseudorandom permutation then PMAC is unforgeable
(existential forgeries under chosen message attack)

SV 2024-25 Integrity and Authentication CryptoSec 631/1098

PMAC

X X2 X3 e Xn(||pad)
t f t t ——
2.[l» P 22.[» D 23 . [» D -»@-4—{
or0
¥ Y ¥
Ck Ck Ck
Y Y
> D > O > > D
Y
Ck
[
trunc
Y
L = Ck(0) MAC

SV 2024-25 Integrity and Authentication CryptoSec 632/1098

WC-MAC

High-level idea: MAC(x) = Enc(h(x)) for x € D with Vernam cipher
@ K: uniformly at random in X
@ Ki, K, ...: independent and uniformly distributed over {0, 1}"
@ (hk)keyk: e-XOR-universal family of hash functions from D to

{0,137
@ j: index (used only once: kind of nonce)
'\/|ACK7K17K27“_(I'7 X) = hK(X) & K;

K Ki

|

X D —>

No chosen message attack can forge a new authenticated message

Theorem (Wegman-Carter 1981)
with a probability of success greater than e. J

SV 2024-25 Integrity and Authentication CryptoSec 633/1098

Universal Hash Function

High-level idea:
for x and y fixed, the distribution of hx(x) @ hk(y) is almost flat

Definition (Krawczyk 1994)

Let (hk)ke, ik be a family of hash functions from D to {0, 1} defined
by a random key K which is chosen uniformly at random in a key
space K.

This family is e-XOR-universal if for any a and x # y in D, we have

Prihk(x) ® hx(y) = a] < e.

Note: 1 =", Pr[hk(x) @ hx(y) =a <2Mesoe >2""

SV 2024-25 Integrity and Authentication CryptoSec 634 /1098

WC-MAC - Proof — i

Cy, , Cd
X1y...,Xd
forgery <—
A ——x,j,c x¢{x,...,X4} and
hk(x)® Ki=c¢
Proof.
At the end, the attacker collects d triplets (x;,i,¢;) fori=1,...,d and

forges (x,/, ¢). Let p; = Pr[success|j]. If Vj p; < e then
Pr[success| < ¢.

Forany j ¢ [1, d], K; is uniformly distributed and independent from
C1,...,Cq, SO the probability that ¢ is a valid MAC of (x, /) is pj =2""".
(Note that 2= < ¢.)

SV 2024-25 Integrity and Authentication CryptoSec 635/ 1098

WC-MAC - Proof —ii

We have View = /\j.j:1 hx(x) ® Ki = ¢c;.
Forany j € [1,d], let View' = A,y vy Tk(X%) © K = ¢
The success probability is

p; = Prlhk(x) & K; = clhk(x)) @ K; = ¢, View', J]

Due to the distribution of Ky, ..., Ki_1, K11, ..., K4, we can see that
View' is useless in the probability.

p; = Prlhk(x)® K = clhk(X) © Kj = ¢, J]
= Prlhk(x) ® hk(x) = c @ glhk(x;) @ K; = ¢,]
PriKi=hi (xj) @¢; | hy () @ hy (x))=cB]

(Bayes) = bR) 1 xPrihk (x)®hi (x)=ce]

= Priik(x) & he(x) =cdg] < «

since K; is independent from K. O

SV 2024-25 Integrity and Authentication CryptoSec 636/1098

Example of Universal Hashing (Krawczyk 1994)

(LFSR-based Toeplitz hash function)
@ Given m and n, we define a family of hash functions hx from
D={0,1}"to {0,1}™
e Kis the set of all K = (p, s) where p(x) = 37" pjx/ is an
irreducible polynomial of degree m over GF(2) and an
s=(So,-...,Sm—1) is an m-bit string.

@ K defines an LFSR with connection polynomial p(x) and initial

state s
m—1
Sum=EP P (X0, Xn—1) = D (st Strm—1)
j:() 0<t<n
xp=1
= Xt X (Sty- .-, Strm—1)
0<t<n

@ For any mand n, the family of all hx defined from {0,1}=" to
{0,1}™is n2'~"-XOR-universal

£

SV 2024-25 Integrity and Authentication CryptoSec 637/1098

Example

p(x)=1+x+x* s=(1,0,0,0)

compute

hk(1,1,0,1,0)

r’e‘?ﬁ

144001

1 0 0 O 1
@ 0 0 0 1 1
®©® 0 0 0 O 0
®© 0 1 0 O 1
©® 0 0 0 O 0
=1 1 0 1

hK(171707170):(13170a1)

SV 2024-25 Integrity and Authentication CryptoSec 638/1098

WC-MAC using a Stream Cipher

N <« nonce
MACk k/(N,x) = hk(x) & Keystream,, y

idea: “encrypt hx(x) using a stream cipher”

CAUTION: using the same N twice could be a disaster!
(e.g. reveal information about K then allow easy forgery attacks)

SV 2024-25 Integrity and Authentication CryptoSec

639 /1098

Example (Taken From GCM Mode)

@ (mac) GMACK(IV, A)

1: set H = Cx(0'28)

2: set S = GHASH(A||0"|length(A)[0'28)

3: set T = trunc(GCTRk((1V]|0%'1), S)) (encrypt S)

4: return T
o (hash) GHASHK(Xi, ..., Xm) = XiH™ + - + XpH in GF(2128)
@ (CTR encryption) GCTRk(ct, X) =

trunCiengin(x) (Ck (C)[|Ck(ct + 1)[[Ck(ct +2)---) & X

(problem with nonce reuse: this leaks GHASHy(X) ® GHASHy(X")
which leaks H then allow forgeries; see final exam 2016-17...)

GHASH4(X) @ GHASHy(Y) = a < P(H) = afor a polynomial P
definedby X @ Y

P(H) = ahas up to m roots so GHASH is m2~'28-XOR-universal
over D: messages of up to m blocks

SV 2024-25 Integrity and Authentication CryptoSec

640/ 1098

Variant: Poly1305 [RFC7539]

one-time encryption

one-time authenticator \

,mg) = (M+2"28)r' +. -+ (my+2'%8)r+8 mod (2%° - 5)

prime

Poly1305, ((m, ...

where (r, s) is a key to be used only once and m; € {0,...,2'2¢ — 1}

example: (r,s) = Enck(nonce)

SV 2024-25 Integrity and Authentication CryptoSec 641/1098

Authenticated Modes of Operation

Message

nonce

SV 2024-25

Enc/MAC

Key*

‘ Adversary ‘

\ \ Message
Dec/Check

——

\ \ ok?

. CONFIDENTIAL ﬂ,,ey A

[[) nonce

AUTRIFEG et ON

‘ ‘ Generator

Integrity and Authentication

CryptoSec 642 /1098

Roadmap

@ home-made constructions
@ encrypt-then-MAC
@ MAC-then-encrypt
e encrypt-and-MAC
@ authenticated modes of operation
e CCM
o GCM
o AES-GCM-SIV
e CHACHA20-POLY1305

SV 2024-25 Integrity and Authentication

CryptoSec

643 /1098

Encrypt-then-MAC

(Message) (Message)

A

Cipher Key—*v *70ipher Key
Enc £ Dec
xtra yy Extra
MAC Ke l l MAC Ke!
Yy B 7 ¥ y
> MAC ™ MAC p =

CoO +CoO

example: IPSEC

SV 2024-25 Integrity and Authentication CryptoSec 644 /1098

MAC-then-Encrypt

Extra

MAC Key ———

—> MAC

:
O

<1 Message)
¥

Cipher Key —|

Enc

Adversary

i

Extra

MAC Ke!
vy Yy

™ MAC

- =

*
GO

Dec

l«—Cipher Key

7y

example: TLS (< 1.3)

SV 2024-25

Integrity and Authentication

CryptoSec

645/1098

Encrypt-and-MAC

(Message) (Message)

A

Cipher Key—*v *——C|pher Key
Enc Extra Dec
A
v v *—MAC Key
MAC Key » MAC —| Extra » MAC P-?
| g7 i
example: SSH

SV 2024-25 Integrity and Authentication CryptoSec 646 /1098

Some Tricky Additional Things

@ as soon as padding occurs, some combination may be weak

@ some problems when adversary can get advantage of a return
channel

@ many standards weak, fixed by implementations

@ example (2003): MAC-then-Pad-then-Encrypt in TLS using block
ciphers is weak

SV 2024-25 Integrity and Authentication CryptoSec 6471098

TLS using Block Ciphers

PAD

Text —Pr

MAC

~O

CBC

SV 2024-25

DEC *Q—» VER

- Text

decryption_failed 4—1

bad.record-mac

[s] [e] [c] [»] [e] [r] [] [4]

2

Integrity and Authentication

block 1

block 2

block 3

CryptoSec 648 /1098

Padding Oracle Attack: Encryption

Client : Adversary

FRAEGE W0 R D s BimElalSInlEIn

!@@FDDDDDDDD\

OO0 OO = I HHE

We would like to decrypt

SV 2024-25 Integrity and Authentication CryptoSec 6491098

Padding Oracle Attack: Decryption

Adversary : Server
!DDDDDDDDDDDDDDDD\
!E]E]@*!DDDDDDDEH
OOO0O0 0+ o oD E B KB 5 K G

’@ @ @ @” decryption_failed
t@®D=d

SV 2024-25 Integrity and Authentication CryptoSec 650/ 1098

CCM (Counter with CBC-MAC)

Roughly speaking:
1: select a nonce N (way to select and synchronize are free)
2: let T = CBCMAC(message) using N
3: encrypt T||message in CTR mode using N
More precisely, the CCM mode is defined by
@ a block cipher which accepts 16-Byte blocks
@ an even parameter M between 4 and 16 (size of the CBCMAC in
bytes)
@ a parameter L between 2 and 8 (size of the length field in bytes)

SV 2024-25 Integrity and Authentication CryptoSec 651/1098

CCM

(l message X) (nonce N ’

‘ extra a)

Yvy Y
» CBC-MAC [« ’ > CTR
Y
truncy key K
"y
b truncy (Ck (Ag))
1 C—

J. tTUnC‘X‘(CK(AOH e HCK(An))

@head) (b:)dy))

SV 2024-25 Integrity and Authentication CryptoSec 652/1098

CCM Processing

pad X with enough zero bytes to reach the block boundary
split X||pad as Bi||- - ||Bn
make By = byte,||N||length(X) where byte, encodes M and L

compute the CBCMAC of By||Bi]| - - - || Bn, truncate it to M bytes,
andget T

make A; = byte, ||N||/ where byte, encodes L
@ encrypt T||X by

Y = (T @ truncy(Ck(Ao))) | (X @ trunc x| (Ck (A1)]] - - - ||CK(An)))

SV 2024-25 Integrity and Authentication CryptoSec 653 /1098

Processing with an Extra Data

If we wish to send X together with a protocol data a which also needs
to be authenticated (e.g. a sequence number, and IP address...)

@ add a special bit in byte, which tells that a is used

@ if a has a length between 1 and 65279 bytes, encode this length
on two bytes, make length(a)||al|pad’ where pad’ consists of
enough zero bytes to reach the block boundary

@ insert it between By and B; before the CBCMAC computation

SV 2024-25 Integrity and Authentication CryptoSec 654 /1098

GCM Mode

@ (authenticated encryption) GCMAEk(IV, P, A) with plaintext P
and extra data A
1:

Ron

N o

set H = Cx(0'28)

set Jp = IV||03"1 (IV concatenated with a 32-bit counter)

set C = GCTRk(J + 1, P)

concatenate A and C with 0 bits to reach a length multiple of
128 and get A||0" and C||0

set S = GHASH(A||0Y||C||0¥|/length(A)||length(C))

set T = trunc(GCTRk(Jb, S))

return (C, T)

MAC) GMACK(IV, A) = GCMAE(IV, §, A)

CTR encryption) GCTRk(ct, X) =

o (
o (hash) GHASHy(X:,..., Xm) = XiH™ + - - + XnH in GF(2128)
o (

t

FUNClength(x) (Ck (ct)[| Ck(ct + 1) Ck(ct+2)---) & X

SV 2024-25 Integrity and Authentication CryptoSec

655/1098

GCM

©)
Y

CTR |ekey K

H = Ck(0)

{ Y
(extran J‘ hlbs o

HASH __ yGCTRk (b, S)

trunc

(@EBeD)

+ encryption on-the-fly (in stream mode)

oYY

SV 2024-25 Integrity and Authentication

CryptoSec

656 / 1098

Misuse Attack on GCM

nonce misuse is dramatic for GCM:
@ get GCMAEK(IV', P;,0) = (C;, T;) for i = 1,2 with P; of one block

@ deduce GHASHy(C||x) ©@ GHASHL(Cz|x) = Ty @© T2 with
x = (length 0)||(length 128)

@ sOH}(CiaC)+Hxaox)=Tha T
@ deduce that H is the root of H(C1 ® Co) = T1 @ Tz
(it is the only root as squaring is bijective)
after that, we can make a forgery for (IV, P, A)):
@ get GCMAE(IV, P, A") = (C', T') for arbitrary A" and P’ of
same length as Aand P

@ deduce GCMAEk(IV, P, A) =
(C'ePo P, T ©GHASHH([A, C]) ® GHASHK([A', C]))

SV 2024-25 Integrity and Authentication CryptoSec 6571098

GCM

Advantage:
@ secure
o fast
@ ubiquitous (part of TLS 1.3)
@ NIST standard
Disadvantage
@ nonce IV is short (96 bits)
e after 232 messages, Pr|collision] ~ 2732
@ limited to 2% bytes in CTR mode (64GB)
Jo = IV]|0%"4

SV 2024-25 Integrity and Authentication CryptoSec 658/1098

Variant: AES-GCM-SIV (RFC 8452)

KDF L— @

plaintext

Polyval

key

AES

CTR

D ———
- Polyval ~ GHASH

ciphertext
- misuse-resistant

- not on-the-fly encryption (needs 2 passes)

SV 2024-25 Integrity and Authentication

CryptoSec

659 /1098

The CHACHA20-POLY1305 AEAD
input: key K (256-bit), nonce N (96-bit), a plaintext P, associated data AD

: generate otkey using K and N (ad-hoc Chaha20-based PRNG)
: run ChaCha20 with K and N, and counter set to 1

ciphertext « P ¢ keystream

run Poly1305 with otkey and the message resulting from

R w2

AD||padding1||ciphertext||padding2||/length(AD) |length(ciphertext)

output: ciphertext, tag
@ ChaCha20: stream cipher

key, nonce, counter — keystream

@ Poly1305: authenticator

one-time key, message — tag

SV 2024-25 Integrity and Authentication CryptoSec 660 /1098

The CHACHA20-POLY1305 AEAD

plaintext
ChaCha20 @ ciphertext
N — K
otkey
PRNG Poly1305 tag
AD

SV 2024-25 Integrity and Authentication CryptoSec 661/1098

Authenticated Modes to Remember

mode comment
CCM CTR + CBCMAC
GCM CTR + WC-MAC
GCM-SIV CTR + WC-MAC
ChaCha20-Poly1305 | stream cipher + WC-MAC

SV 2024-25 Integrity and Authentication CryptoSec 662/1098

@ Integrity and Authentication

@ Formalism

SV 2024-25 Integrity and Authentication CryptoSec 663 /1098

Hash Function

Definition

A hash function is a tuple (D, {0, 1}7, h) with a message domain

D C {0, 1}*, an output domain {0, 1}", and one efficient deterministic
algorithm h implementing a function

h: D — {01}
X — h(X)

SV 2024-25 Integrity and Authentication CryptoSec 664 /1098

One-Wayness

Definition

A hash function (D, {0,1}7, h) is (t,)-one-way if for any probabilistic
algorithm A limited to a time complexity* t, the advantage Adv is
bounded by ¢, where

Adv = Pr[game returns 1]

Game
1. x&D > assume D is finite or specify a distribution
2: y « h(x)
3 A(y) — X
4: return 15,0y,

* including the size of the code (as for all security definitions, actually)

SV 2024-25 Integrity and Authentication CryptoSec 665/ 1098

Large-Code Inversion Attack

1: if yo = 0 then

2: if y1 = 0 then

3:

4: return 2948 > preimage of 00 - - -
5: else

6: e

7 return 8374 > preimage of 01 - - -
8: end if

9: else
10: if y1 = 0 then
11:
12: return 8635 > preimage of 10- - -
13: else
15: return 2533 > preimage of 11---
16: end if
17: end if

SV 2024-25 Integrity and Authentication CryptoSec 666 /1098

Security Against Collision Attack (Bad Definition)

Definition
nction (D, {0,1}7, h) is (¢, ¢)-secure against collisi
attacks if for robabilistic algorithm A limited t ime complexity
t, the advantage Adv IS

Ga
1: A— x, X
2: return 10— p(xry x£x!

Following this definition, no hash function with #D > 27 is secure:
collision exist, so .A can just print one!

Making a correct definition is beyond the scope of this course

SV 2024-25 Integrity and Authentication CryptoSec 667 /1098

Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple ({0,1}*, D, {0,1}7, MAC)
with a key domain {0, 1}*, a message domain D C {0, 1}*, an output
domain {0, 1}7, and one efficient deterministic algorithm MAC
implementing a function

MAC: {0,1}*xD — {0,1}"
(K,.X) — MACK(X)

(we could define a variant with nonces)

SV 2024-25 Integrity and Authentication CryptoSec 668 /1098

Security against Key Recovery

Definition
A message authentication code ({0, 1}*,D, {0,1}7,MAC) is
(g, t, ¢)-secure against key recovery under chosen message

attacks if for any probabilistic algorithm A limited to a time complexity
t and to g queries, the advantage Adv is bounded by ¢, where

Adv = Pr[game returns 1]

Game Oracle OMac(X):
1. K & {0,1}k 4: return MAC(K, X)
2; AOMac _, K7
3: return 1,_g:

(+ similar notion with known message attacks)

SV 2024-25 Integrity and Authentication CryptoSec 669 /1098

Security against Forgery

Definition

A message authentication code ({0, 1}%,D,{0,1}7,MAC) is

(g, t,)-secure against forgery under chosen message attacks if
for any probabilistic algorithm A limited to a time complexity ¢ and to
g queries, the advantage Adv is bounded by ¢, where

Adv = Pr[game returns 1]

Game Oracle OMac(X):
10 K& {0, 1}k 6: Queried « Queried U {X}
2: Queried < 0 7: return MAC(K, X)
3: AMac (X)
4: if X € Queried then return 0
5: return 1MAC(K,X):t

(+ similar notion with known message attacks)

SV 2024-25 Integrity and Authentication CryptoSec 670/1098

Forgery Security is Stronger than Key Recovery

Security
(g, t+ b, e)-secure against forgeries = (q, t, €)-secure against key
recoveries, where fy is constant

Proof: let A be a (q, t) key recovery adversary
We want to prove Pr[.A succeeds| < ¢
@ we define B:
1: run A° — K’
2: pick a fesh X arbitrarily
3: compute t = MAC(K’, X)
4: return (X, t)
@ if Steps 2-3 take time &, Bis a (q,t + t, €) forgery attack
@ Pr[.A succeeds] < Pr[B succeeds]
@ due to unforgeability, Pr[B succeeds] < ¢
@ so, Pr[A succeeds] < ¢

key recovery-breaking — forge
forgery-secure = key recovery-secure

SV 2024-25 Integrity and Authentication CryptoSec 671/1098

Security against Distinguisher (PRF)

Definition

A message authentication code ({0, 1}%,D,{0,1}7,MAC) is a
(g, t,e)-pseudorandom function (PRF) if for any probabilistic
algorithm A limited to a time complexity t and to g queries, the
advantage Adv is bounded by ¢, where

Adv = Pr[l'y returns 1] — Pr[ly returns 1]

Game Iy, Oracle O(X):
1. K & 10,11 5: if b = 0 then return F(X)
2: pick F: D — {0,1}" 6: return MAC(K’, X)
3 A% =z
4: return z
(see)

SV 2024-25 Integrity and Authentication CryptoSec

672/1098

PRF-Security is Stronger than Unforgeability

(g+1,t+ bh,e)-PRF = (q, t,e + 27 7)-secure against forgeries,
where [is constant

Proof: let A be a (q, t)-forger. We want to prove
Pr[A succeeds] <e+ 277

@ we construct a distinguisher D:
1: run A9 — (X, t)
2: if X was queried by A, output 0 and stop

3: query X to O and get ¢
4: OUtpUt 1f:[’

@ with © = MAC(K,.), we have Pr[DMACK.) — 1] = Pr[.A wins]
@ with © = F(-), we have Pr[DF() 1] <2-7
@ so,

PrlA wins] < Pr[DMACKK:) 4] — pr[DFO) 4] 4277 <e 4277

therefore, PRF-security implies unforgeability O

SV 2024-25 Integrity and Authentication CryptoSec 673/1098

PRF vs MAC

@ PRF aims at being indistinguishable
@ MAC aims at being unforgeable (unguessable)
@ secure PRF = secure MAC

SV 2024-25 Integrity and Authentication

CryptoSec

674 /1098

Security Notions

key recovery

forgery

PRF

CMA

stronger security

SV 2024-25

Integrity and Authentication

CryptoSec

675/1098

Case Study: Mobile Telephony

SV 2024-25 Integrity and Authentication CryptoSec 676 /1098

@ Integrity and Authentication

@ Bruteforce Collision Search Algorithms

SV 2024-25 Integrity and Authentication CryptoSec 677 /1098

Birthday Paradox

Theorem

If we pick independent random numbers in {1,2, ..., N} with uniform

distribution, n times, we get at least one number twice with probability
N!

p=1- mn=ny-

IfN = +o0 and n = o(N), we have p = 1 — e~ & +o(1).
Ifn~ 6v/'N, then

2
p — 1_e 7.

N—+oo
o
1
0.8
0.6 -
0.4/ Nz%f
—1-ew
0.2 P
o 1l | | || T T
0 10 20 30 40 50 60 N
o=45 0=1 =2 =3

SV 2024-25 Integrity and Authentication CryptoSec 678/1098

Birthday Paradox - Informal Proof

2
|
0
|

Z|

2
~ 1—e &
02

SV 2024-25 Integrity and Authentication CryptoSec 679 /1098

Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

n ~ V2xne "n"

n—+o00
We have
N!
L (Y
(e
= exp [—n+ (=N +n)log (1 - %)}

SV 2024-25 Integrity and Authentication CryptoSec 680 /1098

Birthday Paradox - Proof — ii

We now use log(1 —¢) = —¢ — % +o0(s?)ase — 0
n
1—-p ~ exp [—n+(—N+n)Iog (1 —N)}
2

~ exp {2N + 0(1)}

Finally, 1 — p — e~ % when n ~ 6N O

SV 2024-25 Integrity and Authentication CryptoSec 681 /1098

Collision Search |

Input: a cryptographic hash function h onto a
domain of size N
Output: a pair (x,x’) such that x # x’ and
h(x) = h(x’)
1: for 6v/N many different x do

2 compute y = h(x)

3 if T{y} defined then

4: yield (x, T{y}) and stop
5: end if

6: set T{y} =x

7: end for

8: search failed

SV 2024-25 Integrity and Authentication CryptoSec 682/1098

Collision Search Il

Input: a cryptographic hash function h onto a
domain of size N
Output: a pair (x,x’) such that x # x’ and
h(x) = h(x")
1: loop
2: pick a (new) random x
3 compute y = h(x)
4: if T{y} defined then
5: yield (x, T{y}) and stop
6: end if
7: set T{y} =x
8: end loop

we can show that the expected number of iterations is /3 x v'N
(Buffon’s needles...)

SV 2024-25 Integrity and Authentication CryptoSec 683 /1098

Collision Search Complexity

strategy memory time success proba.
2
collision search | ov'N ovV'N 1-e %
collision search Il | \/Z x VN /Z x VN 1

example for SHA-2: N = 2256 complexity ~ 2128

Note: for collision search |, this is a worst-case complexity

SV 2024-25 Integrity and Authentication CryptoSec 684 /1098

Example: Birthday Attack on EMAC
First get v/2VAC length many messages until we get two messages X;
and Xz such that MAC(X;) = MAC(Xz) by using the birthday paradox.
Deduce CBCMAC(X;) = C;'(¢) = CBCMAC(Xz)
Pick B arbitrarily. Query MAC(X;|B) = ¢’
Deduce MAC(Xz||B) = ¢

Xi B B X5
It
! 1
| CBCMACK | | Cx | | Cx | | CBCMAC, |

SV 2024-25 Integrity and Authentication CryptoSec 685/1098

Variant: Collision between Two Lists

Theorem

Ifx1,...,xm and yq, ..., Yy, are independent and uniformly distrbuted
in{1,..., N}, the probability there exist i and j such that x; = y; is

p= 1 — ef%Jro(%)

Proof.

|
ke
¢

1 mn
%)

_ emnlog(1—1ﬁ)

e_%*‘o(%)

SV 2024-25 Integrity and Authentication CryptoSec

Example Birthday Attack on PMAC

. select a block sequence x arbitrarily
: for2

Noe o k

blocklength

blockleng

for2—=z

deduce (

pairwise different incomplete blocks B;, get

ti = MAC(x||B)

pairwise different complete blocks B!, get
= MAC(x| B;)

look for a collision & = #/

Bilpad) & Bj=2""-L

(when truncation is used) check if the obtained L is correct
make forgeries using L

SV 2024-25

X Bi(||pad)
Y Y
2.L» D 22. - P -
Y Y
Ck Ck
|—> :
[S7]
Y
Ck

{

Integrity and Authentication

2= L
or0

> exercise: how?

CryptoSec

687 /1098

(Almost) Memoryless Collision Search
The Rho (p) Effect

X9 X0

@ Xiy1 = F(x)

@ p shape (due to finite set)

@ tailA=5

@ loopT=16

@ collision F(xx_1) = F(Xa4r—1)

Lemma

If F is a random function over a set
of cardinality N, we have

E(\) = E(r) = /7NJ8.

SV 2024-25 Integrity and Authentication CryptoSec 688/1098

Floyd Cycle Finding Algorithm (1967)

Tortoise and the Hare

Output: a collision for F @ whenever xp; = x; we must
Complexity: O(v/N) F mappings have 7|i
1: set xp at rand_om o wefindi=r x |—max()\,1)-|
2: a+ X (tortoise) L
3: b« x, (hare) @ exact complexity is 3i 4+ 2\
4 repeat computations F
5. a< F(a) @ which is on average
6: b+« F(F(b)) 3
7: untila=b 5E(N) + 5 E(7)
8: a< Xo 2
9: if a= b then fail = 65,71/8x VN
10: while a # b do) |
11 ayq — a as E(i) = E(\) + 3E(7)
12: boig < b (fail if A = 0)
13: a« F(a)
14: b+ F(b)

15: end while
16: output agd, boig

SV 2024-25 Integrity and Authentication CryptoSec 689/1098

Why it Works

let x; = F(X,'_1)

@ after iteration i of the repeat-until loop, we have a = x; and
b= Xz
a= bis equivalent to (i > A and 7|i)
there exists a minimum i = jp = 7 x [2] satisfying this condition

@ after iteration i of the while-endwhile loop, we have a = x; and
b= Xio-+i
a= bisequivalentto i > A

SV 2024-25 Integrity and Authentication CryptoSec 690/ 1098

Example

A Random Function

X — uv + first byte of SHA256("3.1415927-uv") mod 128
where uv is x in hexadecimal
#! /bin/bash

string="3.1415927"

for i in {0..127}
do

j=‘printf "$string-’%02x" $i | sha256sum®

j=‘echo $j | tr "abcdef" "ABCDEF"‘

j=‘echo $j | sed "s/"\(..\).*$/ibase=16;0base=2;\1/g" | bc*
j=‘echo $j | sed "s/.$//g"¢
|

j=‘echo $j | sed "s/"/ibase=2;obase=A;/g" | bc*
echo "$i -> $j"
done

Note: /1287 ~ 7

SV 2024-25 Integrity and Authentication CryptoSec 691/1098

Example

96 —> 1 —> 77 <— 20 <— 115
103 4 61— 46

86 — 51 —> 26

1 ™ A

« 40

92 120 23 43 21 60 17 79 —» 98
T ™ S N v
30 124 24— 97
~ 7 522 45 18
116 107 73— 13 P 127 1 l
4 47 75
/12 88 121 5 TR e r\l
122 —> 83 — 82 T Ses 1 Cas O 65
48 %5 62— 110 2 S ot
88 — 36 /s > }14‘\
0 126 S e s e0 13 5 ¢— 53 <— 105
N/ 91
81 76 T ~ T
2 11 84 JOCN PITS 87
63 11— 109 74 85 T 28 T
T P P
9 95 58 —> 94 — 118 80 39
35 31 — 100 9% T o0 T
70 55 71 37
\42%108 7 4 T
A ~ A
34)89~>27~>57Kl 93 50 —> 72— 15 —> 8 —> 125
11T9 104 102 ¢~ 123
38

red: points at distance < 7 to a loop

SV 2024-25 Integrity and Authentication

CryptoSec

692 /1098

Cycle Detection Algorithms

@ Floyd (1967)

@ Gosper (1972)

@ Brent (1980)

@ Sedgewick-Szymanski-Yao (1982)
@ Quisquater-Delescaille (1989)

@ van Oorschot-Wiener (1999)

@ Nivasch (2004)

SV 2024-25 Integrity and Authentication CryptoSec 693 /1098

@ Integrity and Authentication

@ How to Select Security Parameters?

SV 2024-25 Integrity and Authentication CryptoSec 694 /1098

Breaking Symmetric Cryptography

we know generic attacks are unavoidable
we do not know how to prove security

empirical security: assume (hope) there is no better attack then
known ones

security = generic attacks are untractable
security parameter for encryption/authentication: key length

Caveat: hash length must be twice the security parameter due to
the birthday paradox

SV 2024-25 Integrity and Authentication CryptoSec 695 /1098

Summary of Generic Attacks against Symmetric
Encryption

if we have a n-bit key, (N = 2")

strategy preprocessing memory time success proba.
exhaustive search 0 1 2" 1
dictionary attack 2" 2" 1 1
tradeoffs 2" 2%n 25n cte

Want a security of 257
@ selectn>s

SV 2024-25 Integrity and Authentication CryptoSec 696 / 1098

Summary of Generic Attacks against MAC

if we have a n-bit key (N = 2") and a 7-bit tag,

strategy preprocessing memory time success proba.
exhaustive search 0 1 2" 1
random guess 0 1 1 277
dictionary attack 2" 2" 1 1
tradeoffs 2n 25n 25n cte

Want a security of 257
@ selectn>s
@ selectt > s

SV 2024-25 Integrity and Authentication CryptoSec 697 /1098

Summary of Generic Attacks against Hash
Functions

if we hash onto n bits, (N = 2")

attack | complexity
preimage attack 2"
collision attack 22

Want a security of 257
@ want security against inversion only: select n > s
@ want security against collisions: select n > 2s

SV 2024-25 Integrity and Authentication CryptoSec 698 /1098

Risks When Underestimating Collision Attacks

@ some people think that “academic” collisions are of no threat as
they are no real documents

@ they are random-looking but we can cast them in real-life format
@ postscript, jpg, pdf, ...: media format looks like programming
@ we can cast a collision

. T 1:p read(addr)
[preflx J = [preflx 2: it b = 0then go to addr0

3: go to addr1

(_ collisionblockt) collisionblock2 J<— adar

s)= sufix <

@ demonstrated to forge a rogue certificate authority
[Stevens-Lenstra-Benne de Weger: Chosen-Prefix Collisions for MD5 and Colliding X.509
Certificates for Different Identities; EUROCRYPT 2007]

@ demonstrated with two arbitrary images with SHA-1
[Albertini: Exploiting Hash Collisions;BlackAlps 2017]

SV 2024-25 Integrity and Authentication CryptoSec 699 /1098

@ Integrity and Authentication

@ Other Reasons why Security Collapses

SV 2024-25 Integrity and Authentication CryptoSec 700/ 1098

Cryptanalytic Advances

@ security is often empirical
— dedicated attacks

@ heuristic security against attack methods
— arguments may be wrong, other attack methods can be
discovered

@ all eggs in the same basket (lack of crypto-diversity)
— more exposure, attacks more devastating

@ the quantum threat
— quantum computers to factor, compute discrete logarithms, or
even half security parameters [Grover 1996]

@ side channel attacks
@ wrong proofs, wrong models
@ security interference: secure + secure may be insecure

SV 2024-25 Integrity and Authentication CryptoSec 701/1098

Conclusion

@ MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
@ hash functions: SHA-2, SHA-3

@ commitment

@ bruteforce collision within complexity © (\/ane)

SV 2024-25 Integrity and Authentication CryptoSec 702/1098

Dedicated Primitives and Reductions

. OFB, CTR modes .
Block Ciphers : »{ Stream Ciphers
(PheTs) \>ream -)

DM + MD schemes CBCMAC WC MAC
Y Y
(Hash functions) ANMAC > MAC

SV 2024-25 Integrity and Authentication CryptoSec 703 /1098

References

@ Schneier. Applied Cryptography. Wiley & Sons. 1996.
Crypto for dummies!

@ Ferguson-Schneier. Practical Cryptography. Wiley & Sons.
2003.
Crypto for dummies!

@ Barkan-Biham-Shamir. Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. In CRYPTO 2006, LNCS 4117.

@ Nivasch. Cycle Detection Using a Stack. Information Processing
Letters vol. 90 pp. 135—-140, 2004.

SV 2024-25 Integrity and Authentication CryptoSec 704 /1098

Must be Known

Merkle-Damgard and Davies-Meyer schemes

parameters of hash functions: SHA-2, SHA-3

MAC: (principles of) HMAC, CBCMAC

existence of authenticated encryption modes: CCM, GCM
collision search based on the birthday paradox

security from key length

SV 2024-25 Integrity and Authentication CryptoSec 705/1098

Train Yourself

@ hash functions:
final exam 2008—-09 ex3

@ collisions:
final exam 2013—14 ex2
final exam 2012—13 ex2
final exam 2010—11 ex1
final exam 2016—-17 ex4
final exam 2017-18 ex1
final exam 2018—-19 ex2 (CBC mode)

@ GCM issue:
final exam 2016—17 ex3

SV 2024-25 Integrity and Authentication CryptoSec 706 /1098

e Public-Key Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 713/1098

Roadmap

@ Diffie-Hellman: new directions in cryptography
@ RSA standards for encryption and signature

@ the ElGamal signature dynasty

@ post-quantum crypto

SV 2024-25 Public-Key Cryptography CryptoSec 71471098

e Public-Key Cryptography
@ Public-Key Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 715/1098

Diffie-Hellman
“New Directions in Cryptography” (1976)

[Merkle, Hellman, Diffie]

@ notion of “trapdoor permutation” (no instance)
@ building a public-key cryptosystem from it

@ building a digital signature scheme from it

@ key agreement protocol

SV 2024-25 Public-Key Cryptography CryptoSec 716/1098

Merkle

“Secure Communications over Insecure Channels” (1978)

Alice Bob
generate ¢, Sy, Sz
generate ry, ..., In
n; = g(s1,1)
ki = g(s2, n;)
_ cliyall---llyn o
¥i = Cr(nj, ki, ©) pick i, solve (yi, c)
get nj, k,'
ki = g(Sz, n,-) il
output: k; output: k;

@ Complexity for Alice: N
@ Complexity for Bob: S (solving a puzzle)
@ Complexity for an attacker: N x S

exhaustive search on r; s.t. C; '(y;) has c inside

SV 2024-25 Public-Key Cryptography CryptoSec 717 /1098

Trapdoor Permutation

@ we use an encryption Perm that is easy to compute in one way
@ ...but hard in the other (to compute InvPerm)
@ ...except using a trapdoor K

SV 2024-25 Public-Key Cryptography CryptoSec

718/1098

Trapdoor Permutation

Alice and Bob, Generator, Perm, InvPerm
components

trapdoor
permutation

functionality security
Gen — (param, K) confidentiality is preserved
InvPermg (Permparam (X)) = X

SV 2024-25 Public-Key Cryptography CryptoSec 719/1098

Reversibility in Symmetric Encryption

encryption decryption

plaintext ciphertext plaintext ciphertext

o,
L2 Sl
”“Bktfﬁfu.&'-}@* el 7 \B%Lf;";n"l&\
\III\. ?’J'sr', il };% 'fll‘ ?;}&
i =

1
ﬁjw%

]

falrs y
S
5 H_'L.'.’l-.ss X

SV 2024-25 Public-Key Cryptography CryptoSec 720/1098

Hard-To-Invert Computation

SV 2024-25 Public-Key Cryptography CryptoSec 721/1098

Big Picture

confidential transmission

authenticated transmission

Adversary | | Adversary |

| | | | Message
M M M
25589° 1 Encrypt I Decrypt e s Auth Verify
—
| | | | ok?
Key} CONFIDENTIAL 3 Key} CONFIDENTIAL LY
T T T T
‘AUWF%E‘WON | ‘AUWFE‘&%WON‘
| | | |
| Adversary | | Adversary |
| | | | Message
M M M
5589 1 Encrypt ! Decrypt cesage cesage Sign Verity
—
T | | | | T ok?
AUTHENTICATION AUTHENTICATION
P
ublic Key ireeRTy T Secret Key Secret Key’ e T Public Key
| | | |
SV 2024-25 Public-Key Cryptography CryptoSec 722/1098

Digital Signature Primitive

Alice and Bob, Gen, Sig, Ver
components

digital
signature

functionality security
Gen — (pk, sk) signature is non-repudiable
Verp(Sige (X; 1)) = X

SV 2024-25 Public-Key Cryptography CryptoSec 723/1098

Application: Certificates

AUT':LE NTICATION Authority ‘AUTHENTICADT*:ON
p

Y

certificate

Y

Client 4—»(insecure ><—> Server

certificate = signature(“l certify that public key pk belongs to S”)

SV 2024-25 Public-Key Cryptography CryptoSec 724 /1098

e Public-Key Cryptography

@ Diffie-Hellman Key Exchange

SV 2024-25 Public-Key Cryptography CryptoSec 725/1098

Static versus Ephemeral Diffie-Hellman

@ Ephemeral DH: X and Y are fresh (and destroyed after protocol
completes)

@ Static DH: X and Y are used like public keys
@ Semi-static DH: one key is fixed (public key), the other is fresh

SV 2024-25 Public-Key Cryptography CryptoSec 726/1098

Ephemeral Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice

pick x at random

X+ g X

Y
K« Y* (K=gY)
erase x

securex

SV 2024-25 Public-Key Cryptography

Bob

pick y at random

Y« ¢g¥
K+ XY
erase y

CryptoSec

727 /1098

Semi-Static Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice
secret key: x
public key: X = g*

K« Y~ (K =gv)

secureg

SV 2024-25 Public-Key Cryptography

Bob

pick y at random

Y« ¢
K+ XY
erase y

CryptoSec

728 /1098

Static Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice
secret key: x
public key: X = g¥

K Y~ (K =g7)

securex

SV 2024-25 Public-Key Cryptography

Bob

secret key: y
public key: Y = g¥

K+ XY

CryptoSec

729 /1098

Forward Secrecy

@ forward secrecy: communication is still private if long term
secret keys are disclosed
example: ephemeral Diffie-Hellman (no long term secret)

@ no forward secrecy: communication might be decrypted if long
term secret keys leak in the future
example: static or semi-static Diffie-Hellman

SV 2024-25 Public-Key Cryptography CryptoSec 730/1098

Case Study: Signal

SV 2024-25 Public-Key Cryptography CryptoSec 731/1098

Diffie-Hellman Cryptography

RSA

Diffie-Hellman ——————

problem to instanciate = camal

@ trapdoor permutation: operation in Z, which can be inverted with
the factorization of n

@ probabilistic encryption: encryption returns g* along with
symEncypr v+ (message) for Y* = DH(g, g*, Y)

SV 2024-25 Public-Key Cryptography CryptoSec 732/1098

° Public-Key Cryptography

@ RSA Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 733/1098

Rivest-Shamir-Adleman (RSA)

(1978)

[Shamir, Rivest, Adleman]

@ concrete trapdoor permutation
@ — public-key cryptosystem
@ — signature scheme

SV 2024-25 Public-Key Cryptography CryptoSec 73471098

Plain RSA

‘ Adversary ‘

Message
X

Message

Encrypt
y? mod N

Decrypt

,AUTHENTICATION
[INTEGRITY | |

A
Public key e, N* Secret key d, N

‘ ‘ Generator

\ \ J

SV 2024-25 Public-Key Cryptography CryptoSec 735/1098

Why “Plain” RSA

plain RSA
textbook RSA
= vanilla RSA
= raw RSA
= RSA for mathematicians
in practice, things are a little more complicated because
@ messages are not elements of Zy

@ RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b))
which are quite dangerous

@ RSA engineering leads us to security concerns

SV 2024-25 Public-Key Cryptography CryptoSec 736/1098

PKCS#1v1.5

(Modulus of k bytes, message M of at most k — 11 bytes.)

Encryption: Decryption:

@ generate a pseudorandom @ convert the ciphertext into an
string PS of non-zero bytes so integer, reject it if it is greater
that M||PS is of kK — 3 bytes than the modulus

© construct string ©Q perform the plain RSA
00||02||PS||00||M of k bytes decryption and obtain another

© convert it into an integer integer

@ perform the plain RSA @ convert back the integer into a
encryption byte string

© convertthe resultinto astring @ check that the string has the
of k bytes 001]02||PS||00||M format for

some byte strings PS and M
where PS has no zero bytes

@ output M

SV 2024-25 Public-Key Cryptography CryptoSec 73771098

PKCS#1v1.5 Encryption

random meslsage
Y
(oo o2 Ps Yoo M))
Y
Enc
ciphertext

SV 2024-25 Public-Key Cryptography

CryptoSec

738/1098

RSA-OAEP Encryption

(H(L) is a constant) mesfage
s (@00 C)
Y
» MGF >
Y
< MGF [«

@ CmaskedSeed)(l maskedDB))

Enc

ciphertext

SV 2024-25 Public-Key Cryptography CryptoSec 739/1098

RSA-OAEP Decryption

(H(L) is a constant) mesiage
wos (@00 C)
A A
» MGF >
A
< MGF [«

A
@ CmaskedSeed) C maskedDB))
i

Dec

ciphertext

SV 2024-25 Public-Key Cryptography CryptoSec 740/1098

Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation
function MGF1 which is based on a hash function. The MGF1,(x)
string simply consists of the ¢ leading bytes of

H(x(|00000000)||H(x|/00000001)||H(x||00000002)| - - -

in which x is concatenated to a four-byte counter.

SV 2024-25 Public-Key Cryptography CryptoSec 741/1098

Signature with Message Recovery

‘ Adversary
Message
Message . Signature X
g Sign 9 Extract
X
F——
\ \ ok?
4 AUTHENTICATION] -
Secret Ke! | | Public Ke
1] T INTEGRITY | y
Generator ‘ ‘
| |
SV 2024-25 Public-Key Cryptography CryptoSec 742/1098

Trapdoor Permutation to Signature with Message
Recovery

‘ Adversary ‘
\ \
Message InvPerm | Signature Perm Message
X (Sign) [[(Extract) X
\ \
A
Secret Key | iAU-I;EEE;;‘rg?-\TON i *Public Key
Generator | ‘

SV 2024-25 Public-Key Cryptography CryptoSec 743 /1098

Plain RSA Signature

Set up: find two random different prime numbers p and g of
size £ bits. Set N = pq. Pick a random e until
ged(e, (p—1)(g—1)) = 1. (Sometimes we pick special
constant e like e =17 or e = 2'6 1 1) Set
d=e""mod((p—1)(g-1)).

Secret key: sk = (d,N).
Public key: pk = (e, N).
Message: an element y € Zy,.
Signature generation: x = y? mod N.
Extraction: y = x° mod N.
(Signature with message recovery)

SV 2024-25 Public-Key Cryptography CryptoSec

744 /1098

Plain RSA Signature

‘ Adversary ‘

Message Signature
9 Sign B
Y y? mod N

Extract
x€ mod N

A AUTHENTICATION

+Public key e, N

Secret key d, N
ecretiey [T INTEGRITY |

Generator ‘ ‘

 \ \ \

Y

N =pq
e(N)=(p—1)(g—1)
1 =ged(e, ¢(N))

d=e"" mod ¢(N)

SV 2024-25 Public-Key Cryptography CryptoSec 745/1098

Trapdoor Permutation to Signature

Message

Adversary

L

Public Key AUTHENTICATION

N
X L X0
X o
Y \
d_ |
Hash InvPerm |
Secret Key
Generator
SV 2024-25

INTEGRITY

Public-Key Cryptography

X:
o X
Y Y
Perm Hash
A d\ / d
C
ompare o

CryptoSec 746 /1098

More Generally: Hash-and-Sign Paradigm

Message

Adversary ‘

L

A

Hash

»l
X A X o
X o o
Y \ \ Y
% | |
Hash Sign Verify
\ \
\ \ r\
Secret Key Public Key AUTHENTICATION
INTEGRITY
Generator
SV 2024-25 Public-Key Cryptography

ok?

CryptoSec 747 /1098

PKCS#1v1.5

We are given a modulus N of k bytes.

@ hash the message (for instance with SHA-1) and get a message
digest.

@ encode the message digest and the identifier of the hash
algorithm into a string D.

@ pad it with a zero byte to the left, then with many FF bytes in
order to reach a length of k — 2 bytes, then with a 01 byte. We
obtain k — 1 bytes.

© This byte string 00||01]|FF - - - FF||00|| D is converted into an
integer.

@ compute the plain RSA signature.
© convert the result into a string of k bytes.

SV 2024-25 Public-Key Cryptography CryptoSec 748 /1098

Signature Verification

@ convert the signature into an integer. Reject it if it is greater than
the modulus.

@ perform the plain RSA extraction and obtain another integer.
@ convert back the integer into a byte string.

@ check that the string has the 00||01||FF ... FF|00|| D format for a
byte string D.

@ decode the data D and obtain the message digest and the hash
algorithm. Check that the hash algorithm is acceptable.

© hash the message and check the message digest.

SV 2024-25 Public-Key Cryptography CryptoSec 749/1098

PKCS#1v1.5 Signature

message

|

H
'
D

(o0 01@...@05(

Sign

!

signature

RSA signature without message recovery

SV 2024-25 Public-Key Cryptography

CryptoSec

750/1098

RSA-PSS

message

!

H

|
(o
0---01 I‘_'/

Y

< MGF [«

((maskedDB) (

I

D

Y
Sign

!

signature

SV 2024-25 Public-Key Cryptography CryptoSec 751/1098

RSA-PSS Verification

message

!

H

|
=
¥

0---01 H
)y n >~ 0/1
< MGF [«
A
((maskedDB) (H) @
A
Extract
i
signature

SV 2024-25 Public-Key Cryptography CryptoSec 752/1098

Case Study: TLS

SV 2024-25 Public-Key Cryptography CryptoSec 753 /1098

° Public-Key Cryptography

@ ElGamal Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 754 /1098

ElGamal Cryptosystem Generalized (Reminder)

Alice

input: m € (g)

Bob
secret key: x
public key: y =

gX

pick r at random

u=g"
K=y’

K =u*

v=mK

m=vK!

SV 2024-25

Public-Key Cryptography

output: m

CryptoSec

755/1098

ElGamal Cryptosystem More Generalized

Alice Bob
input: m < (g) secret key: x
public key: y = g*
.~y
pick r at random
u=9g" ——4
K=y’ K =u¥
v=Enck(m) ———— m=Deck(v) |

SV 2024-25

Public-Key Cryptography

output: m

CryptoSec

756 /1098

From ElGamal to ECIES

Alice Bob
input: me (g) secret key: x
public key: K = kG

%
pick r at random
R=1G —— %
(kellkm) = KDF(rK) (kellkm) = KDF(kR)

¢ =Enc,.(m) —— m=Decg(c)

d=MACy,(c) — 2 d=MAC,(c)

output: m

SV 2024-25 Public-Key Cryptography CryptoSec 757 /1098

ECIES (EC Integrated Encryption Scheme)

rez’
(e || ki) = KDF(rK ||extra;) (kellk) = KDF(S]|extra;)
¢ = Ency(m) m = Decy,(c)

d = MACy, (c|lextraz) Adversary d £ MACy, (c|lextraz)
\ \
Message Ciphertext Message
Encrypt Decrypt
m P ARl Alclld P m
\ \
' AUTHENTICATION [
Public k K* + + key k
ublic key fINTEGRITY 1 | Secret key
Generator
| | K = kG
select field, elliptic curve
G point of order n extra is context-based information (public)

nprime

SV 2024-25 Public-Key Cryptography CryptoSec 758 /1098

ElGamal Signature

*

Public parameters: a large prime number p, a generator g of Z;.
Set up: generate a random x € Z,_4 and compute
y = g% mod p.
Secret key: sk = x.
Public key: pk = y.

Message digest: h=H(M) € Z,_+.

Signature generation: pick a random k € Z;_,, compute
r=g“modpands= % mod p — 1, the signature is
o=(r,Ss).

Verification: check that y'r$ = g" (mod p)and 0 < r < p.

SV 2024-25 Public-Key Cryptography CryptoSec 759 /1098

ElGamal Signature

keZ}

p—1
r=g" modp | ‘ 0<r<p
s— H(Mz—xr mod p — 1 Adversary Y = g"M (mod p)
\ \ Message
Message M
Sign Verif
M 9 M,r,s M,r,s R4
F——
\ \ ok?
A AUTHENTICATION] .
Secret ke ; ; Public ke
U T INTEGRITY | e key y
Generator ‘ ‘
y =g“modp \ \

p prime

g generator of Z;

SV 2024-25 Public-Key Cryptography CryptoSec 760/1098

Drawbacks of EIGamal Signatures

@ signatures are pretty long
@ security issues related to subgroups
@ lack of security proof for arbitrary public parameter

SV 2024-25 Public-Key Cryptography CryptoSec 761/1098

Major Drawbacks of EIGamal-Like Signatures

leaking or reusing the ephemeral k
reveals the long-term secret x

@ leaking k: as p, M, r, and s are known, get x from

S:Wmod (b—1)

@ reusing k: as p, (My, r1, 1), (M, 2, S2) are known, get x from

i H(M1) — X4

So - H(Mg) — X

this happened in the software install protection of Sony PS2
this does not happen with RSA

SV 2024-25 Public-Key Cryptography CryptoSec 762 /1098

The ElIGamal Dynasty

1984 ElGamal signatures

1989 Schnorr signatures: introduced p and g
1995 DSA: US signatures

1995 Nyberg-Rueppel signatures

1997 Pointcheval-Vaudenay signatures

1998 KCDSA: Korean signatures

1998 ECDSA

SV 2024-25 Public-Key Cryptography CryptoSec 763 /1098

Generating the Public Parameters

@ pick a prime number q
@ take a random p = aqg + 1 until it is prime

@ take a random number in Z;, raise it to the power a modulo p,
and get g

e if g =1, try again (otherwise, it must be of order q in Z;)

SV 2024-25 Public-Key Cryptography CryptoSec 764 /1098

DSA Signature (DSS)

Public parameters (p, q, g): pick a 160-bit prime number q, a large
prime number p = aq + 1, h of Z; raised to the power a,
g = h? mod p such that g # 1 (an element of order q).

Set up: pick x € Z, and compute y = g¥ mod p.
Secret key: sk = x.
Public key: pk = y.
Signature generation: pick a random k € Z7, compute

r = (g mod p) mod g, and s = FMEX 164 g, the
signature is o = (r, 8).

Verification: check that r = (gH(sM’ mod)5 mod § o p) mod q.

SV 2024-25 Public-Key Cryptography CryptoSec 765/1098

DSA Signature

keZ;
q
— ok compare r and
- %(MT&? pmed g | Adversary | L"E’) r
s =0T mod g y g s ys modpmodq
\ \ Message
Message M
Sign Verif
M 9 M,r,s M,r,s R4
F——
\ \ ok?
A AUTHENTICATION,,] .
Secret key x | i INTEGRTY 1 Public key y
Generator ‘ ‘
¥y =g modp ‘ ‘

q prime

p=aqg+ 1prime
g = random? mod p > 1

SV 2024-25 Public-Key Cryptography CryptoSec 766 /1098

Benefits

@ signatures are shorter
@ no proper subgroup (only {1} and the group itself)
@ some form of provable security

SV 2024-25 Public-Key Cryptography CryptoSec 767 /1098

ECDSA

Public parameters: we use a field of cardinality g (either a power of
2, or a large prime), an elliptic curve C defined by two
field elements a and b, a prime number n larger than
2160 and an element G of C of order n. (The elliptic
curve equation over GF(q) is y2 + xy = x® 4+ ax® + bin
the characteristic two case and y? = x3 + ax + b in the
prime field case.) Public parameters are subject to
many security criteria.

Set up: pick an integer din [1, n — 1], compute Q = dG. Output
(pk, sk) = (Q, d).

SV 2024-25 Public-Key Cryptography CryptoSec 768 /1098

ECDSA

Signature generation: pick k in [1, n — 1] at random and compute

(X17Y1) = kG
r = Xymodn
s = W mod n

k

(x1 is a standard way to convert a field element x; into
an integer.) If r = 0 or s = 0, try again. Output the
signature o = (r, 8)

Verification: check that Q # O, Q € C, and nQ = O. Check that r
and s arein [1,n— 1] and that r = X7 mod n for
(X1, 1) =G+ wQ,u = H(M mod n, and
Up = 5 mod n.

SV 2024-25 Public-Key Cryptography CryptoSec 769 /1098

ECDSA Signature

keZ,
r=(k.G); mod n ‘ ‘ 670:,115?% rand
s— H(Mk)vdr mod n Adversary (TG+ §0)1 mod n
essage
| | Messag
Message M
Sign
M 9 M,r,s M,r,s Ver
>
\ \ ok?
A
Secret key d | NAUTEES(?RC@I(ION‘ +Public key Q
Generator ‘ ‘
Q=daG | |

select field, elliptic curve

G point of order n
nprime

SV 2024-25 Public-Key Cryptography

CryptoSec 770/1098

Example of Parameters and Key

secp192r1:

g = 6277101735386680763835789423207666416083908700390324961279
a = fIffffff fELFE5FF FELFEFEF fEFffffe fEFEFLEF £E££FFfcC
b = 64210519 e59c80e7 Ofa7e9ab 72243049 feb8deec c146b9bl
n 6277101735386680763835789423176059013767194773182842284081
G 03 188da80e b03090£6 7cbf20eb 43218800 f4ffOafd 82f£1012

seed = 3045aebf c8422f64 ed579528 d38120ea 1219645

(the leading “03” is for point compression)

d = 651056770906015076056810763456358567190100156695615665659
Q = 0262b12d60 690cdcf3 30babab6 e69763b4 71£994dd 702d16a5

(the leading “02” is for point compression)

SV 2024-25 Public-Key Cryptography CryptoSec

771/1098

Benefits of ECDSA (Compared to DSA)

@ public key is shorter
@ computation is lighter

SV 2024-25 Public-Key Cryptography CryptoSec 772/1098

Boneh-Lynn-Shacham (BLS) Signature

o = H(M)" L adesay L)2 o)
\ \ Message
Message M
Si
M on Mo Mo Ver
F——
\ \ ok?
A
Secret key x | NAUTEES(?RC@I(ION‘ +Public key v
Generator ‘ ‘

v=g"x€eZ, ‘ ‘

g € G generator
G, Gr groups of prime order p
e: G x G — Gr pairing
H hashes into G

SV 2024-25 Public-Key Cryptography CryptoSec 773 /1098

(Simple) Boneh-Boyen Signature (no H)

Message
M

Secret key (g1,

\ \
o =gst Adversary (o, gig) < e(gr. g2)
\ \ Message
M
Sign
9 M, o M, o Ver
>
\ \ ok?
X)ﬂ AUTHENTICATION, Youbiic Key
| I INTEGRITY | (9. 95, €(g1., %))
Generator ‘ ‘

g1, g2 generators, x € Z;

SV 2024-25

p prime
Gy, Go, Gt groups of order p
e: Gy x Go — Gy pairing

Public-Key Cryptography CryptoSec 774 /1098

Case Study: NFC Creditcard Payment

SV 2024-25 Public-Key Cryptography CryptoSec 775/1098

° Public-Key Cryptography

@ Selecting Key Lengths

SV 2024-25 Public-Key Cryptography CryptoSec 776 /1098

Popular Algorithms

@ symmetric encryption: AES (— key length)
@ hash function: SHAS3 (— hash length)
@ MAC/PRF: HMAC-SHA2 (— key length, tag length)
@ authentication encryption: AES-CCM, AES-GCM
be careful with the nonce

key agreement: DH, ECDH (— public parameters)
cryptosystem: RSA (— modulus length), EC crypto (— pp)
signature: RSA (— modulus length), ECDSA (— pp)

be careful with the randomness

be careful with the key length

SV 2024-25 Public-Key Cryptography CryptoSec 777 /1098

Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact

If we can factor N = pq then from an RSA public key, we can
compute the secret key.

@ To have RSA cryptography secure, the factoring problem must be
hard

@ Parameter for the factoring problem: modulus length
@ — NFS

SV 2024-25 Public-Key Cryptography CryptoSec 778 /1098

Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact
If we can compute the discrete logarithm x of g* then from g, g*, g¥
we can compute g.

To have DH cryptography secure then the discrete logarithm problem
must be hard for the proposed parameters:

@ prime order of the generated subgroup

@ overall structure type:
o multiplicative group of a finite field — GNFS
o elliptic curve
@ random over prime field — generic algorithms
@ random over binary field
@ special

SV 2024-25 Public-Key Cryptography CryptoSec 779/1098

Meta-comparison of Cryptographic Strengths

@ symmetric encryption/MAC: bit-security

@ RSA: check tables

@ hash with collision resistance: digest of twice bit-security

@ hash without collision resistance: digest of bit-security

@ discrete logarithm/DH in a group: twice bit-security

caveat: if subgroup of Z¥, p must be of ;? like for RSA

method sym. RSA DL EC | hash
Lenstra-Verheul 82 | 1613 | 145 | 1613 | 154 163
Lenstra updated 78 | 1245 | 156 | 1245 | 156 156
ECRYPT Il 80 | 1248 | 160 | 1248 | 160 160
NIST 112 | 2048 | 224 | 2048 | 224 224
FNISA 100 | 2048 | 200 | 2048 | 200 200
BSI — | 1976 | 224 | 2048 | 224 224

(http://www.keylength.com by Quisquater)

SV 2024-25

M

Public-Key Cryptography

CryptoSec

780/1098

http://www.keylength.com

Impact of Quantum Computers

cryptosystem key size security algorithm #gbits time
AES-GCM 128 128 Grover 2953 2.6 x 10'°Y
AES-GCM 192 192 Grover 4449 2.0 x 10%2Y
AES-GCM 256 256 Grover 6681 2.3 x 10%2Y
RSA 1024 80 Shor 2050 3.6H

RSA 2048 112 Shor 4098 28.6H

RSA 4096 128 Shor 8194 229H

ECC 256 128 Shor 2330 10.5H

ECC 384 192 Shor 3484 37.7H

ECC 521 256 Shor 4719 55H

https://nas.nationalacademis.org/read/25196/chapter/6#98

SV 2024-25

Public-Key Cryptography

CryptoSec

781/1098

https://nas.nationalacademis.org/read/25196/chapter/6#98

Q Public-Key Cryptography

@ Formalism

SV 2024-25 Public-Key Cryptography CryptoSec 782/1098

PKC

Definition

A public-key cryptosystem is a tuple (Gen, M, Enc, Dec) with a
plaintext domain M C {0, 1}* and three efficient algorithms Gen,
Enc, and Dec. The algorithm Dec is deterministic and outputs either
something in M or an error L. It is such that

Vpt € M Pr[Dec(sk, Enc(pk, pt)) = pt] = 1

where (pk, sk) is generated from running Gen. The probability is over
the randomness used in Gen and Enc.

SV 2024-25 Public-Key Cryptography CryptoSec 783/1098

How to Define Security?

@ the adversary holds the public key so he can encrypt whatever
he wants without using any external oracle

@ so, for predictible plaintext, if encryption is deterministic, it is easy
to recognize from the ciphertext
example: the encryption of a salary, the encryption of “yes” or
Hno

@ we should add randomness in the encryption and make the
encryption of arbitrary messages hard to distinguish

”

SV 2024-25 Public-Key Cryptography CryptoSec 784 /1098

IND-CPA Security

Definition
A PKC (Gen, M, Enc, Dec) is (t,)-secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive process (A1, .42)
limited to a time complexity t, the advantage Adv is bounded by ¢,
where

Adv = Pr[l'y returns 1] — Pr[lp returns 1]

Game I

Gen > (pk, sk)

Ai (pk) - (ptO’ pty, St)

if |pty| # |pt;| then return 0
Enc(pt,) 3t

Aa(st,ct) —» z

return z

DD DN =

SV 2024-25 Public-Key Cryptography CryptoSec 785/1098

Problem with Deterministic Cryptosystems

@ problem: if Enc is deterministic, then PKC is insecure!
plain RSA is not IND-CPA secure

@ modern PKC are probabilistic
example: plain ElGamal cryptosystem is IND-CPA secure

SV 2024-25 Public-Key Cryptography CryptoSec 786 /1098

IND-CCA Security

Definition
A PKC (Gen, M, Enc, Dec) is (t,<)-secure under chosen ciphertext
attacks (IND-CCA-secure) if for any interactive process (A1, .4z)
limited to a time complexity t, the advantage Adyv is bounded by ¢,
where
Adv = Pr[l'y returns 1] — Pr[lp returns 1]

Game Iy Oracle ODecq(ct)

1: Gen > (pk, sk) 7: return Dec(sk, ct)

2. _A?Dec‘ (pk) — (pto, Pty, st) Oracle ODec;(ct)

3: if |pto| # [pty| then return 0 8: if ct = ct* then return L

4: Enc(pt,) > ct* 9: return Dec(sk, ct)

5: ASP (st ct*) — z

6: return z

SV 2024-25 Public-Key Cryptography CryptoSec 787 /1098

Basic Constructions

@ plain EIGamal is not IND-CCA secure
Ax(pk)
1: pick pt, and pt, arbitrarily
2: st + pty
3: return (pty, pt,, st)

Aa(st, ct™)

: st — pty

st = (u,v)

et (u,2v)

: ODecy(ct) — pt
8: return 1pi_op,

@ RSA-OAEP and ECIES are IND-CCA secure
(under some conditions)

N O oA~

SV 2024-25 Public-Key Cryptography

CryptoSec

788 /1098

Fujisaki-Okamoto Transform

@ ~-spread and OWCPA-secure PKC (Geng, Ency, Decy)
@ one-time secure cipher (e.g. one-time pad)
@ random oracles G and H
— construct a PKC which is INDCCA-secure
(many variants possible)

Gen — (pk = pkg,sk = (sko, pkg))

cto
—~—
Encpk(pt; coins) — (Enco,pko(coins; H(coins,ctp)), pt® G(coins))
W
new coins
Decsk(cty, Cto):
1: Decg gk, (ct1) — coins

2: if cty # Enco pk, (coins; H(coins, ctz)) then return |
3: return ct; @ G(coins)

SV 2024-25 Public-Key Cryptography CryptoSec 789/1098

Fujisaki-Okamoto KEM

@ random oracles G and H
— construct a KEM which is INDCCA-secure
Gen — (pk = pky, sk = (sko, pky))

Encpk(; coins): Decsk(ct)
1: (K, r) «+ H(coins) : Decg gk, (Ct) — coins
2: ¢t + Enco pk, (coins; r) Encpy, (; coins) — (K, ct')
3: return (K, ct) if ct # ct’ then return L
return K

N ah

SV 2024-25 Public-Key Cryptography CryptoSec 790/1098

Key and Data Encapsulation Mechanisms
Hybrid Encryption

@ DEM: same as symmetric encryption

@ KEM: public-key algorithm producing an encrypted
(encapsulated) key
~ generate a random symmetric key and encrypt it using

public-key encryption
@ hybrid encryption: symmetric + asymmetric

SV 2024-25 Public-Key Cryptography CryptoSec 791/1098

KEM Primitive

Generator, KemEnc, KemDec
components

KEM

functionality security
if KemEncp — (K, C) key is confidential
then KemDecg(C) = K

SV 2024-25 Public-Key Cryptography CryptoSec 792/1098

KEM

‘ Adversary ‘

Key KemE KemD Key
- —>>
e emEnc emDec I
. | | :
. AUTHENTICATION L
Public Ke | | Secret Ke
Y T INTEGRITY | | y
‘ ‘ Generator
| |
SV 2024-25 Public-Key Cryptography CryptoSec 793/1098

KEM + DEM Hybrid Encryption

Adversary ‘

Message
DemDec
>
ok?
A
K
KemDec

AUTHENTICATION

Message
DemEnc
A
K
KemEnc
Public Key*
SV 2024-25

INTEGRITY |

J Y
| Secret Key

Generator

Public-Key Cryptography

CryptoSec 794 /1098

DEM Example

Shoup: Using Hash Functions as a Hedge against Chosen Ciphertext Attack (2000)

Enck(pt) = (pt @ G(K), MACg (x)(pt))

@ encrypt and MAC
@ one-time encryption (Vernam-based) +
one-time authenticator (WC-based)
@ example: Poly1305
@ could use an AE too (one-time: constant nonce ok)

o CHACHA20-POLY1305 (encrypt-then-MAC)
o AES-GCM
o AES-CCM (MAC-then-encrypt)

SV 2024-25 Public-Key Cryptography CryptoSec 795/1098

HPKE (Hybrib Public Key Encryption)

RFC9180

common interface for many algorithms (KDF, AEAD, KEM)
@ DHKEM (DH-Based KEM)

Gen: Enc(pk): Dec(sk, ct):
1: pick sk 4: pick x 9: pk«sk-G
2. pk«sk-G 5 ct—x-G 10: Z + DH(sk,ct)
3: return (pk, sk) 6: Z <+ DH(x,pk) 11: K«
7. K+ H(Z,ct, pk)
DH(a, B): H(Z,ct, pk) 12: return K
[next slide] 8: return (K, ct)

@ an authenticated version of DHKEM (next slide)

@ KDF: HKDF-SHA256, HKDF-SHA384 HKDF-SHA512

@ KEM: DHKEM on P256, P384, P521, X25519, X448 with KDF
@ AEAD: AES-128-GCM, AES-256-GCM, ChaCha20Poly1305
@ HPKE is a KEM + AEAD

SV 2024-25 Public-Key Cryptography CryptoSec

796 /1098

Authenticated DHKEM

include a static-DH key T for implicit authentication

Gen: DH(a, B):
1: pick sk 11: if B ¢ group then return L
2: pk+sk-G 12: if B =0 then return L
3: return (pk, sk) 13: return rep(a- B)
Enc(pkg, sks): Dec(skg, pksg, ct):
4: pick x 14: pkg < skg- G
5 ct+x-G 15: Z < DH(skg, ct)
6: pkg < sks- G 16: T < DH(skg, pks)
7: Z < DH(x,pkg) 17. K+ H(Z, T,ct, pkg, pkg)
8: T < DH(sks, pkg) 18: return K
9 K<« H(Z, T,ct,pkg, pks)
10: return (K, ct)

SV 2024-25 Public-Key Cryptography CryptoSec

797 /1098

Signature Scheme

Definition

A digital signature scheme is a tuple (Gen, D, Sig, Ver) with a
message domain D C {0, 1}* and three efficient algorithms Gen, Sig,
and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1
(accept). It is such that

VX € D Pr[Ver(pk, X, Sig(sk, X)) =1] =1

where (pk, sk) is generated from running Gen. The probability is over
the randomness used in Gen and Sig.

SV 2024-25 Public-Key Cryptography CryptoSec 798 /1098

EF-CMA Security

Definition

A digital signature scheme (Gen, D, Sig, Ver) is (g, t, ¢)-secure
against existential forgery under chosen message attacks
(EF-CMA) if for any probabilistic algorithm A limited to a time
complexity t and to g queries, the advantage Adv is bounded by e.

Adv = Pr[game returns 1]

Game Oracle OSig(X):
1: Gen > (pk, sk) 6: o < Sig(sk, X)
2: Queries « 0 7: Queries < Queries U {X}
3: A%S9(pk) — (X, 0) 8: return o
4: if X € Queries then return 0
5: return 1Ver(pk,X,a))

SV 2024-25 Public-Key Cryptography CryptoSec 799 /1098

Examples

@ ElGamal signature is EF-CMA secure (under some conditions)
@ RSA-PSS is EF-CMA secure (under some conditions)

SV 2024-25 Public-Key Cryptography CryptoSec 800/1098

Other Public-Key Cryptosystems

@ RSA
Rabin based on factoring
Paillier

ElGamal
ECC based on dis-
HECC crete logarithm

NTRU
lattice-based

McEliece “post-quantum”
TCHo

SV 2024-25 Public-Key Cryptography CryptoSec 801 /1098

0 Public-Key Cryptography

@ Towards Post-Quantum Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 802 /1098

On Real Quantum Computers

1998:
2000:
2006:
2011:
2017:
2019:

2020:
??

SV 2024-25

2 gbits

4,5, 7 gbits

12 gbits

14 gbits

17, 49 gbits

54 gbits (quantum supremacy reached)
65 gbits

Public-Key Cryptography

CryptoSec

803 /1098

The Impact on Crypto

The Sky is Falling

@ symmetric crypto: block ciphers, hash functions, MAC
— may need to double sizes (we have time)

@ public-key crypto: cryptosystems, signatures
— discrete log and factoring become easy

@ encryption: “harvest now, decrypt later” attack
@ signature: forge a binding signature with a date in past

SV 2024-25 Public-Key Cryptography CryptoSec 804 /1098

When to Worry?

Cybersecurity in an Era with Quantum Computers: Will we be Ready? [Mosca 2013]

@ x: how long information must remain secure
@ y: how long until pg-crypto is available
@ z: how long until quantum computers really exist

Theorem
Ifx + y > z then worry. J

> time

for signatures: replace x by the time a signature should remain
binding (could be mitigated with a reliable timestamp)

SV 2024-25 Public-Key Cryptography CryptoSec 805/1098

NIST PQC Agenda

~2012: NIST begins PQC project

2015:
2016:
2017:
2018:
2019:
2019:
2020:
2021:
2022:
2023:

SV 2024-25

NIST workshop on cybersecurity in a pq world
NIST plan: requirements and evaluation criteria
submission deadline to NIST PQC Round #1
1st NIST PQC workshop

NIST selects algorithms to go to Round #2

2nd NIST PQC workshop

NIST selects algorithms to go to Round #3

3rd NIST PQC workshop

NIST selects algorithms + Round #4

draft standard

Public-Key Cryptography

CryptoSec

806 /1098

NIST PQC Round #1 Submission

Signature KEM/Encryption

lattice-based

code-based
lattice-based

multivariate other

symmetric/hash-based other

multivariate
code-based

source: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/PQCrypto- April2018_Moody.pdf

SV 2024-25 Public-Key Cryptography CryptoSec 807 /1098

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/PQCrypto-April2018_Moody.pdf

NIST PQC 2022 Selected Algorithms

Signature

KEM/Encryption

Selected

CRYSTALS-DILITHIUM
FALCON
SPHINCS+

lattice
lattice
hash

CRYSTALS-KYBER

lattice

Next:

@ KYBER becomes ML-KEM in FIPS 203 (Module-Lattice)

@ DILITHIUM becomes ML-DSA in FIPS 204 (Module-Lattice)
@ SPINCS+ becomes SLH-DSA in FIPS 205 (Stateless Hash)

@ FALCON becomes FN-DSE (later)

SV 2024-25

Public-Key Cryptography

CryptoSec

808 /1098

Next Steps

@ 4th round for KEM/Encryption

@ Classic McEliece
e BIKE
e HQC
o SIKE

@ new cancidates for signature (other than lattice-based)
@ hybrids (postquantum-+classical)

SV 2024-25 Public-Key Cryptography CryptoSec 809 /1098

Hybrid KEM

Gen:

ahrbd=

Geny — (pk,, ski)
Genz — (pk,, sk»)
pk < (pky, pk,)
sk « (ski, ska)
return (pk, sk)

KEM = KEM{ &KEM

Enc(pk):

6: pk — (pky, pKs) 12:

7: Enci(pk,) — 13:
(K1,Ct1) 14:

8: Enca(pk,) — 15:
(Kg,Ctg) 16:

9: K + f(pk, K1, K2) 17:

10: ct «+ (cty, ct2)

11: return (K, ct)

@ IETF draft for TLS: K = K1 || K>
example: SecP256r1Kyber768Draft00 (ML-KEM-768&P256)

@ X-Wing with DH: K = SHA3-256(K, Kz, cton, pkpp)

SV 2024-25

Public-Key Cryptography

Dec(sk, ct):

sk — (sky, skz)

ct — (cty, ctp)
Dec+(pk;,ct1) — Ki
Deca(pk,, ct2) — Ko
K« f(pk K1, Kg)
return K

CryptoSec 810/1098

e Public-Key Cryptography

@ Lattice-Based Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 811/1098

Lattices
@ lattice: discrete subgroup of R™
@ specified by a basis:

n
L(&y,...,8p) = {Zsiéi;s1,...,snez} ={A5;5¢2"}
i=1

rank n (if the &; are independent), dimension m
@ fundamental domain (“£-tiles” of R™)

n
F(é1,...,é,,)_{z$,-é,; Vi 0§s,<1}

i=1
@ determinent/volume (m = n)
det(£) = vol(F) = |det(A)|

vol(By)

@ ‘“regular” number of lattice vectors of norm up to ris ~ det(Z)

im vol(B;)
rroo #{X € Li||X]| < r}

SV 2024-25 Public-Key Cryptography CryptoSec 812/1098

= det(L)

Lattice-Based Problems

@ CVP (closest vector problem)

given b, find ¥ € L(3i,. .., d,) making ||b — X|| small
@ SVP (smallest vector problem)
find short (nonzero) vectors X € £(ay, ..., ap)

@ ~-SVP: (SVP approximation with gap ~)
find a nonzero lattive vector X such that ||X|| <y minges_ oy [|¥||

s easy for v > 274" (LLL algorithm)
—usedfory~n)
— NP-hard for v < nreetesa

SV 2024-25 Public-Key Cryptography CryptoSec 813/1098

Learning with Error

@ LWE (learning with error):
given access to a (&, (4, S) + small mod q) generator, it is hard to
recover

@ typical LWE variant:
given a random A and y = AS + € mod g with € small, it is hard to
recover S

@ typical distribution for €: Gaussian of scale o ~ \/q

- LE12
2

density probability of &: e~

= 4 1 +oo > gL I'IO'2
E(|lel):Z; ef.e”"" dej= 5 = O(nq)
i=1 @

j——00

SV 2024-25 Public-Key Cryptography CryptoSec 814 /1098

Primal Attack on LWE

reduction to SVP (then use the BKZ algorithm):

é
}7:A§+émodq<:>(§)espan(8)
1
with
g -A 'y 0
B=|0 1 0
0 0 1 1

— W0 *
— 0l ®!

since ~
ql Ay
o I 0
0 0 1

the lattice has “volume” det(B) = g" and

V1€]12 + ||8]]2 + 1 = O(y/nq) is unusually short (for n < g) so it must

be the shortest vector

SV 2024-25 Public-Key Cryptography CryptoSec 815/1098

Module Lattices

“interpret vectors as polynomials and define multiplication”

example:
£=2402]/(2" +1)

SV 2024-25 Public-Key Cryptography CryptoSec 816/1098

The Regev Public-Key Cryptosystem

pick v € {0,1}"

¢ =vV!Amod q ‘ ‘ d=c; — ci§mod q

cc=x|2]+V'bmodq Adversary x' st.d—x"[Z] small
| |
Message Ciphertext Message
g Encrypt 4 Decrypt - 9
x € {0,1} (c1,) (c1,) X
| |
AUTHENTICATION A .
Public key A, 5+ f y INTEGFSITYO f | Secret key s
‘ ‘ Generator
\ \ 7}
qprime,e >0
P <qg<2m,m=(1+¢e)(n+1)log,q _ Y
a— 1 § €z
- 2
\/ﬁlogzn Ac zg7><n
x: Ei ~ N(0,q), & = |E] e<+x I=1,....m

b = AS+ & mod
lattice A.2" + q.2" = span (A stemodg

q O
O'q

SV 2024-25 Public-Key Cryptography CryptoSec 817 /1098

Meta (PQ) Cryptosystem

pick sparse t, e, f

 S=txd+f-exsk
W = ¢ + encode(pt)

W=V—-Ux sk

U=txA+e A
V =t x B+ f + encode(pt) dversary pt = decode(W)
Message Ciphertext Message
Encrypt Decrypt
o A A w.v) ® ot
| |
' AUTHENTICATION I
Public key A, B* + + ki k
ublic key A, i INTEGRITY i | Secret key s

algebras with norm
decode(W) = arg ming || W — encode(pt)||

SV 2024-25 Public-Key Cryptography

Generator

A

Y

pick A
pick sparse sk, d
B=Axsk+d

CryptoSec

818/1098

Examples
@ FrodoPKE-640: g =2, m=n=8,n=640,(=2

Sk, B,dEZgXﬁ AGZZZ t, U7eezg><n \/7 f7 W76€ZZ7><F7

_ . g _9

X1 = max|((%,+3) mod) - 3
¢

(encode(pt))i; = 427> 2 Pty i_1yni 1))k
e

o NewHope512CPA-PKE: g = 12 289, n = 512
sk, A B,d.t e f UV, W,35eZyz]/(z" +1)

Soxe| = el 3 moss) -

n
encode(pt) = gZ(z"*1 + Z1+25)pt,
i—1

max
1

SV 2024-25 Public-Key Cryptography CryptoSec 819/1098

Crystals-Kyber

@ g=3329, n=256
sk,A,B,d,t,e,f,U,V,W,§ € Z4[z]/(Z2" + 1)
@ Fourier-like transform: there is an isomorphism
P(2) € Z4[2]/(2" +1) < (P(Co), P(G1), -5 P(Cn1))
when 27 +1 = (2~ (o) (2 — (o 1)

good news: it is easier to multiply!
bad news: the roots of z" + 1 are in GF(g?)

@ encoding/decoding technical

SV 2024-25 Public-Key Cryptography CryptoSec 820/1098

Facts about the Kyber Field

The Number Theoretic Transform (NTT)

n=256,q=23329=13n+1,(=17
@ (isarootof z'% 41
@ z"+1= H:{ZO(ZZ _ <2k+1)
@ Z,[z]/(2" + 1) is isomorphic to [[,25 Z4[2]/(22 — ¢%+1) if the
factorization of z" + 1
@ 1-to-1 correspondence between P(z) € Z4[z]/(z" + 1) and
P = (P(2) mod (22 = (¥*")) 4128

@ in the NTT domain, additions and multiplications are
coordinate-wise

SV 2024-25 Public-Key Cryptography CryptoSec 821/1098

Kyber K-PKE

name security n q Kk m mno dy a,
ML-KEM-512 128 256 3329 2 3 2 10 4
ML-KEM-512 192 256 3329 3 2 2 10 4
ML-KEM-1024 256 256 3329 4 2 2 11 5

Gen: Sample,(n):
1: pick Ain NTT domain (k x k) 9: pick X1, ..., %, + {0,1}¢
2: s, e « Sample, (1) 10: pick J4,. .., i, « {0,1}7
3: §+ NTT(s) 11: return > X - >y
Z ?e:__,{q\l:rg(i) 5 expected value: 0
: AT i in/2
6 pk < (1. A) variance: n/
7: sk« §
8: return (pk, sk)

SV 2024-25 Public-Key Cryptography CryptoSec 822/1098

Kyber K-PKE

Enc(pk, pt):

1:

—_ -

TV N s eDN

pk — (1, A)

r + Sample(n)

ey « Sampley(12)

e < Sample,(n2)

P NTT(r)

U+ NTT (A x 7) + e
u < Decompress;, (pt)
v NTT ' (H x P) + e
¢y <+ Compress, (u)

¢z < Compress, (V)
return (¢, ¢2)

Dec(sk, c1, ¢2):

12:
13:
14:
15:
16:
17:

u < Decompress (c1)

v < Decompress,, (¢2)

sk — &

w — v—NTT (8" x NTT(u))
pt < Compress;(w)

return pt

Compress (x):

+p 18:
19:

yi < [(29/9)x| for all i
return y

Decompress,(y):

20:

xi < [(g/29)y| for all i

21: return x

Decompress, o Compress 4 rounds to multiples of 27

SV 2024-25

Public-Key Cryptography CryptoSec

823 /1098

K-PKE (Unoptimized) 0 = 6r + 6 — S6x
w =6 +rndy — srndz + [(g/2)pt])

pick sparse r, e1, &> 1
¢ = Roundg, (A x r + ey) W=20C — S X Cy
o = Roundy. (1 x 1 + & + [(a/2)pt)) Adversary | pt = [(2/q)w])
| |
Message Ciphertext Message
— - Encrypt Decrypt
pt » (c1, ¢2) (c1,02) » pt
| |
A
Public key A, t* \AU-II—EES(?R‘CI?\F(ION i | Secret key s
‘ ‘ Generator

\ \ J
Y

pick A
pick sparse s, e
t=Axs+e

SV 2024-25 Public-Key Cryptography CryptoSec 824 /1098

FO Variant for IND-CCA KEM (in ML-KEM)

Gen: Enc(pk):
1: Geng — (pkyg, sko) 7. pick coins
2: pk < pk, 8: (pt, r) < G(coins||H(pk))
3: pick z 9: ¢t < Encg pk(coins; r)
4: h + H(ek) 10: return (pt, ct)
5: sk < (sko, pk, h, 2) Dec(sk, ct):
6: return (pk, sk) 11: sk — (sko, pk, h, 2)

12:
13:
14:
15:
16:
17:

coins « Decy g, (Ct)
(pt, r) + G(coins| h)
pt « J(z||ct)

ct’ « Encg pk(coins; r)
if ct # ct’ then pt « pt
return pt

SV 2024-25 Public-Key Cryptography CryptoSec 825/1098

e Public-Key Cryptography

@ Hash-Based Cryptography

SV 2024-25 Public-Key Cryptography CryptoSec 826 /1098

Lamport (One-Time) Signature Scheme

@ Parameter: n, the hash length

@ Secret key: (skip)i=1,....nb=0,1

@ Public key: (OW(sk;))i=1....,n.b=0,1

@ Signature of m: (sk; y(m),)i=1,....n

o Verification: OW(o;) = pkK; 1y m), fori=1,....n

@ possible improvement for a shorter secret key:
ski » = PRFseed(i, b) and keep seed

@ possible improvement for a shorter public key: hash the public
keys

@ main drawback: large signature size, one-time pk use

SV 2024-25 Public-Key Cryptography CryptoSec 827 /1098

Lamport (One-Time) Signature Scheme - Example

en=4
@ Secret key: seed
@ Public key: pk = H(all k;) with

ki, = OW(PRFgeeq(f, b)) i=1,...,n, b=0,1
@ Signature of m with H(m) = 0101:

o1 = PRFseed(1a0) 5 k1,1 g2 = PRFseed(271) 5 k2,0
03 = PRFseed(SaO) s k3,1 04 = PRFseed(4a1) s k4,0

@ Verification:

k1,0 = OW(U1) k271 = OW(ag)
kso = OW(o3) ka1 = OW(04)

verify pk = H(all k;)

SV 2024-25 Public-Key Cryptography CryptoSec 828/1098

Winternitz (One-Time) Signature Scheme
@ Parameters: power-of-2 w, hash length nlog, w

/ log n
n=n+ Iogw+1

@ Secret key: (skj)i=1,..
@ Public key: (OW"(sk;))i=1,...n
@ Signature of m:
1: parse H(m) = ji| - - |jn with j; € {0,...,w — 1},

2: parse Y i (W — 1 — i) = [t |-+],
> ji,...,Jp Satisfies a checksum:

(Zﬁ) + lnsal -+ lin] = n(w = 1)
i=1

3: o+ (OW/(sk;))j—1
@ Verification:

1: compute ji|- - - | as above

2: check OW" ¥ (¢;) = pk; fori =1,....n’
@ possible improvement: all pk; in a Merkle tree or an accumulator
@ possible improvement: sk; from seed

.....

SV 2024-25 Public-Key Cryptography CryptoSec 829/1098

Attack with No Checksum

..... n
@ Signature of m:
1: parse m = jy| - - |j, with jj € {0,...,w — 1},
2: 0+ (OW/(sk;))iz1
@ Verification:
1: compute ji|- - - |j» as above
2: check OW" /i (¢;) = pk; fori=1,...,n
@ given (m, o) we can forge the signature o’ of any m’ = ji| - - - |j,
suchthatji > jifori=1,...,n

n

.....

o = oW/ (o4)

@ idea: hash the message so that /;j/ > j; occurs with negligible
probability

SV 2024-25 Public-Key Cryptography CryptoSec 830/1098

FORS (Few-Times) Signature Scheme

@ Parameters: k, t
@ Secret key: (Sk,',j),':1 ’’’’ kj=1,....t
@ Public key: (OW(Sk,'J)),"j
@ Signature of m:
1: parse H(m) = ji| - - - |jx with jj € {1,...,t},
2: 0 (Ski,j,)i:1
@ Verification:
1: compute ji|-- - |jx as above
2: check OW(o;) = pk;; fori=1,... Kk
@ tricky selection of parameters to make it secure
@ same possible improvements

77777

SV 2024-25 Public-Key Cryptography CryptoSec 831/1098

Trying to Attack FORS

@ Secret key: (sK;;)i=1,... kj=1,...t

@ Public key: (OW(sk;)i,

@ Signature of m:
1: parse H(m) = ji| - - - |k with j € {1,..., 1},
2: 0 (Sk/’j,)/:1 ,,,,, K

@ collect g signatures

Sign(i ||~ Iljk)

Sk17j11 g ey Skk,];

Sign(ifll -+ i) = sk, skip
@ hash a new message until A, ji € {j!,....,j7}
K
@ complexity is (é)

@ idea: make sure that g remains small (“few-times signature”)

SV 2024-25 Public-Key Cryptography CryptoSec 832/1098

Sphincs+: a Hash-Based Signature Scheme

@ Secret key: seed

@ Public key: key + root of a Merkle tree, with leaves being roots
of FORS trees (generated from secret seed)
@ Signature of m:
1: pick a random R
2: parse H(R, key, m) as a digest and the address of a FORS
tree
3: sign the digest using this FORS tree
4. 0 + (R, FORS.signature, Merkle)
@ Verification:
1: parse H(R, key, m) as a digest and the address of a FORS

tree
2: verify FORS signature of digest with this FORS tree

SV 2024-25 Public-Key Cryptography CryptoSec 833/1098

Conclusion (on Chapters 2,3,4,7)

@ two families: RSA (factoring-based) and DH (discrete log-based)

@ does not replace symmetric cryptography: used for key
exchange only

@ more compact data using elliptic curves
@ new: digital signatures
@ PQ-crypto

SV 2024-25 Public-Key Cryptography CryptoSec 834/1098

References

@ Merkle. Secure Communications over Insecure Channels.
Communications of the ACM vol. 21, 1978.

@ Lenstra-Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology vol. 14, 2001.

@ Regev. On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography. Journal of the ACM vol. 56(6), 2009.

SV 2024-25 Public-Key Cryptography CryptoSec 835/1098

Must be Known

@ the big picture with the 4 primitives

@ Diffie-Hellman key agreement protocol
@ ElGamal cryptosystem

@ RSA

@ PKCS#1

SV 2024-25 Public-Key Cryptography CryptoSec 836/1098

Train Yourself

RSA encryption: midterm exam 2008—09 ex2

RSA signature: final exam 2010-11 ex2

PKC construction: final exam 2009-10 ex3
signature construction: final exam 2008—09 ex2
trapdoor in DSA: final exam 2014—15 ex1

DSA with related randomness: final exam 2014—15 ex2
bad DL-based signature: final exam 2015-16 ex1
Pedersen commitment: final exam 2012—-13 ex5
Learning Parity with Noise: final exam 2017-18 ex2
Mersenne cryptosystem: final exam 2018-19 ex1
PKC vs KEM vs KA: final exam 2018—19 ex3
hash-based signature: final exam 2022—-23 ex2

SV 2024-25 Public-Key Cryptography CryptoSec 837/1098

0 Trust Establishment

SV 2024-25 Trust Establishment CryptoSec 841/1098

Roadmap

@ access control: challenge-response, strong authentication
@ password-based cryptography

@ secure communication channels

@ setup by narrowband channel

@ setup by a trusted third party: Kerberos, PKI

SV 2024-25 Trust Establishment CryptoSec 842/1098

@ Trust Establishment
@ Access Control

SV 2024-25 Trust Establishment CryptoSec 843 /1098

Application: Access Control

many scenarios:
@ access to a computer
@ access to a door: “Sésame”
@ access to a mailbox
@ access to a service through the Internet

access control = peer authentication

SV 2024-25 Trust Establishment

CryptoSec

844 /1098

Password Authentication Protocol (Step 1)

@ PROBLEM: authenticate a client to a server
@ HYPOTHESIS 1: channel to server keeps confidentiality
@ example:

o physical access
@ secure channel from semi-authenticated setup
(client authenticates the server e.g. using TLS)

SV 2024-25 Trust Establishment CryptoSec 845/1098

Password Authentication Protocol — i

@ server keeps a database of (ID, password) entries
@ channel to server keeps confidentiality

Client Server

ID,password

get entry (ID, w)
check w = password

Problem: if adversary has access to database he can get the
password

SV 2024-25 Trust Establishment CryptoSec 846 /1098

Password Authentication Protocol —ii

@ server keeps a database of (ID, OW(password)) entries
@ channel to server keeps confidentiality

Client Server

ID,password

get entry (ID, w)
check w = OW(password)

Problem: multi-target invertion attacks
(specially when password have low entropy)

SV 2024-25 Trust Establishment CryptoSec 847 /1098

Password Authentication Protocol — iii

@ server keeps a database of (ID, salt, OW(password, salt)) entries
@ channel to server keeps confidentiality

Client Server

ID,password

get entry (ID, salt, w)
check w = OW(password, salt)

advantages:
@ avoid multi-target bruteforce attacks from database
(does not avoid single-target exhaustive search from database)

SV 2024-25 Trust Establishment CryptoSec 848 /1098

Password Access Control Using Salt

Password Salt /(:\\ Password
4 | | Y
N
Hash \ 7) \ Hash
| |

| | '

| |

| |

| M |
Enrolment | Record | Control

SV 2024-25 Trust Establishment CryptoSec 849 /1098

Example: UNIX Password Access Protocol

User Work station
login?
type ID D
password?
type pwd pwd
ypep check using a
database storing

(ID, salt, OW(pwd, salt))

SV 2024-25 Trust Establishment CryptoSec 850 /1098

UNIX Passwords

pwd|(56) ID
") |
0—~DES|—>~DES|—> -+ —»~DES—>/etc/passwd
A
i i | f
salt (12)
f
clock

SV 2024-25 Trust Establishment CryptoSec 851/1098

Examples

@ UNIX password authentication

@ Basic Access Control in HTTP [RFC2617]
@ IMAP4rev1 [RFC2060]

@ tequila authentication at EPFL

SV 2024-25 Trust Establishment CryptoSec 852/1098

tequila@epfl

1: request

4: redirect,marker m

Client 9

: request,marker m

12: service

Login for the servica
Zoom

5: marker m

Username.

Password

@Securty coq) togn | heip)

6: prompt,server s

7: answer.

Tequila

8: redirect,marker m

Engliah] [Francaie] [Deutsch]

2: server s,attributes

3: marker m

Server

10: check,marker m

11: ok

problem: not sure the prompt comes from tequila
privacy: Tequila warns if a sensitive attribute is requested by Server

SV 2024-25 Trust Establishment

853 /1098

Pros and Cons

Pros

@ the server does not keep the password (only a digest)

@ the client need not run any calculation (nice for human clients!)
Cons

@ does not work through a channel without confidentiality
protection: the password can be compromised

SV 2024-25 Trust Establishment CryptoSec

854 /1098

Password Authentication Protocol (Step 2)

@ PROBLEM: authenticate a client to a server
@ HYPOTHESIS 2: adversary is passive

@ example: unencrypted semi-authenticated channel (client
authenticates the server e.g. using TLS but they are not allowed
to use encryption)

SV 2024-25 Trust Establishment CryptoSec 855/1098

Passive vs Active Adversary

@ passive adversary: only listen to communications and tries to
get credential to later pass access control

@ active adversary: can interfere with client or server
communications e.g. man-in-the-middle

SV 2024-25 Trust Establishment CryptoSec 856 /1098

Challenge/Response Protocol

@ server keeps a database of (ID, secret) entries
@ adversary is passive

Client Server
ID
get entry (1D, secret)
challenge ¢ pick ¢ at random
response r

r= PRFsecret(C)

check r = PRFsecret(C)

SV 2024-25 Trust Establishment CryptoSec 857 /1098

Challenge/Response Protocol

Secret

PRF

Client

SV 2024-25

Trust Establishment

Secret
random
| Challenge |
\ \
A Y
\ \
\ | PRF
\ \
Y
| Response | _
\ | “Server

CryptoSec

858 /1098

Pros and Cons

Pros
@ resistance to passive adversary (if secret has large entropy)
Cons

@ the server must keep the secret and strongly protect the
database

@ vulnerable to relay attacks
@ vulnerable to passive offline attacks (if secret has low entropy)

SV 2024-25 Trust Establishment CryptoSec 859 /1098

Examples

e GSM

@ Digest Access Control in HTTP [RFC2617]

@ Bluetooth peer authentication

@ access control to UBS account (later in this chapter)

SV 2024-25 Trust Establishment CryptoSec 860 /1098

Case Study: Bluetooth

SV 2024-25 Trust Establishment CryptoSec 861 /1098

S/Key - OTP [RFC2289]

possible hash function H: md4, md5, shal

Client Server
choose w - s at random
store pi,..., PN SPu PN pi « HNT=i(w, s)
i1 i+ 1,p <+ po
reql.Jest
recompute or from list otp-(H) I8
y

y < pi check H(y) =p
: Dy, i i+1

w must have a large entropy
challenges must be authenticated
responses shall be protected against delays in delivery

SV 2024-25 Trust Establishment CryptoSec 862 /1098

HMAC-Based One-Time Password (HOTP)
[RFC4226]

HOTP generator (client) and HOTP validator (server)
HOTP(K, C) = DT(HMAC(K, C)) mod 10¢

@ uses HMAC-SHA1 (output of 20 bytes)

@ C (8 bytes) counter synchronized between client and server
@ K shared secret
°

DT: read 4 consecutive bytes of the input starting from the one of
index equal to the last four bits of the input

T number of unsuccessful attempts before the server blocks
s: size of a look-ahead window (to resynchronize the counter)
d: digit length of HOTP values in decimal

SV 2024-25 Trust Establishment CryptoSec 863 /1098

Time-Based One-Time Password (TOTP)
[RFC6238]

@ set C to a function of the cuttent time

e C = m=h (typically: X = 30sec)

@ can use SHA2

@ application: Google Authenticator, Microsoft Authenticator
@ used for 2-factor authentication

SV 2024-25 Trust Establishment CryptoSec 864 /1098

Human Factor against Password Access Control

@ weak passwords: short, trivial (in dictionaries, first name)
@ long passwords are hard to remember

@ people are lazy (or don’t want to be bothered)
write passwords on post'it, bypass security protocols, ...

SV 2024-25 Trust Establishment CryptoSec 865/1098

Alternate Authentication Means

@ from what you know: password
always available (unless forgotten)
©must address the human factor

@ from what you possess: secure token (smart card, dongle,
securelD, key lock)
tamper proof, can perform cryptographic operations
@can be stolen, lost, forgotten

@ from what you are: biometrics
always available
®fuzzy, not very secure, threat to humankind, impossible to
change

strong authentication = authentication using at least two methods
(2-way authentication)
example: smart card + PIN code

SV 2024-25 Trust Establishment CryptoSec

866 /1098

Example of Critical Application: UBS E-Banking

[E-banking from a browser]

SV 2024-25 Trust Establishment CryptoSec 867 /1098

Requirements for e-Banking

@ strong bidirectional authentication

@ confidentiality of communication

@ integrity of communication

@ non-repudiation of transaction

@ resilience to clients in hostile environment

SV 2024-25 Trust Establishment CryptoSec 868 /1098

Example: (Old) UBS E-Banking

@ type contract number
© insert smart card
0 switch calculator on
© type PIN code
smart card e read challenge, type it on calculator keyboard
e read response, type it on browser interface

challenge response
card reader challenge
\;v:g d|s|;2le?j‘ __Wweb interface
board response

@ smart card + external reader (calculator)
@ challenge-response protocol

SV 2024-25 Trust Establishment CryptoSec 869 /1098

Example: (New) UBS E-Banking

#UBS

E-Banking

Access app login

ppppppppp

@ UBS app installed on smartphone (tedious setup)
@ biometric access to app
@ scan QR code and report to UBS

SV 2024-25 Trust Establishment

CryptoSec

870/1098

@ Trust Establishment

@ Password-Based Cryptography

SV 2024-25 Trust Establishment CryptoSec 871/1098

Password-based Access Control Protocol

Alice Bob
password: w password: w
random tape: ra random tape: rg
_—
-+
—_—
-+
—_—
-

output: ok (or abort)

SV 2024-25 Trust Establishment CryptoSec 872/1098

Password vs Secret Keys

@ secret keys are stored by computers (can be pretty long)
@ passwords are also kept in human memories
@ typically: password have less than 48 bits of entropy

SV 2024-25 Trust Establishment CryptoSec 873/1098

Online Dictionary Attack: a Generic Attack

generic
1: repeat
2 make a new guess W following a dictionary
3 simulate Alice with password input W to interact with Bob
4: until Bob accepts
5: print w

a protocol is secure if this attack is the best one

SV 2024-25 Trust Establishment CryptoSec 874/1098

Online and Offline Passwords Recovery

@ increasing
delay before
new attempt

@ blocked after
xX trials

online offline
method | try to connect us- | get a witness look
ing a guess for | foraguesswhichis
the password until | consistent with the
it works witness
countermeasure

@ password with
large entropy

@ use salt
(mitigate
multi-target)

@ leak no
witness

SV 2024-25

Trust Establishment

CryptoSec

875/1098

(Bad) Example: Challenge/Response Protocol

Alice (ID) Bob
password: w password: w
request
chal pick chall
res = PRF,(chall) e check res = PRF,(chall)
output: ok

subject to offline exhaustive search

SV 2024-25 Trust Establishment CryptoSec 876 /1098

Password-Based Authenticated Key Agreement

Alice Bob
password: w password: w
random tape: r4 random tape: rg
_—

-

—_—
<—

_—

.<—
output: K output: Kg

@ functionality: Kx = Kg = K
@ security

@ active adversary learns (almost) nothing about w
o if party ends on K the active adversary has no clue about K

SV 2024-25 Trust Establishment CryptoSec

877 /1098

A New Primitive

Alice and Bob, Proto,, Protog

components
PAKE
functionality security
Protoa(w) <> Protog(w) confidentiality of w, K
1 1
K = K

SV 2024-25 Trust Establishment CryptoSec 878/1098

Key Agreement

Alice
password: w

pick Xa, ya < g*

check MAC
Zp Y

output: z4

: a (Bad) Idea

YalIMACw(ya)

¥8|IMACw (ys)

(2= ")

Bob
password: w

check MAC

pick xg, yg <+ g*®
Zg <+ Yy°

output: zp

subject to offline exhaustive search

SV 2024-25

Trust Establishment

CryptoSec

879/1098

Key Agreement: Another (Bad) Idea

Alice Bob
password: w password: w
RSA.Gen — (N,e,d) ——° 5 pick K
K «+ Decy(8) mod N +———— ¢« Ency(K® mod N)
output: K output: K

@ if K is later revealed, offline exhaustive search possible
@ partition attack: eliminate all W such that Decy(¢) > N

SV 2024-25 Trust Establishment CryptoSec 880 /1098

SPAKE2

Abdalla, Pointcheval [CT-RSA 2005]

Alice Bob
password: w password: w
pick x € Z7, X «+ g¥ pick y € Z¥, Y + ¢g¥

X e Xgy X v vy
Ko (Y*/g8) «L— Kg (X*/g¥)
K} < KDF(A, B, X*, Y*, w, Ky) Kj < KDF(A, B, X*, Y*, w, Kg)

output: K, output: Ky
(public parameters: g prime, g, g, gs generators of the same order-q grouy

SV 2024-25 Trust Establishment CryptoSec 881/1098

References on Password-Based Cryptography

@ C. Boyd, A. Mathuria.
Protocols for Authentication and Key Establishment.
Information Security and Cryptography, Springer Verlag, 2003.

@ S. M. Bellovin, M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks.
In IEEE symposium on Research in Security and Privacy, IEEE
Computer Society Press, pp. 72—-84, 1992.

SV 2024-25 Trust Establishment CryptoSec 882/1098

Case Study: The Biometric Passport

SV 2024-25 Trust Establishment CryptoSec 883 /1098

@ Trust Establishment

@ From Secure Channel to Secure Communications

SV 2024-25 Trust Establishment CryptoSec 884 /1098

The Cryptographic Trilogy

Adversary

\ \

Message N |
| N ||

\ \

Y

X

@ Confidentiality (C): only the legitimate receiver can get X

@ Authentication + Integrity (A+l): only the legitimate sender can
insert X and the received message must be equal to X

SV 2024-25 Trust Establishment CryptoSec 885/1098

Enforcing Confidentiality by Encryption

‘ Adversar ‘
y
\ \
Message Message
— | Encrypt Decrypt p———»
\ \ .
CONFIDENTIAL
Key* iAUT \JION ‘ Key
INFEGKRY
‘ ‘ Generator

SV 2024-25 Trust Establishment CryptoSec 886 /1098

Enforcing Integrity by Hash Function

‘ Adversary ‘
\ \
Message N | Message
> 1 >
Y \ \ Y
\ \
Hash | | Hash
\ \
‘ ‘ Y
Di —
'gest »{ Compare
| INTEGRITY | ok?

SV 2024-25 Trust Establishment CryptoSec 887 /1098

Enforcing Authenticity + Integrity by MAC

Message
X

SV 2024-25

‘ Adversary ‘

\ ;? \ Message
X
MAC X.c X.c Check
\ \ ok?
X
Key+ iAS_?NFIDENT_IrAOLN i Key
IFECKITY
‘ ‘ Generator

Trust Establishment

CryptoSec 888 /1098

Authentication and Integrity

@ Message integrity: we make sure that the received message is
equal to the sent one

@ Message authentication: we make sure about who sent the
message

@ good authentication means often enforce integrity
at the same time
symmetric encryption is sometimes used for message
authentication but this is a BAD practice
e.g. Enc(message|redundancy)

@ but there are some not enforcing integrity
example: problem in GSM/WEP/Bluetooth/... (see slide 966)

SV 2024-25 Trust Establishment CryptoSec 889 /1098

A+1+C by Symmetric Cryptography

Message

nonce

SV 2024-25

‘ Adversar ‘
y
Message

| | g

Enc/MAC Dec/Check
———
‘ ‘ ok?
J Y

Key+ i CONFIDENTIAL i Key A

AUTRIFEG et ON ronee

‘ ‘ Generator

Trust Establishment

CryptoSec 890 /1098

Security Property of Communication Channels

Adversary

L

@ Confidentiality, Authentication, Integrity

@ Freshness: the received X was not received before (no replay)
@ Liveliness: a sent message X is eventually delivered (no loss)
@ Timeliness: (> liveliness) time of delivery is upper bounded

@ Deniability: no evidence of sending a message leaks
°
°
°

\
Message N
X lal

\

Y

\
|
‘ X
\

Non-repudiation: sender cannot deny his sent messages
Forward secrecy: secrecy even when states leak in the future
Postcompromise security: healed secrecy even after leakage

SV 2024-25 Trust Establishment CryptoSec 891/1098

From Packet Security to Session Security

Adversary

A

Y

— yYly

|
T
<
<
|
I

@ Key establishment: set up A/I/C key material for message
security

@ Session integrity: the sequence of protocol messages is
eventually the same at both ends
(messages in transit cannot be swapped)

@ Privacy: many different notions at this time!
(anonymity: cannot identify sender or receiver)
(unlinkability: cannot link that two messages by same sender)

SV 2024-25 Trust Establishment CryptoSec

Y

892/1098

Enforcing Session Integrity

Assuming that channels enforce A+l+C and that key establishment is
secure, session integrity splits in two problems

@ Sequentiality: whenever a participant has seen a message

sequence starting with Xi, ..., X;, X; coming in, then the other
participant has seen a message sequence whose first t
messages are Xi,..., X;

: easy to protect: just number the messages and apply A+l
protection on message numbers

@ Termination fairness: making sure that the last message on
both ends is the same one
®: no cheap way to enforce it if liveliness is not guaranteed

SV 2024-25 Trust Establishment CryptoSec

893 /1098

Sequentiality using A + | Message Security

common method:

@ common method: authenticate a sequence number in packets
and check that received packets have consecutive sequence
numbers

@ old TLS example: Y = Enc(X||MAC(seq| X))
where seq is implicit

@ modern TLS example: Y = AE.Enc(seq, X)

~~

ad
where seq is implicit
(authenticated encryption with associated data)

SV 2024-25 Trust Establishment CryptoSec 894 /1098

Fair Termination Problems

@ example: contract signing
Alice and Bob have signed a contract and want to be sure that
they both consider the contract as valid

@ there must be one critical message in the protocol such that
one participant thinks his counterpart has a valid contract
the other does not think the transaction is valid

@ this reduces to synchronizing on an exit status bit

SV 2024-25 Trust Establishment CryptoSec 895/1098

Summary for Secure Channel (so far)

level property toolkit

packet | A+l MAC
confidentiality symmetric encryption
A+l+C integrated modes
freshness (comes with sequentiality)
liveliness (must live without)

session | key establishment | setup protocols (next)
sequentiality various protocol options
termination ?

all privacy ?

SV 2024-25 Trust Establishment CryptoSec 896 /1098

@ Trust Establishment

@ Setup of Secure Channels

SV 2024-25 Trust Establishment CryptoSec 897 /1098

Problem

Q: How to setup a secure channel over an insecure
channel?
A:hfr n frpher punaary

SV 2024-25 Trust Establishment CryptoSec 898 /1098

Virtual Channels by Combination of Channels

Message
X

SV 2024-25

Adversary ‘

[assumptions]

R

\
\
\
= w
\

\
\
\
{
\

Trust Establishment

Y

Message
X

CryptoSec 899/1098

Secure Channel from A+l+C Channel: PSK

‘ Adversary ‘
Message
| | g
Message
—— | Enc/MAC Dec/Check
F——
‘ ‘ ok?
A
Key+ iAS_?NFIDENT_IrAOLN i Key
IFECKITY

‘ ‘ Generator

PSK: PreShared Key

SV 2024-25 Trust Establishment CryptoSec 900/ 1098

Next Step: Strongly Secure Channel From Weakly
Secure Channel

Q:How to relax security properties at setup?
A:hfr choyvp-xrl pelcgbtencul

SV 2024-25 Trust Establishment CryptoSec 901 /1098

... with A+l Channel: Key Agreement Protocol

‘ Adversary ‘
\ \ Message
Message
g Enc/MAC Dec/Check
>
‘ ‘ ok?
X X

Key | | Key
\ \

Protox; - AUTHENTICATION »| Protog

ice [INTEGRITY | o

SV 2024-25 Trust Establishment CryptoSec 902/1098

The Diffie-Hellman Key Agreement Protocol

Assume a group (g) generated by some g of prime order g

Alice Bob

pick x € Z3, X < g* - x if X & (g)— {1}, abort

if Y & (g)—{1}, abort —r picky € Z3, Y « g¥
K + KDF(Y¥) K + KDF(XY)
(K = KDF(g))

SV 2024-25 Trust Establishment CryptoSec 903 /1098

Key Transfer by Public-Key Encryption

Alice Bob

PR S— (pk, sk) <+ Gen
pick K
Y

Y « Ency(K) ——C K« Decg(Y)

SV 2024-25 Trust Establishment CryptoSec 904 /1098

Passive vs Active Adversaries

@ passive adversary: just listen to communications and tries to
decrypt communications (e.g. by recovering the key)
The Diffie-Hellman protocol resists to passive adversaries

@ active adversary: can interfere with communication (modify
messages, insert messages, replay messages)
e.g. man-in-the-middle attack
The Diffie-Hellman protocol requires A+l channel to protect
against it

SV 2024-25 Trust Establishment CryptoSec 905/1098

Approaches to Build an Initial Authenticated
Channel

@ using really secure initial channel
setup cable, Near Field Comm. (see Bluetooth simple pairing)
@ by user monitoring
caution: humans are not so reliable for security (e.g. Bluetooth)
— password-based, SAS-based
@ using a trusted third party
examples: secure token, key server, certificate authority

SV 2024-25 Trust Establishment CryptoSec 906 / 1098

Summary

@ we need specific means to A+l-securely transmit a public key
@ we agree on a master key using public key cryptography

@ we use conventional cryptography to set up secure channels

@ we derive several symmetric keys using key derivation functions
@ we use symmetric encryption and MAC

@ we must live with the fear that termination may be unfair

SV 2024-25 Trust Establishment CryptoSec 907 /1098

@ Trust Establishment

@ Setup by Narrowband Secure Channel

SV 2024-25 Trust Establishment CryptoSec 908 / 1098

Secure Communication Step 1
Conventional Cryptography

‘ Adversary ‘
\ \ Message
Message
Enc/MAC Dec/Check
———
ok?
J
o
INFEGKEY
\ ‘ Generator

SV 2024-25 Trust Establishment CryptoSec 909 / 1098

Secure Communication Step 2
Public-Key Cryptography

‘ Adversary ‘
‘ \ Message
Message
g Enc/MAC Dec/Check
———
\ | ok?
J\ Jy

Key ‘ ‘ Key
‘AUTHENTICATION |

Protoaice [[INTEGRTY | » Protogep
| |

SV 2024-25 Trust Establishment CryptoSec 910/1098

Secure Communication Step 3
Password-Based Cryptography

‘ Adversary ‘
\ \ Message
Message
Enc/MAC Dec/Check
—
\ \ ok?
J \ J\
Key | | Key
| |
Protoaiice Protogop
| |
A CONFIDENTIAL A
Password Password
| AVTRIFREIGEVONI
(narrowband channel) | \ Generator

SV 2024-25 Trust Establishment CryptoSec 911/1098

Secure Communication

with confidential channel

Adversary |
| | Message
[essage
[
95589° o1 EnciMAC Dec/Check
—
| | ok?
ok CONFIDENTIAL [
T T
‘AUWFE(EEWON |
| |
| Adversary |
| | Message
[essage
M
95539° ol EncMAC Dec/Check
—
| | ok?
Zi ‘ ‘ o
| |
Protonses Protogo,
T ! conFentiar ! 3
JAUTRRZIGAON
(narrowband channel) | |
SV 2024-25

without confidential channel

Message

Trust Establishment

Adversary

| | Message
Enc/MAC Dec/Check

—

| | ok?
KeyT | | TKey

‘ AUTHENTICATION ‘
Protopjice T INTEGRITY T Protoges

| |

CryptoSec 912/1098

Secure Communication Step 4
Cryptography Based on Short Authenticated Strings

‘ Adversary ‘
essage
| | Messag
Message
Enc/MAC Dec/Check
———
| | ok?
A A
Key | | Key
| |
Protoaiice Protogop
| |
+ AUTHENTICATION $
SAS | INTEGRITY | SAS

(narrowband channel)

SV 2024-25 Trust Establishment CryptoSec 913/1098

Security from Human-Monitored Short String
Authentication

AUTHENTICATION
INTEGRITY

@ communication over a cheap/efficient but insecure channel
@ security set up with the help of a short authenticated string (SAS)
@ authentication based on human monitoring

SV 2024-25 Trust Establishment CryptoSec 914/1098

Message Authentication Protocols

Alice Bob
input: m

output: m

@ functionality: m=m
@ security: if M # L, then Alice has run the protocol with m = m

@ application: semi-A key agreement
(mis a symmetric key for secure channel so that Bob knows he
is talking to Alice)

SV 2024-25 Trust Establishment CryptoSec 915/1098

Message Cross-Authentication Protocols

Alice Bob
input: my input: mg

output: mg output: my

@ two message authentication protocols at the same time

@ application: authenticated key agreement
(ma and mg are Diffie-Hellman public keys)

SV 2024-25 Trust Establishment CryptoSec 916 /1098

Application I: Personal Area Network Setup

SAS SAS

request, m, ¢
Device 1}« { Device 2
d

YIY

SV 2024-25 Trust Establishment CryptoSec 917 /1098

Application Il: Voice over IP
Existing Standard: ZRTP

‘ Alan ’ Jon

A

verified SAS1: sgmf verified
(voice recognition)
SAS2: y710

Y

zfone1 zfone2

A

SV 2024-25 Trust Establishment CryptoSec 918 /1098

Send authenticated file

00 Receive authenticated file

File Authentication

Flotobasent | /PGP Key.asc

Host name Tocalhost
Port numoar 4711
Verhosamode—— () Start authentication

e 5AS you mstansms (94 | 84 | |58 Close

Start SAS Protocol.

Rc=3801

RAM=56448344249377792897121

Send commit=8a:3c:ea:3e:a4:7e:96:53:4b:ce:26:75 :a4:b5:86:22:35:f5:47
Receive Rs=44657

No need to send the file.

Send Rdm=56448344249377792897121

end Rc=3801
The SAS is 948458
Done.

SV 2024-25

Trust Establishment

File Authentication

Pon numper a71L
Fie destnaton |/ /PGP Key.asc srowse
Vemos ®

thentication

Start Istening on por 4711

Enterine SAS foraumentricatn : |94 | |84 | |58 0ok

Close

Start listening on port 4711.
Start SAS protocol
Receive commi
Send Rs=44657
Send Request=
Receive Rdm=56448344249377792897121

Receive Re=3801

Check commit=8a:3c:ea: 3e:a4:7e:96:53:4b:ce:26:75:a4:b5:8:22:35:15:4
Waiting for SAS...

The SAS is 948458

Authenticated with success.

a:3cear3eiad 7e:96:53:4bice:26:75:a4:b5:8:22:35:5

CryptoSec

Application lll: Peer-to-Peer PGP Channel Setup

919/1098

Application IV: Disaster Recovery

@ on the road, after a key loss (computer crash, stolen laptop)
— set up of a security association

@ PKI collapse (company bankrupt, main key sold, act of God)
— set up of a security association

SV 2024-25 Trust Establishment CryptoSec 920/1098

Semi-Authenticated Non-Interactive: Application

SV 2024-25

Faculté informatique et communications)
Institut d'informatique et de communications
Laboratoire de sécurité et de cryptographie

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Serge VAUDENAY
Professeur
EPFL IC LASEC
INF 241 (Batiment INF) Tél: +41 21 6937696
Station 14 serge.vaudenay@epfl.ch
CH - 1015 Lausanne http://lasec.epfl.ch
12E7 CAE2 2119 086C DC3D

Trust Establishment

CryptoSec

921/1098

Folklore

Protocol Balfanz-Smetters-Stewart-Chi Wong 2002

Alice Bob
input: m
m
h « H(m) auhentcate(t) check h = H(/)
output: m

efficient, provably security assuming collision resistance
@ this requires SAS of at least 256 bits

SV 2024-25 Trust Establishment CryptoSec 922/1098

A Collision Attack

if SAS is so short that we can find collisions H(m) = H(m'), m # ",
make Alice run the protocol with m (chosen input attack) but change
the message to Bob to m’

Alice Eve Bob
input: m s

m m

_ —

authenticate(h)

h«+ H(m)

check h = H(m')

output: n’

SV 2024-25 Trust Establishment CryptoSec 923 /1098

Pasini-Vaudenay 2006: SAS-Based NIMAP

Alice Bob
input: m

¢ « commit(m; r) mir

SAS « H(c)

authenticate(SAS)

¢ + commit(/n, F)
check SAS = H(¢)

output: m

© provable security, efficient
© can work with SAS of 128 bits (the least possible for NIMAP)

SV 2024-25 Trust Establishment CryptoSec 924 /1098

Semi-Authenticated Interactive

Vaudenay 2005

Alice
input: m

pick Ra €y {0,1}%
¢ < commit(m, Ra; 1)

SAS « Ra @ Il\qB

m|lc

Rs

Rallr

authenticate(SAS)

© provable security, efficient
© can work with SAS of 20 bits

SV 2024-25

Trust Establishment

Bob

pick Rg €y {0,1}¥

& < commit(/, Ra; 7)
check SAS = R, @ Rg

output: m

CryptoSec 925/1098

Authenticated Interactive

Zimmermann 1995: PGPfone

Alice

pick X4, ya < g*

ZA }A’gA
SAS <« truncH(yal|y8)

check SAS is the same

output: z4

SV 2024-25

commit to (ya)

VB

open commitment

authenticate(SAS)

authenticate(SAS)

Trust Establishment

Bob

pick xg, yg < g*®

X
Zg <+ Yi°

SAS < truncH(pallys)

output: zg

CryptoSec

926 /1098

Attack on a Variant Without Commitment

Alice
pick x4
yaga A
7B
AXA
ZA < Vg

SAS = h(yallys)

Bob
pick Xa, ya gi‘A pick xg
sy g'B
B

pick Xg, J5 < g*8 s.t.

h(yallys) = h(9allys)
Zp y:B, Zg + yg"‘ Zp <+ f’:B
authenticate(SAS) SAS ? h(}A/ “y)
= h(Vallys

check SAS

authenticate(SAS)

output: z4

SV 2024-25

ZA; ZB output: zg

Trust Establishment CryptoSec

927 /1098

References on SAS-Based Cryptography

2]

D. Balfanz, D. K. Smetters, P. Stewart, H. Chi Wong.
Talking to Strangers: Authentication in Ad-Hoc Wireless Networks.
In Network and Distributed System Security Symposium Conference (NDSS 02), 2002.

C. Gehrmann, C. Mitchell, K. Nyberg.
Manual Authentication for Wireless Devices.
In RSA Cryptobytes, vol. 7, pp. 29-37, 2004.

S. Vaudenay.

Secure Communications over Insecure Channels Based on Short
Authenticated Strings.

In Advances in Cryptology (CRYPTO’05), LNCS vol. 3621, pp. 309-326, 2005.
S. Pasini, S. Vaudenay.

Secure Communications over Insecure Channels Using an
Authenticated Channel.

In Topics in Cryptology (CT-RSA’06), LNCS vol. 3860, pp. 280—294, 2006.

S. Pasini, S. Vaudenay.

SAS-Based Authenticated Key Agreement.

In Public Key Cryptography (PKC’06), LNCS vol. 3958, pp. 385—409, 2006.

SV 2024-25 Trust Establishment CryptoSec

928 /1098

@ Trust Establishment

@ Setup by a Trusted Third Party

SV 2024-25 Trust Establishment CryptoSec 929 /1098

Several Trusted 3rd Party Approach

@ soft 3rd party: user monitoring
password-based, SAS-based

@ pervasive 3rd party: secure token
smart cards, securelD, trusted computing platform

@ key server: Kerberos
symmetric cryptography only, for corporate network

@ certificate authority: PKI
for global network

SV 2024-25 Trust Establishment CryptoSec 930/1098

Example: Kerberos

KCIienh KServer

Authority

request
timed ticket+Ksession
KCIienh Ksession KServera Ksession

Client ticket

Server

@ timed ticket+Ksession €ncrypted with Kgjient
@ ticket encrypted with Kserver

SV 2024-25 Trust Establishment CryptoSec 931/1098

Kerberos

Hypotheses:
@ there is an online (trusted) authentication server (AS)
@ AS shares K¢ with client /¢
@ AS shared Ks with server /g

@ Goal: to help /¢ and Is to share a session key K (and to help
careless users to get privacy)

SV 2024-25 Trust Establishment CryptoSec 932/1098

Server-Aided Authentication (Bad Protocol)

AS Client Server

request Ic to Is

Cip (K).Crg (K)

pick K
CKS (K)’IC

Problem: there is no authentication: an attacker can replace /¢ or Is

SV 2024-25 Trust Establishment CryptoSec 933/1098

Attack

AS Adv. Server

request /4 to Is

Ciy (K).Crg (K)

pick K
CKS(K)JC

Server thinks he is talking to /¢!

SV 2024-25 Trust Establishment CryptoSec 934 /1098

Attack

AS (Adv.) Client Adbv.
1

request Ic to I

pick K Cr (K);Crs (K)

Ck,(K),le

Client thinks he is talking to /s!

SV 2024-25 Trust Establishment CryptoSec 935/1098

Needham-Schroeder Authentication (Still Bad)

AS Client Server

request Ic to Is,Ny

pick N;
pick K Cig (KI5, N1 ,Cig (K. Ic))

Cks (K lc)

Ck(N2)

pick No
Ci (N2+1)

Problem: replay attack by impersonating C after K gets compromised

SV 2024-25 Trust Establishment CryptoSec 936 / 1098

Basic Kerberos Protocol

AS Client
request /g to Is,N .
s eos pick N
. Ck,(K,Is,N,T,L),Ckg(K,Ic,T,L)
pick K ¢ g
T: clock value; L: validity period
SV 2024-25 Trust Establishment

Ckg(K,le,T,L),Ck(lc,T)

Cr(T+1)

CryptoSec

Server

937 /1098

The Certificate Authority Model

AUTHENTICATION

AUTHENTICATION
kaA -

pk

Authority

Y

certificate

Y

Client 4—»(insecure }—» Server

SV 2024-25 Trust Establishment CryptoSec 938 /1098

Critical Secure Channels

Client 1

kCA pk
kCA] k2
Client 2 s Authority P Server 2
kaA pk3

Client 3

SV 2024-25 Trust Establishment CryptoSec 939 /1098

Semi-A Key Exchange Using Certificates

Authority

pkC? pk
certificate

K., pk K

request, ... N :
Encuk(K)

SV 2024-25 Trust Establishment CryptoSec 940/ 1098

Semi-Authenticated Channel

one participant authenticates the other
(typical for client-server communication)

@ client receives the authenticated (static) key of the server
@ client and server run a key establishment protocol

@ secure A+l+C channel is set up

e client knows he is talking to the correct server
@ server has no clue to which client he is talking to

SV 2024-25 Trust Establishment CryptoSec 941/1098

A Typical TLS 1.3 Session

Client

ClientHello:accepted cipher suites, start KEAg

ServerHello:cipher suite, certificate, end KEAg

finish

secret

(open tunnel)

[authentication?]

[login, password]

SV 2024-25 Trust Establishment

Server

select cipher suite

secret

check

CryptoSec

942/1098

An X.509 Certificate Example: Overall Structure

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 674866 (Oxa4c32)
Signature Algorithm: mdSWithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town,
O=Thawte Consulting cc, OU=Certification Services Division,
CN=Thawte Server CA/Email=server-certs@thawte.com
Validity
Not Before: Jun 2 13:10:11 2003 GMT
Not After : Jun 11 10:21:15 2005 GMT

X509v3 extensions:
X509v3 Extended Key Usage: TLS Web Server Authentication
X509v3 Basic Constraints: critical CA:FALSE
Signature Algorithm: mdSWithRSAEncryption

8d:7b:78:60: :4e:94:0d:bc:3b:1b:1c:b6:c9:bc:bl:
Ob:ed:7d: :21:36:93:38:36:66:7b:a7:bc:
c0:3f:c4: :a6:b9:1d:45:22:c4:58:38:07:
e4:63:1a: 167:31:82:6f:23:3c:86:0c:e0:
10:71:de: :b4:5b:8e:48:57:9d:8£:12:16:
72:63:8a: tac:1a:36:b4:16:38:c1:c5:d2:
73:ed:e8: :d7:0c:77:92:cc:c7:c0:e0:8a:
54:24

SV 2024-25 Trust Establishment CryptoSec 943 /1098

An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern,
0=Switch - Teleinformatikdienste fuer Lehre und Forschung,
CN=nic.switch.ch

Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):

00 7:16:bf:86:59:¢3:97:€6:02:33:59:90:
:64:83:03:1b:df:62:28:4d:c0:4f:
:57:95:e1:57:e8:48:26:7f:dd:15:
:78:af:06:1a:ce:0f:7b:cc:cd:6f:
:04:d3:da:7b:20:c1:15:37:8c:2f:
:18:84:5c:54:f1:b1:a0:44:3c:e2:
:6b:34:¢7:10:9d:a21:23:56:77:£5:

4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:
47: e:47:37:bb:18:£6:87
Exponent: 65537 (0x10001)

6!
3
8
al
5
0

SV 2024-25 Trust Establishment CryptoSec 944 /1098

Two Approaches to Revocations

@ certificate revocation lists (CRL):
regularly, or under emergency cases, revocation lists are
released by CA
clients should always check for new CRLs (at the nearest
repository) and go through the list before treating any certificate
drawback: high bandwidth

@ online certificate status protocol (OCSP):
clients should send certificates to the CA for approval
drawback: subject to DoS attacks

SV 2024-25 Trust Establishment CryptoSec 945/1098

Several 3rd-Party Based Trust Infrastructure

@ Kerberos
symmetric-crypto with key escrow

@ PKI
advantage: widely available

@ identity-based cryptography: have public keys implicit from
identities and time
advantage: time-based revocation with small period

@ certificateless encryption: combine the two models
advantage: requires no key escrow

@ certificate-based encryption: certificate is private, required for
decryption
~ equivalent to certificaless encryption (name is confusing)

SV 2024-25 Trust Establishment CryptoSec 946 /1098

Public-Key Infrastructure

Sender | Adversary |Receiver
M ‘ ‘ M
essage essage
—g> Encrypt Decrypt —g>
e
J | | /Y
‘ ‘ Secret Key
Certificate | Adversary | Generator
| |
i Public Key
_ - _ _ 41 - L __ _|= _
Authority
Sign
X
AUTHENTICATION Master Key

INTEGRITY CA Public Keyl

Setup

SV 2024-25 Trust Establishment CryptoSec 947 /1098

Identity-Based Encryption

Sender | Adversary | Receiver
| |
Message Message
Encrypt Decrypt p———»
N |
J Y
Secret Key
Identity+Ti
Identity+Time 1 N entity+Time
I " Authority - T T vy T T
Extract
AUTHENTICATION 4
Master Ke
INTEGRITY Parameters| y
Setup

SV 2024-25 Trust Establishment CryptoSec 948 /1098

Certificateless Encryption

Sender| Adversary |Receiver
Public key
Generator
‘ Adversary ‘ Secret key 2
Y Y
Message Message
_ressage | Encrypt | » Decrypt | Message
[| | e
J \
Secret key 1
Identity+Ti
Identity+Time 1 N entity+Time
T " Authority T Ty
Extract
AUTHENTICATION 4
Master ke!
INTEGRITY Parameters| y
Setup

SV 2024-25 Trust Establishment CryptoSec 949 /1098

Boneh-Franklin Identity-Based Encryption

Qp = Hi(ID)
pick r € Z;
u=rP ‘ ‘ i
V= ma® Ho(e(Qp, Kyp)) Sender! Adversary [Receiver 1 — v o Hy(e(dp, u))
| |
Message m u,v u,v Message m
—g> Encrypt v) Decrypt —g>
N |
A
T ‘ ‘ Secret Key dip
ID
ID
- 4411 _ 1 4_ _ _
Authority Y
Qp = H(ID)
Extract do = sQp
A
AUTHENTICATION+INTEGRITY Master Key s

Parameters g, P, e, Hi, Ha, Ko |

construct q, P, e : g prime, P generator, e pairing
construct Hy, Hs

pick s € Z

Setup Kouo = SP

SV 2024-25 Trust Establishment CryptoSec 950/ 1098

@ Trust Establishment

@ Trust Management and Cryptography

SV 2024-25 Trust Establishment CryptoSec 951 /1098

Chain of Trust in the PKI Model

OO

authority software manufacturer retailer environment human

CA must issue correct certificate

sofware must include correct CA public keys
harware must execute what it is supposed to
retailer must not add malicious software
environment must not bypass secure software
human user must care invalid certificates

SV 2024-25 Trust Establishment CryptoSec 952/1098

Chain of Trust in Real Life

@ software companies add CA’s on commercial basis

@ some CA’s are corruptable

@ worms may corrupt CA lists

@ users pay no attention to browser warnings
consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue
— education, psychology, ergonomy, technology

SV 2024-25 Trust Establishment CryptoSec

953 /1098

Several Approaches to Certificate Verification

@ TLS: trust model based on a PKI
verify a certificate every time the public key is used
clients hold a list of CA public keys and retrieve server certificates
@ SSH: trust model based on cache
verify that a public key has not changed since the last time
clients keep in cache the public key of servers
(first connection may be insecure)

@ PGP: trust model monitored by users
use a public key ring set up by the user
users set up their confidence level in obtained public keys
a “web of trust” can be used to check a public key
(to check who has put a higher confidence level to this key)

SV 2024-25 Trust Establishment CryptoSec 954 /1098

More References

@ Gentry. Certificate-Based Encryption and the Certificate
Revocation Problem. EUROCRYPT 2003, LNCS 2656.

SV 2024-25 Trust Establishment CryptoSec 955/1098

Metacryptography
Can we Trust Crypto?
@ 2nd law of thermodynamics:
no matter the real strength of crypto designs, security decreases
with time (Moore’s law or cryptanalysis)

@ wrong hypotheses:
e.g. we might figure out that factoring is easy
— need for crypto-diversity

@ academic system failure:
crypto results are done under pressure: too many conferences,
too many papers, too many beans to get
— many results are wrong
— need for automatic proof verification

@ threat model definition issues:
some models are complicated and later happen to be irrelevant

@ security does not add: secure + secure may be insecure
— need for good composability models

@ quantum threat
— need for post-quantum cryptography

SV 2024-25 Trust Establishment CryptoSec 956 / 1098

Conclusion

@ secure communication is essentially solved as long as birth
and death are secure

@ birth: need for means to authenticate public keys
e death: no solution, just behave as if we would never die

@ crypto offers many different models
PKI, password-based, ID-based, certificateless, SAS-based
@ correct solution must be determined on a case-by-case basis

@ trust establishment is not a pure-crypto issue

@ need to address the human factor
@ need to deal with trust management:

logistic, software engineering network security

SV 2024-25 Trust Establishment CryptoSec 957 /1098

Must be Known

@ techniques for access control

@ password-based cryptography

@ secure channels

@ SAS-based cryptography

@ Kerberos

@ public-key cryptography and man-in-the-middle attacks
@ PKI, certificate validation model

SV 2024-25 Trust Establishment CryptoSec 958 /1098

Train Yourself

@ secure channel:
final exam 2012—-13 ex3
final exam 2009-10 ex2

@ mass surveillance:
final exam 2016—-17 ex2

@ bad EKE variant:
final exam 2014-15 ex4

@ SAS-based crypto:
final exam 2017—-18 ex3

SV 2024-25

Trust Establishment

CryptoSec

959 /1098

e Case Studies

SV 2024-25 Case Studies CryptoSec 961 /1098

Roadmap

o WiFi

@ blockchains

mobile telephony

Signal

NFC creditcard payment
Bluetooth

Biometric passport

TLS

SV 2024-25 Case Studies CryptoSec 962 /1098

Q Case Studies
@ WiFI: WEP/WPA/WPA2

SV 2024-25 Case Studies CryptoSec 963 /1098

IEEE 802.11 in a Nutshell

S

@ wireless local area network (WLAN)

@ since 1997

@ secure communication by wired equivalent privacy (WEP)
o .

@ since 2003: interim Wi-Fi Protected Access (WPA)
due to security issues

@ since 2004: added WPA2 (complete change)

SV 2024-25 Case Studies CryptoSec 964 /1098

WEP Security Goals

@ privacy as if communication was through a wired connection
@ protect against unauthorized access

@ use up to 4 (common) pre-shared key to be manually set
— key not frequently changed
— key not too long (40 or 104 bits)
— key stored at many places

@ entirely based on RC4 stream cipher

SV 2024-25 Case Studies CryptoSec 965 /1098

WEP Encryption

key ——> key frm-

KSA init. statg PRGA

—-ciphertext frame
A

plaintext frame—» append ICV (CRC32)

— self-synchronizing stream cipher (24-bit IV sent in clear)

SV 2024-25 Case Studies CryptoSec 966 / 1098

(Terrible) Integrity Protection using CRC32

Enckey (1V, pt) = [pt|| CRC32(pt)] & keyframe(key, IV)

packets are easily malleable (Borisov-Goldberg-Wagner 2001):

Enciey(IV, pt) @ [A||[CRC32(A)]

[pt||CRC32(pt)] ® [A]|[CRC32(A)] @ keyframe(key, IV)
[pt & A||[CRC32(pt) & CRC32(A)] & keyframe(key, IV)
[pt ® A||[CRC32(pt ® A)] @ keyframe(key, V)
Encyey(IV,pt® A)

SV 2024-25 Case Studies CryptoSec 967 /1098

WEP Issues

@ collision on IV’s
a 24-bit IV repeats itself, sooner or later
@ use linearity of CRC32
if modification injected, make it coherent with CRC32 encoding
@ dedicated attack on WEP/RC4 encryption
Fluhrer-Mantin-Shamir 2001 and follow up’s

@ passive ciphertext only attack
(with some bytes of each frame known)
after sniffing 20 000 packets, probability to recover the key is %
Sepehrdad-Vaudenay-Vuagnoux 2012

SV 2024-25 Case Studies CryptoSec 968 / 1098

WEP (In)security

security is snake oil:

@ confidentiality ®

@ message authenticaton &

@ message integrity ®

@ message freshness no protection
@ key establishment (pre-shared)
@ message sequentiality no protection
@ privacy

an example not to follow

SV 2024-25 Case Studies CryptoSec 969 /1098

WPA: a Dirty Quick Fix

@ WPA-TKIP (Temporal Key Integrity Protocol):
make the RC4 key change for every packet (based on a master
key)

o message-integrity-(with-MIGHAEL-a-broken-MAG -}
@ check IV increases to protect against nonce repetition
@ set up master key using EAP (Extensible Authentication
Protocol)
@ PSK (Pre-Shared Key)
@ one of the possible authentication protocols from 802.1x using an
authentication server (e.g. RADIUS)
TLS (+ two certificates), TTLS (one certificate, one password),
PEAP, SIM (using GSM), AKA (using UMTS), FAST (Cisco)

SV 2024-25 Case Studies CryptoSec 970/1098

WPA2

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode)
128 or 256 bit key

severe mistake:

@ there is an option in the handshake to reset the key to a
previously used one
(to save computation, to ask to resend a lost packet, ...)

@ but this resets the nonce counter as well...

@ exploit by Vanhoef and Piessens in 2016:
KRACK (Key Reinstallation Attack)

@ patched implementations disabled this
but have a less reliable connectivity...

SV 2024-25 Case Studies CryptoSec 971/1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 972/1098

e Case Studies

@ Block Chains

SV 2024-25 Case Studies CryptoSec 973 /1098

Bitcoins

@ virtual currency

@ launched in 2009 by an anonymous guy
(pseudo Satoshi Nakamoto)

@ completely decentralized, there is no authority
@ anyone creates its own account
@ broadcast transactions on a public ledger

SV 2024-25 Case Studies CryptoSec 974 /1098

A Bitcoin Transaction

“l, pk, holder of UTXO linky, ... link, pay xi to pky, ..., Xm to pk,,”
[signature]

@ UTXO = unspent transaction output
@ requirement: xq + - - - + Xy equals sum of given UTXO

@ then, amounts from [link4], ..., [link,] to pk become spent and
amounts from transaction become new UTXO with a link

@ problem: how to make sure that UTXO is really unspent

@ equivalent problem: how to make everybody “see” the same list
of transactions

SV 2024-25 Case Studies CryptoSec 975/1098

Block Chain

a block from the block chain:
@ hash of the previous block (except for the genesis block)
@ list of transactions from the last period
@ proof-of-work (PoW) based on the above

scheme for miners (every 10 minutes):
@ take the longest valid block chain
@ collect all broadcast valid transactions with respect to this chain
@ make a new block and PoW
@ broadcast it
@ the first transaction (the coinbase transaction) rewards the miner

SV 2024-25 Case Studies CryptoSec 976 /1098

Bitcoin Block

| block header (80B) [«——

[Ho—s = H(Hop-1 HHz—s)]
/ \

[H0_1 = H(Ho||H1)] [Hz-s = H(H2||H3)}

[HO = H(tXO)] [H1 = H(tX1)] [Hg = H(th)} [H3 = H(th)]

SV 2024-25 Case Studies CryptoSec 977 /1098

block 1 header

ver (4B)

prev_hash (32B)

merkle_root (32B)

time (4B)

nBits (4B)

nonce (4B)

prev_hash = SHA256 | SHA256 (

SV 2024-25

Bitcoin Blockchain

> (80)

block 2 header

ver (4B)

prev_hash (32B)

merkle_root (32B)

time (4B)

nBits (4B)

nonce (4B)

prev_block

)
80B

Case Studies

32B

CryptoSec

978 /1098

Proof-of-Work

block shall contains for PoW value such that
SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016
it is constantly calibrated
nonce is only 32-bit long but more data is used in PoW:

@ another nonce in the coinbase tx
@ timestamp (in msec)

@ new transactions

@ their order

SV 2024-25 Case Studies CryptoSec 979 /1098

Merkle Authentication Tree (Hash Tree)

Assuming Hy-7 is authenticated, to authenticate tx», just give
Hs, Ho1, Ha—7.

SV 2024-25 Case Studies CryptoSec 980 /1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 981/1098

e Case Studies

@ Mobile Telephony

SV 2024-25 Case Studies CryptoSec 982 /1098

GSM Architecture

@ principle 1: authentication of mobile system
@ principle 2: privacy protection in the wireless link

@ challenge-response protocol based on Ki
@ encryption key for a limited period of time (derived from Ki)
@ identity IMSI replaced by a pseudonym TMSI as soon as possible

@ Ki never leaves the security module (SIM card) or home security
database (HLR)

SV 2024-25 Case Studies CryptoSec 983 /1098

GSM Slang

@ GSM: Global System for Mobile telecommunications

MS: Mobile Station

SIM: Subscriber Identity Module (part of MS)

HLR: Home Location Register

VLR: Visitor Location Register

IMSI: International Mobile Subscriber Identity (stored in SIM)

°
°
°
°
°
@ Ki: subscriber Integrity Key (securely stored in SIM)

SV 2024-25 Case Studies CryptoSec 984 /1098

GSM Protocol

SIM Telephone Radio Network Operator
Key | | | ‘ | | Random Key
‘l | | | Challenge | | |
Y Y
| \ \ |
Response
A3 | | {»{ Compare |« A3
A8 | \ \ | A8
TemporaLy key ‘ ‘ ‘ ‘ Tempbrary key
| | | |
Y Y

Ciphertext

\ l—}—» A5 e > A5 4—0—1 \
PlaintextY | \ \ | YPiaintext

SV 2024-25 Case Studies CryptoSec 985 /1098

GSM Peer Authentication

A3/8(Ki, RAND) = (SRES, KC)

SIM MS (wireless)

. IMSI
(Ki)
RAND RAND
— Y
SRES,KC SRES
Ckc (TMSI)

TMSI
RAND RAND
SRES,KC SRES

SV 2024-25 Case Studies

VLR (secure)
IMSI
nx (RAND,SRES,KC)
store ———
check
check

CryptoSec

(Ki)

986 / 1098

Security of Peer Authentication

@ Ki never leaves the SIM card or the secure database of the
operator (assuming SIM card is tamper proof and HLR is secure)

@ assuming that A3/8 are secure PRF then authentication to
network is secure

@ A3/8 not standard: chosen by operator
@ problem with weak A3/8 (e.g. COMP128)

security:

SV 2024-25 Case Studies CryptoSec 987 /1098

GSM Encryption

@ several standard algorithms: A5/0, A5/1, A5/2, A5/3
@ cipher imposed by network

@ new KC for each session

@ synchronized frame counter (see A5/1 on slide 479)

SV 2024-25 Case Studies CryptoSec 988 /1098

Security of Privacy protections

blinding the identity: telephone identifies itself in clear at the first
time then using a pseudonym given by the local network
not effective at all:

e challenges can be replayed to trace mobile telephones
o fake network can force identification in clear (re-synchronization
protocol)

security of A5/0 (no encryption) void
security of A5/2 weak

security of A5/1 not high

security of A5/3 high

fake network can force to weak encryption (they all use the same
key)

replaying a challenge will force reusing a key in one-time pad
message integrity protection is ineffective (covered in WEP)

security: @

SV 2024-25 Case Studies CryptoSec 989 /1098

Improvements in 3G Mobile Telephony

@ challenges are authenticated (fake network cannot forge them)
@ integrity protection (MAC)

@ protection against challenge-replay attacks

@ uses a block cipher KASUMI instead of the stream cipher A5/1

SV 2024-25 Case Studies CryptoSec 990 /1098

The UMTS Crypto Menagery

@ communication: f8 (encryption) and f9 (MAC) based on KASUMI

@ signaling communication: f6 (encryption) and f7 (MAC) based on
AES

@ challenge pseudorandom generator: fO

@ MILENAGE (key establishment): f1, f1*, {2, {3, f4, {5, f5*
f1 and f5: challenge computation for synchronized entities
f1* and f5*: challenge computation for re-synchronization
f2: response to challenge (replaces A3)

f3: key derivation for encryption (replaces A8)
f4: key derivation for MAC

SV 2024-25 Case Studies CryptoSec 991/1098

MILENAGE Protocol

USIM Telephone Radio Network Operator
Key \ \ \ ‘ | Rnd Key
‘l | | | Challenge | | |
Yy ‘ ‘ I
t1-5] || \ \ || [f-t5
Response
f2 } } P {»| Compare f« —f2
f3-f4 | | | | | | 3-f4
Temporéry keil \ \ Jrempdrary key
OK? ‘ ‘ ‘ ‘ ‘ ‘ Nonce
Y Y
[\ \ [
, Ciphertext
| l—}—» 8-f9 [« > {89 4—§—l |
PlaintextY | \ \ | YPlaintext
SV 2024-25 Case Studies CryptoSec 992 /1098

MILENAGE Challenges

Rnd

[

Key

[

Nonce

@]
Y Y

(Challenge)

@ challenge authenticated based on f1

@ freshness protection based on a nonce
nonce may be counter-based (USIM and operator synchronized)

@ privacy protection: the nonce is encrypted by 5

SV 2024-25 Case Studies CryptoSec 993 /1098

MILENAGE Challenge Verification

Key
l
check
YvY Yy

1 5
Y
= ©]
+

(: Challenge :)

@ extract Rnd

© decrypt Nonce by computing f5(Key, Rnd)
© check authentication (f1)

© check Nonce is correct

SV 2024-25 Case Studies CryptoSec 994 /1098

Security Misses

@ network is not authenticated (network only proves he received
authorization from operator)
— attack by fake network rerouting through expensive networks
of unencrypted network

@ no encryption awareness

SV 2024-25 Case Studies CryptoSec 995/1098

Mobile Telephony (In)security

confidentiality

message authentication
message integrity
challenge freshness
mobile authentication
network authentication
key establishment
frame sequentiality
privacy

DOOOOOOOOZ
OOOOOOOOOE

SV 2024-25 Case Studies CryptoSec 996 / 1098

Other Standards

@ DECT: wireless telephone (connected to fixed base line)
DSAA: DECT standard Authentication Algorithm
DSC: DECT standard Cipher
standard is not public (but published and broken!)

@ EDGE (used to be GPRS)
GEA: GPRS Encryption Algorithm
standard is not public

@ cdmaOne (also called 1S-95 or CDMA)
no SIM card
CAVE: Cellular Authentication and Voice Encryption
ORYX: encryption algorithm (stream cipher)
CMEA: Cellular Message Encryption Algorithm

SV 2024-25 Case Studies CryptoSec 997 /1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 998 /1098

e Case Studies

@ Signal

SV 2024-25 Case Studies CryptoSec 999 /1098

Signal

used in WhatsApp

@ secure messaging (confidentiality, authenticity, integrity of
messages)

o forward and future secrecy (confidentiality preserved even
though secrets leak)

@ deniability (no transferable proof of message authorship leaks)
@ asynchronous (can be done offline)

@ detect replay/reorder/deletion attacks

@ allow decryption of out-of-order messages

@ don'’t leak metadata

@ X3DH + Double Ratchet

SV 2024-25 Case Studies CryptoSec 1000 /1098

X3DH: Initial Key Agreement

(keys are in Curve25519)

Alice

IK4: identity key

Server Bob

IK: identity key
SPKg: signed prekey
[OPKg]: one-time prekey
og Slgn(SPKB)
IKg,SPKg, o g,[OPKL
register K& SPKe,05, 0Pl i=1,...

Bob?
-

KKg,SPKg, o5, [OPKE]
BB TR

EK4: ephemeral key

DH1 «+— DH(IK4, SPKpg)

DH2 <+ DH(EKa, IKg)

DH3 « DH(EKg4, SPK3g)

[DH4 «+ DH(EKa, OPKj)]

SK < KDF(DH1||DH2||DH3||[DH4])
erase EK,

AD « IK4]||IKp

state: SK, AD

send first message with AD

(o signed with 1K)

[erase OPHL]

OPK avoids replay attacks making SK reused

IK4,EK 4 ,used prekeys of Bob,first message

SV 2024-25

Case Studies CryptoSec 1001 /1098

Ratchet

A ratchet is a mechanical device which can only move forward.

@ forward secrecy: protects past sessions against future
compromises of long-term secret keys

@ future secrecy: protects future sessions against compromises
of ephemeral secret keys

SV 2024-25 Case Studies CryptoSec 1002 /1098

Double Ratchet

@ DH: a ratchet for every time the direction of exchange changes
ratchet message indicates the new ephemeral key to use in DH
good forward and future secrecy

@ symmetric-key ratchet: two ratchets (one for each direction)
no real future secrecy
plausible deniability

SV 2024-25 Case Studies CryptoSec 1003 /1098

Diffie-Hellman Ratchet

Alice Bob
SK (SK)
4 4
send CKo«KDF(DHa)— 'K’;EFEA; —KDF(DHy)—CKo rec
A1= At1,Prev.
' !
EKp1,msg
rec CKQ(—KDF(DHm) DHgy—DH(EKx; EKgy) KDF(DHB1)—>CKO send
4 4
send CKo«—KDF(DHz)— i“:z’msg KDF(DHz)—CKo rec
a2=DH(EK 22,EKp1)
4 4
rec CKo«—KDF(DHgz) DHBFEDKfélf - KDF(DHsz)—+CKs send

1 1

SV 2024-25 Case Studies CryptoSec 1004 /1098

Symmetric-Key Ratchet

given CKjy, derive chain keys CK;, message keys MK;
(MK;, CKj;+1) = KDF_CK(CKj)

the message i is encrypted using MK; with AD (AEAD)

CKo —— Ok =} Cke = -+
MKj MK

SV 2024-25 Case Studies CryptoSec 1005 /1098

Double Ratchet

given SK, derive root keys RK;, chain keys CK;, message keys MK;

RKintar = SK (from X3DH)
(RKnew, CKg) = KDF_RK(RKoig, DHnew)
(MK;,CK;;1) = KDF_CK(CK))

the message i is encrypted using MK; with AD (AEAD)

(X3DH) ---» RK DH

ECK0—>|}|—>CK1 —>|}|—>CK2—>~~~
RK'| DH’

MK MK,
; ECKO—>|;|—>CK1—>|;|—>CK2—>---
' MK MKo

SV 2024-25 Case Studies CryptoSec 1006 / 1098

Involved Cryptography

@ ECDH on Curve25519
@ HMAC-SHA256

@ AES256 CBC

@ HKDF

SV 2024-25 Case Studies CryptoSec 1007 / 1098

Out-of-Band Authentication

safety number H(IK4||IKg]| - - -)
@ can be viewed numerically (60 decimal digits!) or with QR code
@ can cross-check numbers or cross scan QR codes
@ used to manually authenticate identity keys and more

SV 2024-25 Case Studies CryptoSec 1008 /1098

Contact Discovery
To determine if some of the contacts in the phone are Signal users,
the app sends the hash of every phone number in the contact list to
the central server...

Inversion attack is easy

What is needed: private set intersection:

Smartphone Server
(small) set: contacts (big) set: users

output: contacts N users

SV 2024-25 Case Studies CryptoSec 1009 /1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 1010/1098

e Case Studies

@ TLS

SV 2024-25 Case Studies CryptoSec 1011/1098

Typical Requirements in Secure Browsing

@ unidirectional authentication
@ confidentiality of communication
@ integrity of communication

SV 2024-25 Case Studies CryptoSec 1012/1098

History

@ SSLv1 by Netscape in 1994
@ Microsoft version PCT in 1995
@ SSLv3 by Netscape in 1995
@ TLS/1.0in 1999 [RFC2246]
@ TLS/1.1in 2006 [RFC4346]
@ TLS/1.2in 2008 [RFC5246]
@ TLS/1.3in 2018 [RFC8446]
Goal: secure any communication (e.g. HTTP) based on TCP/IP

SV 2024-25 Case Studies CryptoSec 1013/1098

Session State

@ Session identifier
@ Peer certificate (if any)

Cipher suite choice

e Algorithm for authentication and key exchange during handshake
@ Cipher Spec: symmetric algorithms (encryption and MAC)

Master secret (a 48-byte symmetric key)

nonces (from the client and the server)

sequence numbers (one for each communication direction)
compression algorithm (if any)

SV 2024-25 Case Studies CryptoSec 1014/1098

Cipher Suites (from 1.0 to 1.2)

@ cipher: RC4 or DES/3DES in CBC mode
(key could be limited to 40 bits for “export”)
o RC4 has biases
@ CBC mode has padding oracles
added in 1.2: AES_GCM, AES_CCM, CAMELLIA, ARIA
@ hash: MD5 or SHA1
@ both have collisions
@ maybe less a problem with HMAC

added in 1.2: SHA2

@ key exchange: RSA or DH (in several variants)
DH_anon: ephemeral DH
DH_sig: static DH with a certificate
DHE _sig: ephemeral DH with a signed ephemeral public key
added in 1.2: ECDSA, PSK

SV 2024-25 Case Studies CryptoSec 1015/1098

RSA Key Exchange (Old TLS)

Client Server

ClientHello:accepted cipher suites, nonceg

ServerHello:TLS_RSA _cipher_hash, certificate, nonceg

ClientKeyExchange:ENC(pre.master_secret)
pre_master_secret decrypt

@ RSA encryption is PKCS#1v1.5
@ the RSA public key must be authenticated (with a certificate)

SV 2024-25 Case Studies CryptoSec 1016 /1098

TLS 1.3

new: better handshake protocol (less round-trips)

cipher suite in the form

TLS_KEA_AUTH_WITH_CIPHER_HASH

@ key exchange (KEA) and authentication (AUTH) are separate

@ KEA is ephemeral Diffie-Hellman only: DHE or ECDHE or PSK
(for Diffie-Hellman: forward secrecy)
keys are derived using HKDF

@ AUTH is the way to authenticate peers, it can be with a certificate
(RSA or ECDSA) or PSK

@ CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY 1305
(AEAD: Authenticated Encryption with Associated Data)

@ HASH: SHA2

SV 2024-25 Case Studies CryptoSec 1017 /1098

TLS 1.3 Cipher Suites

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (mandatory)
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (recommended)
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (mandatory)
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (recommended)
TLS_DHE_RSA_WITH_AES_128_CCM

TLS_DHE RSA_WITH_AES_256_CCM

TLS_DHE RSA_WITH_AES_128_CCM_8
TLS_DHE_RSA_WITH_AES_256_CCM_8
TLS-ECDHE_RSA_WITH-CHACHA20_POLY1305_SHA256 (recommended)
TLS-ECDHE_ECDSA_WITH_-CHACHA20_POLY1305_SHA256 (recommended)
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_DHE_PSK_WITH_AES_128_CCM
TLS_DHE_PSK_WITH_AES_256_CCM

TLS_PSK_DHE WITH_AES_128_CCM

TLS_PSK_DHE WITH_AES_256_CCM
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256
TLS_ECDHE_PSK_WITH-AES_256_GCM_SHA384
TLS_ECDHE_PSK_WITH_AES_128_CCM_8_SHA256
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256
TLS_ECDHE_PSK_WITH_AES_256_CCM_SHA384
TLS_ECDHE_PSK_WITH-CHACHA20_POLY1305_SHA256
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256

mandatory curve: secp256r1 (NIST P-256)
recommended curve: X25519 [RFC7748]

SV 2024-25 Case Studies CryptoSec 1018 /1098

TLS 1.3 Handshake

Client Server

ClientHello,accepted cipher suites,start KEA

ServerHello,cipher suite,certificate,end KEA

secret secret
finish

[NewSessionTicket]

ClientHello includes supported groups, a first KEA message for
some of those groups, supported signatures (to verify certificates), a
list of identifiers for PSK known keys and the PSK mode to be used

if the server selects a supported group with no first KEA message, it
requests an extra round trip

SV 2024-25 Case Studies CryptoSec 1019/1098

TLS 1.3 Resumption

ORTT Handshake (0 round-trip time)

a client can re-establish (resume) a previous connection

client sends a ClientHello with PSK and a SessionTicket

resume + send encrypted messages at the same time

SessionTicket includes a validity

SessionTicket includes a way to recover ResumptionSecret

continue normal handshake + define next ResumptionSecret
session cache session ticket

server stores ResumptionSecret @ SessionTicket =

SessionTicket has lookup key Encstex(ResunptionSecret)
delete ResumptionSecret after) ETEK: session ticket encryption
ey

drawback: memory on server
@ drawback: no forward secrecy

forward secure
. . @ drawback: replay attack
immune against replay attacks

SV 2024-25 Case Studies CryptoSec 1020/1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 1021/1098

Q Case Studies

@ NFC Creditcard Payment

SV 2024-25 Case Studies CryptoSec 1022 /1098

(Simplified) EMV PayPass Protocol (NFC)

PrivC, Ku Cert(PubC, SSAD), PAN, CDOL "
> veri
inc. ATC UN, amount, info 'ck):JN
<t |
ne. ATC, SDAD pict
compute > verify
PAN
@ PAN: serial number of the card AC
. . . amount
@ SSAD: info about the card including PAN ATC
@ CDOL: description of what is needed in info info y
@ ATC: number of the transaction K
. _—
@ AC = MACEnCKM(ATC)(amount, ATC7 |nf0)
@ SDAD = Signg,;,c(AC, UN, amount, ATC, info)

SV 2024-25 Case Studies CryptoSec 1023 /1098

From Paper to Bits...

@ holder is not aware a payment is happening

@ holder is not aware of the payment amount

@ no access control of the payment terminal (no PIN)
@ payee is not authenticated (info could be anyone)
@ privacy issue (SSAD leaks)

SV 2024-25 Case Studies CryptoSec 1024 /1098

Skimming

PrivC, Ku

Cert(PubC, SSAD), PAN, CDOL

&

Y

get name on card, credit card number, expiration date, etc

SV 2024-25

Case Studies

CryptoSec

1025/1098

Relay Attacks

SV 2024-25

N a o la,
honest ! b b honest
prover | c 1 c verifier
! | adversary | g

Case Studies

CryptoSec 1026 / 1098

Relay Attacks in Real

@ opening cars and ignition (key with no button)
@ RFID access to buildings or hotel rooms

@ toll payment system

@ NFC credit card (for payment with no PIN)

@ access to public transport

°

SV 2024-25 Case Studies CryptoSec 1027 /1098

Playing against two Chess Grandmasters

SV 2024-25 Case Studies CryptoSec 1028 / 1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 1029 /1098

e Case Studies

@ Bluetooth

SV 2024-25 Case Studies CryptoSec 1030/ 1098

The Bluetooth Project

@ short-range wireless technology

@ designed to transmit voice and data

@ for a variety of mobile devices (computing, communicating, ...)
@ bring together various markets

@ 1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
@ robustness, low complexity, low power, low cost

SV 2024-25 Case Studies CryptoSec 1031 /1098

Bluetooth History

3

10th Century: Viking King Harald Blatand (Harold Bluetooth)
tried to unify Denmark, Norway, and Sweden

1994: Ericsson initiated a study to investigate the feasibility

May 20, 1998: Bluetooth announced, controled by the Special
Interest Group (SIG) formed by

Ericsson, IBM, Intel, Nokia, and Toshiba
1999: Bluetooth 1.0 Specification Release
2004: Bluetooth 2.0 Specification Release
2007: Bluetooth 2.1 Specification Release (add SSP)
2009: Bluetooth 3.0 Specification Release (add 802.11)
2010: Bluetooth 4.0 Specification Release (add LE)

SV 2024-25 Case Studies CryptoSec 1032/1098

Bluetooth Security Basics (Link Level)

@ can switch device to

@ non connectable (Bluetooth is off)
@ connectable but not discoverable (invisible without knowing the

MAC address)
e discoverable (introduce itself upon any broadcast request)

@ pairing to set up link keys between devices

o typically based on a random PIN
@ (dummy device) using a built-in PIN

@ can manage a database of paired devices

SV 2024-25 Case Studies CryptoSec 1033 /1098

Cycles in Bluetooth

A

user monitored

A

SV 2024-25

set discoverable mode

Y

C

pairing protocol)

Y

set non-discoverable mode

Y

peer authentication -

Y

Cencrypted communication)

Y

go to sleep

Case Studies

CryptoSec

1034 /1098

Device Pairing

PIN PIN

Kiink Kiink
request, . .. -

Device 1) = —+ Device 2
protocol

SV 2024-25 Case Studies CryptoSec

1035/1098

Legacy Pairing Protocol

| User |
: PIN :
rnd - — — -
Yy ¢ TIN.RAND | Y vV
| |
E22 | | E22
| |
Kinit K\nn
LK-Rand, ! !
| |
o —Ca
| |
v | Ca | Y LK_Randg
P——= 0
| |
Addr Addrg ! I Addr Addr
A¢ v , ¢ B ‘ ‘ B¢ , ¢ A
E21 E21 : : E21
| I m— ‘ ‘ | I
Y | | ¥
Kiink | Radio | Kiink

SV 2024-25 Case Studies CryptoSec

1036 /1098

Pairing with a Dummy Device

Operator Factory

PIN

Kunit A
request, . .. ya
Dummy

Device |}«

YIY
L1l

protocol

SV 2024-25 Case Studies CryptoSec 1037 /1098

Legacy Pairing with a Dummy Device

| User |

‘ PIN ‘

I I

I’I’id = = — =

Y Y T IN_.RAND | Y Y
I I
E22 | | E22
I I
Kinill_ | | JKinn

I I

I I

I I

v ooy K
P— 10

I I

I I

I I

K \ \
I I

I I

I I

| Radio |

SV 2024-25 Case Studies CryptoSec 1038/1098

Dummy Devices: Unit Key is Shared with Many
Devices

link key is forced to be the unit key

Kunit

Kunit

Device 2

scenario: user A paired his headset (Dummy) with his telephone
(Device 1) then user B took the headset for a few seconds to pair it
with his computer (Device 2)...

SV 2024-25 Case Studies CryptoSec 1039/1098

Peer Authentication

Master A Slave B
pick AU_.RANDg AU-RANDs
check SRESg SRESe compute SRESg
AURANDA pick AU_RAND,4
SRESA

compute SRES, check SRES,

SRES, = E1(K, AU_RAND,, BD_ADDRy)

SV 2024-25 Case Studies CryptoSec 1040/1098

Insecurity Summary

dummy devices use the same key with many devices
suspicious security of cryptographic primitives

academic attacks on EO encryption

integrity protection is void

messages can be maliciously erased in the radio channel
privacy protection is weak (low entropy BD_ADDR)

@ pairing protocol weak against passive attacks (next slides)

SV 2024-25 Case Studies CryptoSec 1041/1098

Key Establishment (In)security

Theorem

The pairing protocol is secure if either PIN has large entropy or the
protocol is run through a private channel (under some ‘“reasonable
assumptions” about the cryptographic algorithms).

© a cheap pragmatic security
© pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)

SV 2024-25 Case Studies CryptoSec 1042 /1098

Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not
confidential) and guessable PIN (lazzy operator)

@ sniff the pairing protocol, get IN.RAND, C,, Cg

@ — can compute Kj from PIN

© sniff a peer-authentication protocol, get rand, F(rand, Kjink)
© — can check a guess on Kjx

@ run an offline exhaustive search on PIN

SV 2024-25 Case Studies CryptoSec 1043 /1098

Online Impersonation Attack

Adversary Slave

receive PIN
IN_.RAND

Ca
—>

C,
—2 compute Kin

AU_Randg

RESg

exhaustive search on PIN s.t.
RESg = E1(f(PIN,IN_.RAND, Ca4, Cg), AU_Randg)
compute Kink = f(PIN, IN_-RAND, Ca, Cs)

AU_Rand 4

RES4 = E£1(Kin, AU_Rands) RESA

SV 2024-25 Case Studies CryptoSec

RESg = E1(Kink, AU_-Rands)

1044 /1098

Bluetooth v2.0 Summary

@ light weight cryptography

@ initial authenticated channel by human interaction with devices
@ key exchanged based on a PIN and E21, E22 (pairing)

@ derivation of a single 128-bit long term link key

@ secure channel based on EO, E1, E3

@ several missing security properties: packet authentication,
detection of packet loss, privacy, ...

SV 2024-25 Case Studies CryptoSec 1045/1098

Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

@ confidentiality (attacks still academic so far)

@ message integrity

@ message authentication & (auth. by encryption without integrity)
@ frame freshness (based on clock value)

@ key establishmentv2.0 & (pragmatic repairing possible)

@ frame sequentiality ® (message loss)

@ privacy ®

SV 2024-25 Case Studies CryptoSec 1046 /1098

Moral

PIN has low entropy
(humans cannot generate ephemeral PINs with high entropy)

@ offline passive key recovery:
key agreement is based on conventional cryptography (so cannot
resist to passive adversaries)

@ online impersonation attack:
assuming the adversary is second to authenticate itself, the
password-based key agreement does not even resist
impersonation
@ next generation needs
@ be user friendly
@ be device friendly (no expensive crypto)
@ resist passive and active adversaries

SV 2024-25 Case Studies CryptoSec 1047 /1098

Bluetooth v2.1: Secure Simple Pairing

4 variants
@ numeric comparison (assumes secure comparison by humans)
@ passkey entry (assumes a secure PIN input by human)
@ just works (assumes no active attack)

@ out-of-band (assumes a secure channel, e.g. cable or near field
communication)
resist active adversary
resist passive adversary only (out-of-band resists to active
adversaries if no attack is possible on the secure channel)

SV 2024-25 Case Studies CryptoSec 1048 / 1098

Common Protocol

Device A
DHKey
Na, N, ra, s
Ea=13(---)
check
LK = f2(---)

SV 2024-25

authentication stage 1
(protocol dependent)

secure channel

Case Studies

Device B
DHKey
Na, Nz, ra, s
check
Eg=13(---)
LK =12(---)

CryptoSec

1049 /1098

Common Protocol

@ step 1: public key exchange
exchange ECDH public keys using standard parameters (may be
ephemeral or static) leading to a key DHKey

@ steps 2-8: authentication stage 1 (protocol dependent)
this stage authenticates the ECDH public keys and exchange
some values Na, Ng, ra, I's

@ steps 9-11: authentication stage 2
mutual authentication after ECDH protocol using Na, N, ra, rs:
Aresp. B produces E, resp. Eg and checks Eg resp. Ex

En = f3(DHKey, Na, N, rs,10cap,, BD_ADDR4, BD_ADDR3)
Es = f3(DHKey, Na, Ny, ra, I0capg, BD_ADDRg, BD_ADDR,)

@ step 12: link key calculation
key derivation from DHKey, Na, Nb, and the addresses

LK = fZ(DHKGYa Nmaster» Nslave» bt|k7 BDADDRmastera BD—ADDRsIave)

@ step 13: encryption (business as usual)

SV 2024-25 Case Studies CryptoSec 1050 /1098

ECDH Common Protocol

@ domain parameters:
use secp192r1 = P192, the elliptic curve of order r over the Z,

field defined by y2 = x3 + ax + b which is generated by G:

2192 _ 264 1
—3 mod p
2455155546008943817740293915197451784769108058161191238065
6277101735386680763835789423176059013767194773182842284081
Gy = 188da80e b03090f6 7cbf20eb 43218800 f4ffO0afd 82f£1012

= 602046282375688656758213480587526111916698976636884684818
Gy = 07192b95 £ffc8da78 631011ed 6b24cdd5 73£f977al 1e794811

= 174050332293622031404857552280219410364023488927386650641

~ T © T
Il

note that 2192 — 2% < r < 292 and r is prime

@ key agreement function: given an integer u and a point V,
P192(u, V) is the x-coordinate of the point uV

DHKey = P192(SK,4, PKg) = P192(SKg, PK4)

SV 2024-25 Case Studies CryptoSec 1051/1098

The New Bluetooth Menagery

(U, V, X, Z) = truncies (HMACx (U] V| 2))

a(U, V, X, Y) = SHA256(U|| V|| X||Y) mod 232
f2(W, N; s N2, keyID, Aq s Az) = truncog (HMACW(N1 ||N2ery|D||A1 ||A2))
f3(W, Ny, N2, R, 10cap, A1, Az) = truncizs (HMAC v (N; || N2|| R||IOcap|| A1 || Az))

variable

A

N;

U

%

w

X

Y

V4

keyID

IOcap

bits

48

128

192

192

192

128

128

8

32

48

@ HMAC is HMAC-SHA256

@ the value of keyID for “btlk” is 0x62746c6b

SV 2024-25

Case Studies

CryptoSec

1052/1098

Bluetooth Simple Secure Pairing Variants — i

Numeric Comparison

Device A
input: F’KA7 PKB

pick N €y {0,1}'%8
setra=r5=0

&g = f1 (ISRB; PKa, N, 0)
Va < g(PKa, PKg, Na, Ni)
display Va

output: Ny, Na, ra, rs

SV 2024-25

Cs
Na

Ng

check V4 = V3

Case Studies

Device B
input: PKA, PKB

pick Ng €y {0, 1 }128
setra=rg=0
Cp < f1 (PKB7 ﬁ(,q, NB, O)

Vs < g(PKa, PKg, Na, N5)
display Vg

output: Na, Ng, 14, rs

CryptoSec 1053 /1098

Numeric Comparison Analysis

Device A Adversary Device B
input: PK4, PKp input: PK,, PKp
pick N €y {0,1}1%8 pick Ng €y {0,1}'%®
setra=r=0 setra=r5=0
%8 99.% ¢y f1(PKg, PKa, Ng, 0)
Naop Na,
& = 1(PKg, PKa, Np, 0) Lo 9ot
Va < g(PKa, PKg, Na, Ni) Ve < g(PKa, PKg, Na, Np)
display Va display Vg
check V4 = Vg
output: Na, N, ra, 15 output: Na, N, 14, 15

if (PKa, PK5) # (PKa, PKg), due to commitment ¢z and &s:
Adversary does not know Vg before he receives Ng
Adversary cannot influence Vj, after sending Cg

SV 2024-25 Case Studies CryptoSec 1054 /1098

Note on Numerical Comparison

@ presumably, not many human users will carefully compare the
32-bit strings V4 and Vg

@ “just works” is a variant where no check is made
(vulnerable to active attacks)

SV 2024-25 Case Studies CryptoSec 1055 /1098

Bluetooth Simple Secure Pairing Variants — ii
Passkey Entry

Device A Device B
input: PK,, PKg input: PK4, PKp
type ISR "
FORi=1tok
pick Ny €y {0, 1}128 pick N €y {0, 1}'%®
Cp < f1(PKA,I5|\<B,NA,r,-) %
HCB; CB H‘“(PKBa ﬁ(A,NB,fi)
— M & L 11(PKa, PKs, Na, 1))
&g = 11(PKg, PKa, N, 1)) —
ENDFOR

keep the last Ny and Ng

output: Na, Ng, r,r output: N, Ng, r,r

SV 2024-25 Case Studies CryptoSec 1056 / 1098

Collision Attack on Passkey Entry

find &, No, Ny s.t. f1(PKg, PKa, No, 0) = f1(PKg, PKa, Ny, 1) = &5 (collision)

(254 complexity)
Device A
input: PKA, PKB

(type r1 - -- rk
FOR/=1tok
pick Na €y {0,1}1%8 pick Ny
Ca + H1(PKa, PKg, Na, i) -2
S8

N,
A, deduce

—~ N Ny,
Cg = 11(PKg, PKa, Ng, 1;) -

ENDFOR

deduce:
deduce bit r; s.t. ¢4 = f1(PKA PKs, Na, r)
set &a :f1(PKA PKg, Na,)

SV 2024-25 Case Studies

T2 l2s |o

Device B
input: PKA, PKB

pick N €y {0,1}'%8
Cg < f1 (PKBa PKA7 NB7 rl)

&a = 11(PKa, PKg, Na, 1))

CryptoSec 1057 / 1098

Pass Entry Analysis

If (PKa, PKg) # (PKa, PKg) and f is collision-resistant:

@ Adversary cannot forge & and &g with a probability higher than 3
in each iteration (by trying to guess r;)
@ So, he cannot pass with probability higher than 2=

SV 2024-25 Case Studies CryptoSec 1058 /1098

Bluetooth Simple Secure Pairing Variants — iii

Out-of-Band

Device A
inpul: PKA, PKB

pick ra €y {0,1}'%
Cp < f1 (PKA7 PKA, ra, 0)

authenticate4(ra,ca)

authenticateg(rg,cg)

Cs < f1(F/’RB, ISRBJB,O)

. N,
pick Na €y {0,1}128 — T
Ng
%
output: NA, NB, ra, I's
SV 2024-25 Case Studies

Device B
input: PKA7 PKB

pick rg €y {0,1}'%8
Cg < f1 (PKB, PKB, Is, O)

Ca < f1(F/)RA7 F/’RA,I’A,O)

pick Ng €y {0,1}'%®

output: Ny, N, ra, s

CryptoSec

1059 /1098

Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)
@ similar association models, but no public-key crypto anymore
@ some ill-designed association model

@ a strange key hierarchy with not so much entropy in session key
derivation

SV 2024-25 Case Studies CryptoSec 1060/ 1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 1061 /1098

Q Case Studies

@ The Biometric Passport

SV 2024-25 Case Studies CryptoSec 1062 / 1098

Schweizer Pass
Passeport suisse
Passaporto svizzero
Passaport svizzer
Swiss passport

+

ICAO-MRTD Objectives

(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control
— biometrics
— contactless IC chip
— digital signature + PKI
maintained by UN/ICAO (International Civil Aviation Organization)

SV 2024-25 Case Studies CryptoSec 1064 /1098

MRTD History

@ 1968: ICAO starts working on MRTD
@ 1980: first standard (OCR-B Machine Readable Zone (MRZ))

@ 1997: ICAO-NTWG (New Tech. WG) starts working on
biometrics

@ 2001 9/11: US want to speed up the process

@ 2002 resolution: ICAO adopts facial recognition
(+ optional fingerprint and iris recognition)

@ 20083 resolution: ICAO adopts MRTD with contactless IC media
(instead of e.g. 2D barcode)

@ 2004: version 1.1 of standard with ICC

@ 2005: deployment of epassports in several countries

@ 2006: extended access control under development in the EU

@ 2007: deployment of extended access control (+ more
biometrics)

@ now part of Doc9303

SV 2024-25 Case Studies CryptoSec 1065 /1098

MRZ Example

PMFRADUPONT<<<<KJEANKLK<LLLLLLLLLLLLLLLLLLLLLKL
CHE730401 MO70512 <<<K<LLLLLLLLLLKL

document type
issuing country
holder name

+
nationality
date of birth +
gender
date of expiry +
options +

SV 2024-25 Case Studies CryptoSec 1066 / 1098

MRTD in a Nutshell

MRTD
MRZ LDS
optical access radio access

SV 2024-25 Case Studies CryptoSec 1067 /1098

ISO 14443 (RFID)

Who’s there?
08 2c 71 eb6

A

@ frequency: 13.56MHz
@ typical range: 2cm
@ reported range (with legal equipment): 12m

SV 2024-25 Case Studies CryptoSec 1068 / 1098

ICAO (MRTD): BAC and Passive Authentication

PMCHEDUPONT<< JEAN<<< <KL LLLLLLLLLLLLLLLLLLLL
X337803X<6CHE7208066M1308147<<<<<<LLLLLLL<<4

Who’s there?

08 2c 71 €6
‘proof(X337 ---814)
DG1,DG2, 50D _

>

@ DG1: official name, citizenship, X337 - - - 814, gender
@ DG2: facial picture
@ SOD: signature by authorities of the hash of DG’s

SV 2024-25 Case Studies CryptoSec

Identity Example

DG1

PMCHEDUPONT<<KJEAN<K<KKLLLLLLLLLLLLLLLLLLLLLLLKL
X337803X<6CHE7208066M1308147<<<<<<LLLLLLLL<4

DG2

SOD

Hashes:
DG1: 4e1249fb72c8e70ba72f488dc1£91394e57£9f83
DG2: a3853c3c7261c2788fc2c4b9db372c5875£5c91d

Signature:
54a4 a626 4eel cOab e022 3fld e673 75d4

7c89 7e7f d8fb acd6 abbf d568 b178 7171

652d e730 43c2 9495 6134 680c 7070 9028

lcaa 2364 17e8 ffal 9ee7 c8be 4c32 908c
Certificate:

AgIBFDA JBENVBAYT:
pbERMABGA1UECXMIU2Vydml jZXMxT 13
A
FuOuODALMT JBNVBAYTAKNIMQ4w
JERMABGA 1§ ZXHxGT. EFNpZ25h
AHVYZS1TZXJ: TB1 SEP 1B

MzZCB7AYHK0ZIzjOCATCB4ATBATASBgcqhkjOPQEBAEA//// /wAAAAEARAAARARA
ARARARD/////////1/////8wRAQg/////whRAREARRARARARARARARD///////]/
//////WEIFrGNd:

)
Qk£4v0bl YupZPAOLi/hp/md
Xs7LtkBoN79R9QTRAP////8AAAA//////////+85vqtpxeehPO5ySLEYyVRAZER
AOTABO: 1JQKIq9a111/L3erS

SkucfGu1) 7GjggFBMITBPT IDA

oT, T

MEKwRwY: FKbW1uLmNoL3BvbG1jeSID
UFN£M18xN183NTZEMVSXN: nZjJ
aW4xETAPBENVBAS' AYDVQQLEXLD: 1

J3c2NhLXN3aXR6ZX.J

TWGYMbTqj1YQnJ1DSpb//5HtQthjoy
PGrbBZN1RqGa7T) 3 390524
htX.

SV 2024-25

Case Studies CryptoSec

1070/1098

MRTD

Advantages Problems

@ impossible to forge an identity @ encourage identity theaft

@ protect against non-organized @ facial recognition is weakly
illegal immigration reliable

passeport cloning

tracking people

leakage of evidence

e proof of official name
e proof of age
e proof of gender

anonymity loss

SV 2024-25 Case Studies CryptoSec 1071/1098

EAC: Access Control and Active Authentication

PMCHEDUPONT<< JEAN<<< <KL LLLLLLLLLLLLLLLLLLLL
X337803X<6CHE7208066M1308147<<<<<<LLLLLLL<<4

Who's there?

08 2c 71 €6

X337---814 _
DG1, DG2, SOD

A

A

. DG3,DG4,..
° : chip authentication
° : terminal authentication

@ DG3...: fingerprint, other data

SV 2024-25 Case Studies CryptoSec 1072 /1098

EAC

Advantages Problems
@ anti-cloning @ only where EAC is available
@ better access control @ still evidence leakages
@ better identification @ anew PKI

SV 2024-25 Case Studies CryptoSec 1073 /1098

LDS Example

PMFRADUPONT<<<<JEAN<<<LLLLLLLLLLLLLLLLLLLLLKL
T4HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

DG1: same as MRZ
DG2: encoded face

DG3: encoded finger
SOp

[h(DG1), h(DG2), h(DG3)]
signature
certificate Cpg

SV 2024-25 Case Studies

CryptoSec

1074 /1098

LDS Structure

@ Kenc, Kuac, KPraa @ DG: structure feature(s)

@ COM: present data groups @ DG10: substance feature(s)

® DG1: same as MRZ @ DG11: add. personal detail(s)
@ DG2: encoded face @ DG12: add. document detail(s)
@ DGS3: encoded finger(s) @ DG13: optional detail(s)

@ DG4: encoded eye(s) @ DG14: security options

@ DG5: displayed portrait @ DG15: KPupa

@ DG6: (reserved) @ DG16: person(s) to notify

@ DG?7: displayed signature @ SOp

@ DG8: data feature(s)

SV 2024-25 Case Studies CryptoSec 1075/1098

SOp Structure

@ list of hash for data groups DG1-DG15
@ formatted signature by DS (include: information about DS)
@ (optional) Cpg

SV 2024-25 Case Studies CryptoSec 1076 /1098

(Country-wise) PKI

DS

C
CSCA CSCA » visited country
Cpbs
<+ revocation protocol>
DS,
SOp
LDS;1 LDS,,
h(DG2)
DG1 DG2

@ one CSCA (Country Signing Certificate Authority)
@ several DS (Document Signer) per country

@ SOp: signature of LDS
@ fingerprint of a DG

SV 2024-25

Case Studies CryptoSec 1077 /1098

Some MRTD Security Notions

@ Passive authentication: authentication of the DG by means of a
digital signature and a PKI

@ Basic access control: access control to the chip based on a
(printed) MRZ_info

@ Secure messaging: secure communication between chip and
terminal

@ Active authentication: interactive authentication of the chip
using a public key

@ Terminal authentication: authentication of the terminal by
means of a PKI

@ Chip authentication: replacement of active authentication

@ Extended access control: use of teminal authentication, chip
authentication, and PACE

SV 2024-25 Case Studies CryptoSec 1078 /1098

Passport: From Paper to Bits

paper passport

@ invisible if not shown

@ hard to copy

@ photocopies are non-binding
@ needs human check

@ access control by the holder

SV 2024-25 Case Studies

MRTD

@ detectable, recognizable

@ easy to copy with no AA

@ SOD is a digital evidence

@ readable automatically

@ needs specific access control

CryptoSec 1079 /1098

MRZ_info

PMFRADUPONT<<<<JEAN<<K<KLLLLLLLLLLLLLLLLLLLLKL
TAHK8215<6CHE7304017M0705121<<<<<<<<<L<KL<KK<03

@ document type

@ issuing country

@ holder name

@ doc. number + CRC
@ nationality

@ date of birth + CRC
@ gender

@ date of expiry + CRC
@ options + CRC

SV 2024-25 Case Studies CryptoSec 1080 /1098

Basic Access Control
Authenticated Key Exchange Based on MRZ._info

IFD ICC

(derive Kenc and Kyac from MRZ_info)

GET CHALLENGE

_ RND.ICC _
pick RND.IFD, K.IFD pick RND.ICG, K.ICC
[Slkene K
S + RND.IFD||RND.ICC||K.IFD ENC? MAC check RND.ICC
[Alkeng 4
check RND.IFD ENC TWAC R « RND.ICC||RND.IFD||K.ICC

(derive KSENC and KSMAC from Kseeq = K.ICC @ K|FD)

SV 2024-25 Case Studies CryptoSec 1081/1098

Active Authentication Protocol

IFD ICC

pick RND.IFD AND IFD

check

F «+ nonce||[RND.IFD

= % ¢ Signyey,, (F)

SV 2024-25 Case Studies CryptoSec 1082 /1098

RFID Private Collision Avoidance Protocol
(ISO 14443)

@ for each new singulation protocol
ICC introduces himself with a pseudo (32-bit number)

@ singulation to establish a communication link between reader
and ICC of given pseudo
@ pseudo is either a constant or a random number starting with 08

SV 2024-25 Case Studies CryptoSec 1083 /1098

Security and Privacy Issues

collision avoidance discrepancies
— deviating from standard induce leakages

MRZ_info entropy
— online attack or offline decryption from skimming

underestimated wireless range limits
— claimed to be possible at a distance of 25m

identity theft (by stealing/cloning MRTD)
— facial recognition is weak

@ remote passport detection
— nice to find passports to steal

relay attacks
denial of services

SV 2024-25 Case Studies CryptoSec 1084 /1098

Identity Theft

biometry picture

steal identityT

a few 100 customers are enough

SV 2024-25 Case Studies CryptoSec 1085 / 1098

Extended Access Control (EAC)

@ PACE > BAC

@ Chip Authentication > AA

@ Terminal Authentication to access non-mandatory data
@ more biometrics (finger) for more secure identification

@ using state-of-the-art cryptography
(public-key crypto, PAKE, elliptic curves)

@ secure access control but requires a heavy PKI for readers

@ in-process standard: protocols with different versions, variants,
described in different documents, with different notations...

SV 2024-25 Case Studies CryptoSec 1086 / 1098

Sequence of Steps for Inspection

Advanced Inspection Basic Inspection
run PACE (or BAC) run PACE (or BAC)
start secure messaging start secure messaging
(if not in PACE) run Chip Auth. passive auth. of SOp
restart secure messaging 1
. (optional) run AA
passive auth. of SOp 1
4 read and verify basic data
(optional) run AA
+
run Terminal Authentication v1
1
read and verify data

SV 2024-25 Case Studies CryptoSec 1087 /1098

PACE (GM v2)

@ better protocol (than BAC) based on = = MRZinfo
@ can play the role of Chip Authentication

PCD
password: ©

pick s at random
z = ENCk, (s)
pick SKvap.pcp, PKvap,pco = gSKwap poo
o PSS
pick SKpw,pco, PKow,pep = §SKor poo
SK
K= PKDH[?IHC*PCD
derive KSeng, KSmac from K
Teco = MACks . (PKoH,pep)
check Tic

CAic = DECksg,, (Acc), check CAic

output: KSenc, KSuac, X = PKou pco

. CAlc ?
check cac: PKSICLPKyap i
SV 2024-25

(9 € Dicc)
PKic.Dic

z
-z
PKwap,pcD
PKwvap,ic

PKpH,pcD

PKpH,i1c

TpcD
0

Case Studies

IC
password: m
secret key: SKic
pub key: PKc = g% D¢

s = DECx, (2)

pick SKwvap,ic, PKuap,ic = gSKuap 10

SKwap,ic

9= 9°PKuap pco

pick SKonic, PKpwic = §5oric
SK

K= PKDHI,J:SCD

derive KSgnc, KSuac from K

check Tpcp

Tic = MACKSMAC(PKDH,IC)

CAc = S A = ENCrsq o (CA)

output: KSene, KSwac, X = PKo pcp

CryptoSec 1088 / 1098

Chip Authentication (if not in PACE)

@ chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
@ semi-static ECDH with domain parameters Dic¢
@ replace the secure messaging keys

— resists passive attacks

IFD

pick x at random

X =g

K = KDF(PKjc)

derive Kenc, Kuac from K

output: K, Kenc, Kuac, X

SV 2024-25

(9 € Dicc)

PKicc:Picc

X
- &

Case Studies

Icc
secret key: SKcc
pub key: PKicc = g%Kcc, Dige

K = KDF(XSKice)
derive Kene, Kvac from K

output: K, Kenc, Kuac, X

CryptoSec

1089 /1098

Terminal Authentication

@ terminal sends a certificate to chip (ECDSA)
@ terminal signs a challenge + ephemeral key X from Chip

Authentication
@ ID\cc set to serial number (for BAC) or to ephemeral key of ICC
(for PACE)
— strong access control
IFD ICC
certificate(PKjgp) check
F < IDiccl| ficc[IH(X) — pick ficc
SIFD

s|FDeSignSKIFD(F) ———— check

SV 2024-25 Case Studies CryptoSec

1090 /1098

Terminal Authentication Issues

Terminal revocation issue:
@ MRTDs are not online!
@ MRTDs have no reliable clock
— MRTD must trust readers to revoke themselves

SV 2024-25 Case Studies CryptoSec 1091/1098

Information Leakage

@ SOp leaks the digest of protected DGs before passing EAC
@ could be used to recover missing parts from exhaustively search
@ could be used to get a proof if DG is known

SV 2024-25 Case Studies CryptoSec 1092/1098

Conclusion on MRTD

@ LDS: contains too much private information
@ passive authentication: leaks evidence for LDS
@ BAC: does a poor job

@ secure messaging: OK
@ AA: leaks digital evidences, subject to MITM

@ EAC: much better, but still leaks + revocation issue
@ RFID: leaks

@ biometrics: leaks template

“Les passeports ne servent jamais qu’'a géner les
honnétes gens et a favoriser la fuite des coquins.”

Jules Verne, 1872
Le tour du monde en 80 jours

SV 2024-25 Case Studies CryptoSec 1093 / 1098

» back to chapter

SV 2024-25 Case Studies CryptoSec 1094 /1098

Conclusion

@ Lightweight networks based on conventional cryptography only
(GSM, Bluetooth, ...)

@ Although limited, we can make many protocols with only
conventional cryptography

@ Assembling cryptographic primitives in a protocol is not trivial

@ access control based on

e what you know (password)
@ what you have (a key in a secure token for challenge-response)
@ what you are (biometrics)

@ New notions: forward secrecy, plausible deniability, block chain,
proof-of-work

@ TLS: standard for e-commerce, suffer from PKI weaknesses
@ MRTD: secure data authentication, poor privacy
@ EMV PayPass: secure for payee, not payer, poor privacy

@ they all put together all cryptographic ingredients quite nicely

@ they are permanently improved to fix mistakes and use the
state-of-the-art cryptography

SV 2024-25 Case Studies CryptoSec 1095/1098

References

@ Borisov-Goldberg-Wagner. Intercepting Mobile
Communications: the Insecurity of 802.11. In MOBICOM 2001,
ACM.

@ Jakobsson-Wetzel. Security Weaknesses in Bluetooth. In
CT-RSA 2001, LNCS 2020.

@ Vaudenay. On Bluetooth Repairing: Key Agreement based on
Symmetric-Key Cryptography. In CISC 2005, LNCS 3822.

@ Beck-Tews. Practical Attacks against WEP and WPA. In WiSec
2009, ACM 2009.

@ Juels-Molnar-Wagner. Security and Privacy Issues in
E-Passports. In SecureComm 2005, IEEE.

@ Chaabouni-Vaudenay. The Extended Access Control for
Machine Readable Travel Documents. In Biosig 2009, LNI 155.

SV 2024-25 Case Studies CryptoSec 1096 / 1098

Must Be Known

@ GSM security infrastructure
@ mobile telephony security
@ Bluetooth pairing

@ foward secrecy

SV 2024-25 Case Studies CryptoSec 1097 /1098

Train Yourself

@ biometric passport: final exam 2015-16 ex3

SV 2024-25 Case Studies CryptoSec 1098 / 1098

	Ancient Cryptography
	Roadmap
	Scope of Cryptography
	Cryptography = Science of Information and Communication Security
	Evolution
	Applications

	Cryptography versus Security
	Cryptography vs Coding Theory
	Cryptanalysis
	Problem of this Lecture: Secure Communication over an Insecure Channel
	Basic Security Properties

	Main Cryptographic Primitives in this Lecture
	Symmetric Encryption
	Message Authentication Code
	Secure Comm. based on Conventional Cryptography
	Problem of Symmetric Cryptography
	Key Agreement Protocol
	Public-Key Cryptosystem (Key Transfer)
	Problem of Public-Key Cryptography
	Digital Signature (Public-Key Certificate)
	Secure Communication Standards
	Example of TLS

	Cryptography Prehistory
	Secret Writing
	Transpositions
	Simple Substitution: Caesar Cipher
	Simple Substitution: ROT13
	Simple Substitution: Random Substitution Table
	Probabilities of Occurrence in English
	Rough Frequencies in English

	Vigenère Cipher
	Character Addition Rule
	Column-Dependent Substitution

	Kasiski Test Example
	Question
	Reminders on Combinatorics
	Are 5 Occurrences Significant?
	Where does CHR Come From?
	Kasiski Test

	Index of Coincidence
	Expected Index of Coincidence
	Application to the Vigenère Cipher
	Example — i
	Example — ii
	Example — iii

	Pre-Modern Industrial Cryptography
	Enigma
	Picture of Enigma
	Enigma Circuit
	Example: DEAD BEEF
	Enigma Building Blocks
	The Enigma Cipher (Mathematically)
	Key Entropy in Enigma
	A Turing Machine

	Q
	The Laws of Modern Cryptography
	Kerckhoffs Principles

	Kerckhoffs Principles - Translation
	Evolution
	The Laws of Modern Cryptography
	The Laws of Modern Cryptography
	Moore's Law
	Security by Key Length
	A 128-Bit Key
	Exhaustive Search on 128 Bits

	Two Revolutions

	Cryptography and Information Theory
	Bitwise Exclusive Or
	Vernam Cipher
	Vernam Cipher
	Q
	Using the Same Key Twice

	Visual Cryptography
	Example
	Using the Same Key Twice

	Insecurity Cases in the Vernam Cipher
	Summary of Security Requirements
	Intuition on Why it is Perfectly Secure

	Abelian Group Laws
	Useful Lemma
	Generalized Vernam Cipher

	Information Theory
	Reminder on the Shannon Entropy — i
	Reminder on the Shannon Entropy — ii
	Reminder on the Shannon Entropy — iii
	Reminder on the Shannon Entropy — iv
	Reminder on the Shannon Entropy — v
	Reminder on the Shannon Entropy — vi

	The Shannon Encryption Model
	The Shannon Encryption Model

	Perfect Secrecy - i
	Perfect Secrecy - ii
	Perfect Secrecy - iii (skip)
	Vernam Cipher Provides Perfect Secrecy
	Influence of the Plaintext Distribution

	Shannon Theorem
	Other Form of the Shannon Theorem (Bad News)

	The Negative Side of Shannon Theorem
	Other Consequence (Bad News)
	Leakage of Message Length

	Summary on the Shannon Results
	Information Theory vs Complexity Theory

	The Early Days of Computer Science
	Milestones of Modern Cryptography

	Conclusion
	References
	Must be Known
	Train Yourself

	Diffie-Hellman Cryptography
	Roadmap
	Arithmetics and Zn
	Prime Numbers
	Unique Factorization

	Modulo n
	Euclidean Division
	Two Notations for "mod"

	Zn for Dummies (n>1)

	Some Notions of Groups Theory
	Definition of a Group
	Additive vs Multiplicative Notations for Groups
	Group Homomorphism
	Group Constructions: Subgroups

	Subgroups of Z
	Generators
	Finite Groups and Orders
	Consequence
	Group Constructions: Groups Product
	Functional vs Family Notations for Power Sets
	Group Constructions: Quotient Group
	Quotient of an Abelian Group by a Subgroup
	Quotient Example: Z/6Z

	Lagrange Theorem
	Application: Generators in a Group of Prime Order

	The Diffie-Hellman Key Agreement Protocol
	Using the Diffie-Hellman Key Agreement Protocol

	Algorithms for Big Numbers
	Addition with Big Numbers (in Decimal)
	Addition in Binary
	Addition (Binary/Hexadecimal/Decimal)
	Definition of a Monoid
	Multiplication
	Multiplication Algorithm
	Double-and-Add From Right to Left
	From Left to Right
	Double-and-Add From Left to Right
	From Double-and-Add to Square-and-Multiply

	Zn: The Ring of Residues Modulo n
	Definition of a Ring
	Group of Units
	Group and Ring Constructors
	Example: Z
	Example: Z[X]
	Example: Modulo 9 Reduction of Large Numbers
	Preuve par 9

	Example: the Ring of Residues Modulo n
	Cerebral Zn
	Zn Tips
	Exercise

	Zn Computations
	Addition in Zn
	Multiplication in Zn From Left to Right
	Exponentiation From Left to Right
	Euclidean Division

	Modular Inversion
	Euclid Algorithm
	Example
	Why does it Work?
	Extended Euclid Algorithm
	Example
	Modular Inversion
	Modular Inversion

	Arithmetics with Big Numbers
	Modular Arithmetic (Recap)
	FFT-based Multiplication

	Orders in a Group
	Structure Property of Z (Reminder)
	Orders in Zm*

	Checking a Generator of a Group with Known Order Factorization
	Discussion
	Picking a Generator in a Cyclic Group with Known Order

	Generating a Generator

	The Zp Field
	Definition of a Field
	Zp Properties
	Proof

	An Interesting Group
	Example: the SSH2 Parameters

	Algorithms To Be Seen Later
	The Discrete Logarithm Problem
	Is Logarithme Hard?!?
	The Notion of Game
	Negligible Function
	Some Facts About The Discrete Logarithm Problem
	Baby Step - Giant Step Algorithm
	Attacks based on Precomputation

	The Diffie-Hellman Key Exchange, Concretely
	The Diffie-Hellman Key Agreement Protocol (again)
	An Unavoidable Active Attack

	Passive Adversaries
	The Computational Diffie-Hellman Problem
	CDH hard => DL hard
	CDH hard => DL hard (details)

	DDH Problem
	DDH hard => CDH hard - i
	DDH hard => CDH hard - ii

	DDH Easy Case of a Group whose Order has a Small Factor
	Hardness Depending on Groups
	Hard Cases
	Problems when not Checking Group Membership
	Man-in-the-Middle Attack Making K1=K2 — i
	Man-in-the-Middle Attack Making K1=K2 — ii
	Problems with Subgroups
	Other issue: Weird Key Distribution

	Summary: Problems with the Original DH Protocol
	Correct Diffie-Hellman Key Exchange
	RFC 2631
	Exercise
	Group Parameter Generation in RFC 2631
	Parameter Validation in RFC 2631 (Group Membership Verification Part)
	Checking Group Membership
	Proof
	Example: Semi-Authenticated Key Exchange in SSH2

	The ElGamal Public-Key Cryptosystem
	Public-Key Cryptosystem
	Non-Deterministic Encryption

	Semi-Static-DH to Public-Key Encryption
	The Plain ElGamal Encryption Case

	ElGamal Cryptosystem
	ElGamal Cryptosystem
	Plain ElGamal Encryption
	ElGamal Encryption Complexity

	ElGamal Security: ElGamal Problems
	EGD hard => CDH hard
	CDH hard => EGD hard
	ElGamal Encryption Security

	Conclusion
	References
	Must be Known
	Train Yourself

	RSA Cryptography
	Roadmap
	Euler and Other Chinese
	Euler Totient Function
	Proof - i
	Proof - ii
	Proof - iii
	Proof - iv
	Application: RSA Cryptosystem

	Chinese Remainder Theorem
	Chinese Remainder Theorem
	Application 1: Count Soldiers
	Application 2: Equality Modulo Composite Numbers
	Application 3: Correctness of RSA
	Application 4: Exponentiation Acceleration
	Proof of CRT - i
	Proof of CRT - ii
	Null Kernel
	Proof of CRT - iii
	CRT Backward: Another Approach
	Proof
	Euler Totient Function
	Proof
	Computation of Euler Totient Function
	For Generating a Generator

	Primality Testing
	Trial Division Algorithm
	Fermat Test
	Fermat Test
	Significance of the Fermat Test
	Carmichael Numbers
	Carmichael Numbers: the 561 Case
	Carmichael Numbers: the 949631589089 Case

	Towards The Miller-Rabin Test
	The Miller-Rabin Test
	The Miller-Rabin Primality Test
	Miller-Rabin Criterion
	Bounding Errors

	Prime Number Generation
	Implementation
	Incorrectness Probability

	RSA Basics
	Plain RSA Cryptosystem
	Plain RSA
	RSA Correctness
	RSA Complexity
	ElGamal vs RSA

	Quadratic Residuosity
	Square Roots in Fields
	Existence of Square Roots in Zp
	Computing Square Roots in Zp, p=3 mod 4
	Example
	Tonelli Algorithm

	Square Roots in Zn, n=pq

	The Factoring Problem
	Factoring Problem
	Record using the Number Field Sieve Algorithm
	Factorization Tomorrow
	Factoring Algorithms on Classical Computers

	Square Roots in Zpq
	Factoring n => Computing Square Roots in Zn
	Computing Square Roots in Zn => Factoring n
	Note

	RSA Security: RSA Problems
	RSAKRP => RSADP
	GOP => RSAKRP
	RSAKRP => OMP
	RSAFP => GOP
	GOP => RSAFP
	OMP => RSAFP
	Factorization using lambda(n) Multiple
	Factorization using lambda(n) Multiple
	RSA Security

	Conclusion
	Computational Problems
	References
	Must be Known
	Train Yourself

	Elliptic Curve Cryptography
	Roadmap
	Galois Fields
	GF(q) for Dummies
	Example: GF(8)
	Cerebral GF(q)

	Galois Fields
	Example: GF(5)
	Example: GF(4)
	Example: GF(256)
	Most Important Finite Fields
	Characteristic 2 Tips

	Elliptic Curves
	Elliptic Curves
	Elliptic Curves - Point Addition
	Elliptic Curves - Point Doubling
	Elliptic Curves - Point Symmetric
	Addition in Elliptic Curves
	Group Structure
	Elliptic Curves are Abelian Groups

	Remark on Points of Order 2 (Characteristic >2)
	Recap

	Elliptic Curves over a Prime Field
	Roadmap
	Addition over an Elliptic Curve (Characteristic p>3)
	Maybe Useful to Know (p>3) — i
	Maybe Useful to Know (p>3) — ii
	Maybe Useful to Know (p>3) — iii
	Other Example

	Recap

	Elliptic Curve and Factoring
	Pollard p-1 Factorization Algorithm
	Pollard p-1 Factorization with n=18923
	Potential Problem

	ECM Factorization
	ECM Factorization with n=44023
	ECM Factorization Algorithm

	Using Elliptic Curves
	Hardness of the Discrete Logarithm
	Using Point Compression (Prime Field Case)
	Manipulating Elliptic Curves in Practice

	Domain Parameters
	ECDSA Parameters Generation
	ECDSA Parameters Validation
	ECDSA Parameters Selection: Conclusion
	Standard Curves
	NIST Standard Curves (2013)
	SECG Standard Curves (2010)
	Other Standards
	Example: secp192r1 = P192
	Elliptic Curves are Real
	Example: Curve25519

	Elliptic Curve Cryptography
	Elliptic Curve Cryptography
	ECDH: Elliptic Curve Diffie-Hellman
	ECDH
	Checking Subgroup Membership

	Problems without Membership Verification
	The Invalid Curve Attack on Bluetooth

	Principles of ECIES
	ECIES (EC Integrated Encryption Scheme)

	ECDSA Signature
	Exercise

	Pairing-Based Cryptography
	Pairing of Elliptic Curves
	Types of Pairing
	Pairing-Friendly Elliptic Curves
	Pairing of Elliptic Curves

	3-Party Diffie-Hellman Key Agreement in a Single Round
	Popular Cryptographic Constructions based on Pairings

	Conclusion
	References
	Must be Known
	Train Yourself

	Symmetric Encryption
	Roadmap
	A Cryptographic Primitive
	Cryptographic Primitive (Reminder)
	Symmetric Encryption
	Symmetric Encryption (Informal)
	Example: Vernam Cipher
	Two Categories of Symmetric Encryption

	Block Ciphers
	DES: the Data Encryption Standard
	DES
	DES Inverse
	Feistel Scheme
	(Direct) Feistel Scheme
	(Inverse) Feistel Scheme
	(Direct + Inverse) Feistel Scheme
	DES: the Gory Details
	DES Round Function Overview
	DES Round Function
	S-box S3
	DES Key Schedule
	DES Inverse Key Schedule

	Security Notions
	Attacks on DES
	AES: the Advanced Encryption Standard
	Rijndael Skeleton
	One Non-Terminal Round of Rijndael
	SubBytes
	ShiftRows
	AddRoundKey
	Introduction to GF Arithmetics in Rijndael
	Examples
	GF Arithmetics
	MixColumns
	MixColumns
	InvMixColumns
	AES Decryption
	Key Expansion
	Key Expansion

	Modes of Operation
	ECB Mode
	ECB Decryption
	ECB vs CBC
	CBC Mode
	CBC Decryption
	Note on the CBC Mode
	OFB Mode
	OFB Decryption
	Note on the OFB Mode
	CTR Mode
	CTR Decryption
	Note on the CTR Mode
	XTS Mode
	XTS
	Ciphertext Stealing
	Ciphertext Stealing
	To Be Known About Modes of Operation

	Classical Skeletons for Block Ciphers
	The Symmetric Encryption Zoo
	The Symmetric Encryption Zoo ...in practice
	Block Ciphers Characteristics

	Stream Ciphers
	Stream Ciphers
	Stream Ciphers from a High Level

	RC4
	RC4 (Alleged)
	RC4 Key Schedule (KSA)
	RC4 in Security Protocols
	Known Weaknesses

	Case Study: WiFI: WEP/WPA/WPA2
	GSM A5/1
	A5/1 from a High Level
	Linear Feedback Shift Register (LFSR)
	A5/1 Automaton
	A5/1 Initialization
	A5/1 Initialization
	Known Weaknesses

	Bruteforce Inversion Algorithms
	Example: Opening a Safe
	Key Recovery Game - Online (with no Clue)
	Variations
	Exhaustive Search Algorithm (Uniform Case)
	Exhaustive Search Algorithm (Optimal Case)
	Exhaustive Search Algorithm (Any Case)
	Complexity Analysis (All Cases)
	Key Recovery Game - With Clue
	Offline Attack with Clue

	Cases for Deterministic Clues
	Cases for Non-Deterministic Clues

	Access Control
	Password Hash Inversion

	Game: Key Recovery vs Inversion
	Two Forms of Bruteforce Attack with Clue
	Inversion by Exhaustive Search
	Complexity of an Inversion Attack

	Dictionary Inversion Attack (Full Book)
	Dictionary Inversion Attack (Smaller Dictionary)

	Metrics of Algorithms
	Complexity Analysis

	Summary of Single-Target Brute Force Attacks
	Application to DES
	Security of Passwords with less than 48 Bits of Entropy
	Extension: Multi-Target Dictionary Inversion Attack
	Complexity Analysis

	Password Recovery from a Salted Password Hash
	Offline Inversion Attack with Salt
	The Role of Salt

	Subttle Bruteforce Inversion Algorithms
	Double DES
	Double Encryption
	Meet-in-the-Middle Attack
	Complexity Analysis
	Triple DES
	Generic Attacks on Triple DES

	Time-Memory Tradeoffs — i
	Precomputed Tables
	Time-Memory Tradeoffs — ii
	Complexity Analysis

	Pushing the Physical Limits
	Order of Magnitudes
	Moore's Law
	Better Strategy (of Metaphysical Interest)
	Energy Bill
	Fully Reversible Exhaustive Search
	Grover Algorithm

	Formalism
	Block Cipher
	Variable-Length Symmetric Encryption
	Nonce-Based Symmetric Encryption
	Security against Key Recovery
	CPCA Security against Key Recovery
	About Nonce Reuse in Decryption
	CPCA Security is Stronger than CPA Security
	Not Good Enough Security
	Security against Decryption
	Example: Vernam-Based Ciphers
	Decryption Security is Stronger than Key Recovery Security
	Not Good Enough Security
	The Ideal Cipher
	Security against Distinguisher
	Security against Distinguisher (Equivalent Form)
	Equivalence
	Distinguisher Sec is Stronger than Decryption Sec
	Security Notions

	Conclusion
	Ciphers to Remember
	Several Types of Symmetric Encryption
	Stream Ciphers vs Block Ciphers

	References
	Must be Known
	Train Yourself

	Integrity and Authentication
	Roadmap
	Message Authentication Code
	Message Authentication Code (Informal)

	Hash Function (Informal)

	Commitment Scheme
	Playing Rock-Paper-Scissors
	Playing Rock-Paper-Scissors
	Commitment to Play Rock-Paper-Scissors
	Commitment
	Using a Commitment Scheme
	Commitment Scheme (Informal)
	Application Example: Tossing a Coin
	Application Example: Playing Dice

	Examples
	Pedersen Commitment (Based on DL)

	Key Derivation Function and Pseudorandom Generator
	Pseudorandom Number Generator (PRNG)
	PRNG (Informal)
	PRNG Examples
	Famous Failure Cases
	Possible Threats
	Other Famous Failure Case

	Pseudorandom Function (PRF)
	PRF: PseudoRandom Function
	PRF Security Definition

	Key Derivation Function (KDF)
	KDF Examples

	Cryptographic Hash Function
	Cryptographic Hashing
	A Swiss Army Knife Cryptographic Primitive
	Integrity Preservation
	Constructing Other Primitives with Hash Functions

	Security for Hash Functions: Wishlist
	Popular Threat Models for Hash Functions
	Bruteforce First Preimage Attack
	Bruteforce Second Preimage Attack

	Cryptographic Hashing
	Cryptographic Hashing
	Encryption to Hashing
	Merkle-Damgaard's Extension
	Merkle-Damgaard Theorem
	Proof of Merkle-Damgaard Theorem - Case 1
	Proof of Merkle-Damgaard Theorem - Case 2

	Davies-Meyer Scheme
	Bitwise Boolean Functions in SHA1
	Implementation of SHA-1 Compression

	SHA-3 based on Keccak
	One Round of f - i
	One Round of f - ii
	The Sponge

	Hash Functions to Remember
	Case Study: Block Chains

	Message Authentication Codes
	MAC
	MAC Primitive
	Security

	Hashing to Authentication: HMAC [RFC 2104]
	HMAC [RFC 2104]
	Examples
	HMAC Security

	CBCMAC
	Property of CBCMAC
	A MAC Forgery
	Other Attack with 1 Known Message
	Result on CBCMAC
	EMAC (Encrypted MAC) - (CBCMAC Variant)
	ISO/IEC 9797 - (Another CBCMAC Variant)
	CMAC [RFC4493] - (Best CBCMAC Variant)
	CMAC

	PMAC
	PMAC

	WC-MAC
	Universal Hash Function
	WC-MAC - Proof — i
	WC-MAC - Proof — ii
	Example of Universal Hashing (Krawczyk 1994)
	Example
	WC-MAC using a Stream Cipher
	Example (Taken From GCM Mode)
	Variant: Poly1305 [RFC7539]

	Authenticated Modes of Operation
	Roadmap
	Encrypt-then-MAC
	MAC-then-Encrypt
	Encrypt-and-MAC
	Some Tricky Additional Things
	TLS using Block Ciphers
	Padding Oracle Attack: Encryption
	Padding Oracle Attack: Decryption
	CCM (Counter with CBC-MAC)
	CCM
	CCM Processing
	Processing with an Extra Data
	GCM Mode
	GCM
	Misuse Attack on GCM
	GCM
	Variant: AES-GCM-SIV (RFC 8452)
	The CHACHA20-POLY1305 AEAD
	The CHACHA20-POLY1305 AEAD

	Authenticated Modes to Remember

	Formalism
	Hash Function
	One-Wayness
	Large-Code Inversion Attack
	Security Against Collision Attack (Bad Definition)

	Message Authentication Code
	Security against Key Recovery
	Security against Forgery
	Forgery Security is Stronger than Key Recovery Security
	Security against Distinguisher (PRF)
	PRF-Security is Stronger than Unforgeability
	PRF vs MAC
	Security Notions

	Case Study: Mobile Telephony

	Bruteforce Collision Search Algorithms
	Birthday Paradox
	Birthday Paradox - Informal Proof
	Birthday Paradox - Proof — i
	Birthday Paradox - Proof — ii

	Collision Search I
	Collision Search II
	Collision Search Complexity

	Example: Birthday Attack on EMAC
	Variant: Collision between Two Lists
	Example: Birthday Attack on PMAC

	(Almost) Memoryless Collision Search
	Floyd Cycle Finding Algorithm (1967)
	Why it Works
	Example
	Example
	Cycle Detection Algorithms

	How to Select Security Parameters?
	Breaking Symmetric Cryptography
	Summary of Generic Attacks against Symmetric Encryption
	Summary of Generic Attacks against MAC
	Summary of Generic Attacks against Hash Functions
	Risks When Underestimating Collision Attacks

	Other Reasons why Security Collapses
	Cryptanalytic Advances

	Conclusion
	Dedicated Primitives and Reductions
	References
	Must be Known
	Train Yourself

	Public-Key Cryptography
	Roadmap
	Public-Key Cryptography
	Diffie-Hellman
	Merkle

	Trapdoor Permutation
	Trapdoor Permutation

	Reversibility in Symmetric Encryption
	Hard-To-Invert Computation
	Big Picture

	Digital Signature Primitive
	Application: Certificates

	Diffie-Hellman Key Exchange
	Static versus Ephemeral Diffie-Hellman
	Ephemeral Diffie-Hellman Key Agreement
	Semi-Static Diffie-Hellman Key Agreement
	Static Diffie-Hellman Key Agreement
	Forward Secrecy

	Case Study: Signal
	Diffie-Hellman Cryptography

	RSA Cryptography
	Rivest-Shamir-Adleman (RSA)
	Plain RSA
	Why "Plain" RSA

	PKCS#1v1.5
	PKCS#1v1.5 Encryption

	RSA-OAEP Encryption
	RSA-OAEP Decryption
	Mask Generation Function in RSA-OAEP

	Signature with Message Recovery
	Trapdoor Permutation to Signature with Message Recovery

	Plain RSA Signature
	Plain RSA Signature

	Trapdoor Permutation to Signature
	More Generally: Hash-and-Sign Paradigm

	PKCS#1v1.5
	Signature Verification
	PKCS#1v1.5 Signature

	RSA-PSS
	RSA-PSS Verification

	Case Study: TLS

	ElGamal Cryptography
	ElGamal Cryptosystem Generalized (Reminder)
	ElGamal Cryptosystem More Generalized
	From ElGamal to ECIES
	ECIES (EC Integrated Encryption Scheme)

	ElGamal Signature
	ElGamal Signature
	Drawbacks of ElGamal Signatures
	Major Drawbacks of ElGamal-Like Signatures

	The ElGamal Dynasty
	Generating the Public Parameters

	DSA Signature (DSS)
	DSA Signature
	Benefits

	ECDSA
	ECDSA
	ECDSA Signature
	Example of Parameters and Key
	Benefits of ECDSA (Compared to DSA)

	Boneh-Lynn-Shacham (BLS) Signature
	(Simple) Boneh-Boyen Signature (no H)
	Case Study: NFC Creditcard Payment

	Selecting Key Lengths
	Popular Algorithms
	Breaking RSA Cryptography by Factoring
	Breaking DH Cryptography by Discrete Logarithm
	Meta-comparison of Cryptographic Strengths
	Impact of Quantum Computers

	Formalism
	PKC
	How to Define Security?
	IND-CPA Security
	Problem with Deterministic Cryptosystems
	IND-CPA Security
	Basic Constructions

	Fujisaki-Okamoto Transform
	Fujisaki-Okamoto KEM

	Key and Data Encapsulation Mechanisms
	KEM Primitive
	KEM
	KEM + DEM Hybrid Encryption
	DEM Example
	HPKE (Hybrib Public Key Encryption)
	Authenticated DHKEM

	Signature Scheme
	EF-CMA Security
	Examples

	Other Public-Key Cryptosystems

	Towards Post-Quantum Cryptography
	On Real Quantum Computers
	The Impact on Crypto
	When to Worry?

	NIST PQC Agenda
	NIST PQC Round #1 Submission
	NIST PQC 2022 Selected Algorithms
	Next Steps

	Hybrid KEM

	Lattice-Based Cryptography
	Lattices
	Lattice-Based Problems
	Learning with Error
	Primal Attack on LWE
	Module Lattices
	The Regev Public-Key Cryptosystem
	Meta (PQ) Cryptosystem
	Examples

	Crystals-Kyber
	Facts about the Kyber Field
	Kyber K-PKE
	Kyber K-PKE
	K-PKE (Unoptimized)

	FO Variant for IND-CCA KEM (in ML-KEM)

	Hash-Based Cryptography
	Lamport (One-Time) Signature Scheme
	Lamport (One-Time) Signature Scheme - Example
	Winternitz (One-Time) Signature Scheme
	Attack with No Checksum
	FORS (Few-Times) Signature Scheme
	Trying to Attack FORS
	Sphincs+: a Hash-Based Signature Scheme

	Conclusion (on Chapters 2,3,4,7)
	References
	Must Be Known
	Train Yourself

	Trust Establishment
	Roadmap
	Access Control
	Application: Access Control
	Password Authentication Protocol (Step 1)
	Password Authentication Protocol — i
	Password Authentication Protocol — ii
	Password Authentication Protocol — iii
	Password Access Control Using Salt
	Example: UNIX Password Access Protocol
	UNIX Passwords
	Examples
	tequila@epfl
	Pros and Cons
	Password Authentication Protocol (Step 2)
	Passive vs Active Adversary

	Challenge/Response Protocol
	Challenge/Response Protocol
	Pros and Cons
	Examples

	Case Study: Bluetooth
	S/Key - OTP [RFC2289]
	HMAC-Based One-Time Password (HOTP) [RFC4226]
	Time-Based One-Time Password (TOTP) [RFC6238]
	Human Factor against Password Access Control
	Alternate Authentication Means
	Example of Critical Application: UBS E-Banking
	Requirements for e-Banking
	Example: (Old) UBS E-Banking
	Example: (New) UBS E-Banking

	Password-Based Cryptography
	Password-based Access Control Protocol
	Password vs Secret Keys
	Online Dictionary Attack: a Generic Attack
	Online and Offline UNIX Passwords Recovery
	(Bad) Example: Challenge/Response Protocol

	Password-Based Authenticated Key Agreement
	A New Primitive
	Key Agreement: a (Bad) Idea
	Key Agreement: Another (Bad) Idea
	SPAKE2

	References on Password-Based Cryptography
	Case Study: The Biometric Passport

	From Secure Channel to Secure Communications
	The Cryptographic Trilogy
	Enforcing Confidentiality by Encryption
	Enforcing Integrity by Hash Function
	Enforcing Authenticity + Integrity by MAC
	Authentication and Integrity
	A+I+C by Symmetric Cryptography

	Security Property of Communication Channels
	From Packet Security to Session Security
	Enforcing Session Integrity
	Sequentiality using A + I Message Security

	Fair Termination Problems
	Summary for Secure Channel (so far)

	Setup of Secure Channels
	Problem
	Virtual Channels by Combination of Channels
	Secure Channel from A+I+C Channel: PSK

	Next Step: Strongly Secure Channel From Weakly Secure Channel
	Key Agreement Protocol
	The Diffie-Hellman Key Agreement Protocol

	Key Transfer by Public-Key Encryption
	Passive vs Active Adversaries
	Approaches to Build an Initial Authenticated Channel
	Summary

	Setup by Narrowband Secure Channel
	Secure Communication Step 1
	Secure Communication Step 2
	Secure Communication Step 3
	Secure Communication
	Secure Communication Step 4
	Security from Human-Monitored Short String Authentication

	Message Authentication Protocols
	Message Cross-Authentication Protocols

	Application I: Personal Area Network Setup
	Application II: Voice over IP
	Application III: Peer-to-Peer PGP Channel Setup
	Application IV: Disaster Recovery

	Semi-Authenticated Non-Interactive: Application
	Folklore
	A Collision Attack
	Pasini-Vaudenay 2006: SAS-Based NIMAP

	Semi-Authenticated Interactive
	Authenticated Interactive
	Attack on a Variant Without Commitment

	References on SAS-Based Cryptography

	Setup by a Trusted Third Party
	Several Trusted 3rd Party Approach
	Example: Kerberos

	Kerberos
	Server-Aided Authentication (Bad Protocol)
	Attack
	Attack
	Needham-Schroeder Authentication (Still Bad)
	Basic Kerberos Protocol

	The Certificate Authority Model
	Critical Secure Channels
	Semi-A Key Exchange Using Certificates
	Semi-Authenticated Channel
	A Typical TLS 1.3 Session
	An X.509 Certificate Example: Overall Structure
	An X.509 Certificate Example: Subject
	Two Approaches to Revocations

	Several 3rd-Party Based Trust Infrastructure
	Public-Key Infrastructure
	Identity-Based Encryption
	Certificateless Encryption

	Boneh-Franklin Identity-Based Encryption

	Trust Management and Cryptography
	Chain of Trust in the PKI Model
	Chain of Trust in Real Life

	Several Approaches to Certificate Verification
	More References
	Metacryptography

	Conclusion
	Must be Known
	Train Yourself

	Case Studies
	Roadmap
	WiFI: WEP/WPA/WPA2
	IEEE 802.11 in a Nutshell
	WEP Security Goals
	WEP Encryption
	(Terrible) Integrity Protection using CRC32
	WEP Issues
	WEP (In)security

	WPA: a Dirty Quick Fix
	WPA2

	Block Chains
	Bitcoins
	A Bitcoin Transaction
	Block Chain
	Bitcoin Block
	Bitcoin Blockchain
	Proof-of-Work
	Merkle Authentication Tree (Hash Tree)

	Mobile Telephony
	GSM Architecture
	GSM Slang
	GSM Protocol
	GSM Peer Authentication
	Security of Peer Authentication
	GSM Encryption
	Security of Privacy protections

	Improvements in 3G Mobile Telephony
	The UMTS Crypto Menagery
	MILENAGE Protocol
	MILENAGE Challenges
	MILENAGE Challenge Verification

	Security Misses
	Mobile Telephony (In)security
	Other Standards

	Signal
	Signal
	X3DH: Initial Key Agreement
	Ratchet
	Double Ratchet
	Diffie-Hellman Ratchet
	Symmetric-Key Ratchet
	Double Ratchet

	Involved Cryptography
	Out-of-Band Authentication
	Contact Discovery

	TLS
	Typical Requirements in Secure Browsing
	History
	Session State
	Cipher Suites (from 1.0 to 1.2)

	Different Key Exchange Protocols (Old TLS)
	TLS 1.3
	TLS 1.3 Cipher Suites
	TLS 1.3 Handshake
	TLS 1.3 Resumption

	NFC Creditcard Payment
	(Simplified) EMV PayPass Protocol (NFC)
	From Paper to Bits...
	Skimming
	Relay Attacks
	Relay Attacks in Real
	Playing against two Chess Grandmasters

	Bluetooth
	The Bluetooth Project
	Bluetooth History
	Bluetooth Security Basics (Link Level)
	Cycles in Bluetooth

	Device Pairing
	Legacy Pairing Protocol
	Pairing with a Dummy Device
	Legacy Pairing with a Dummy Device
	Dummy Devices: Unit Key is Shared with Many Devices
	Peer Authentication

	Insecurity Summary
	Key Establishment (In)security
	Sniffing + Offline Attack
	Online Impersonation Attack

	Bluetooth v2.0 Summary
	Bluetooth v2.0 (In)security
	Moral

	Bluetooth v2.1: Secure Simple Pairing
	Common Protocol
	Common Protocol
	ECDH Common Protocol
	The New Bluetooth Menagery

	Bluetooth Simple Secure Pairing Variants — i
	Numeric Comparison Analysis
	Note on Numerical Comparison
	Bluetooth Simple Secure Pairing Variants — ii
	Collision Attack on Passkey Entry
	Pass Entry Analysis
	Bluetooth Simple Secure Pairing Variants — iii

	Bluetooth Low Energy (LE) in v4.0

	The Biometric Passport
	ICAO-MRTD Objectives
	MRTD History
	MRZ Example
	MRTD in a Nutshell

	ISO 14443 (RFID)
	ICAO (MRTD): BAC and Passive Authentication
	Identity Example
	MRTD
	EAC: Access Control and Active Authentication
	EAC
	LDS Example
	LDS Structure
	SOD Structure
	(Country-wise) PKI

	Some MRTD Security Notions
	Passport: From Paper to Bits
	MRZinfo
	Basic Access Control
	Active Authentication Protocol
	RFID Private Collision Avoidance Protocol (ISO 14443)

	Security and Privacy Issues
	Identity Theft

	Extended Access Control (EAC)
	Sequence of Steps for Inspection
	PACE (GM v2)
	Chip Authentication (if not in PACE)
	Terminal Authentication
	Terminal Authentication Issues
	Information Leakage

	Conclusion on MRTD

	Conclusion
	References
	Must Be Known
	Train Yourself

