Cryptography and Security

Serge Vaudenay

http://lasec.epfl.ch/

- Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- Elliptic Curve Cryptography
- Symmetric Encryption
- Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

- Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- RSA Cryptography
- 4 Elliptic Curve Cryptography
- Symmetric Encryption
- Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- scope of cryptography
- prehistory (before XX-th Century)
 - transposition and substitution
 - Vigenère
- pre-modern cryptography
 - Kerckhoffs principle
 - Enigma
- cryptography by information theory
 - Vernam
 - Shannon

- Ancient Cryptography
 - Scope of Cryptography
 - Cryptography Prehistory
 - Pre-Modern Industrial Cryptography
 - Cryptography and Information Theory

Cryptography = Science of Information and Communication Security

Evolution

Prehistory

secret development cryptography before communication systems (confidentiality/privacy)

Modern cryptography

academic research for mass communication

(confidentiality/privacy, detection of malicious modification, data authentication, non-repudiation, access control, timestamping, fair exchange, digital rights management, etc)

Applications

- bank cards
- Internet (e-commerce)
- mobile telephony (DECT, GSM, GPRS, EDGE, 3G, 4G, 5G, ...)
- mobile communication (Bluetooth, WiFi...)
- e-passport
- traceability, logistic & supply chains (RFID)
- pay-TV, DRM
- access control (car lock systems, metro...)
- payment (e-cash)
- electronic voting

Cryptography versus Security

- cryptography: a toolbox for setting up security infrastructure
- security experts often assume cryptography does a good job
- cryptographic tools are pretty good, but not for everything some can easily be misused
- proper usage of cryptography still requires to master it

Cryptography vs Coding Theory

Code

a system of symbols which represent information

Coding theory

science of code transformation which enables to send information through a communication channel in a reliable and efficient way $(\rightarrow \text{dummy adversary})$

Cryptography

(obsolete definition) the science of secret codes, enabling the confidentiality of communication through an insecure channel $(\rightarrow$ malicious adversary)

Cipher

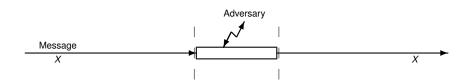
secret code, enabling the expression of a public code by a secret one by making the related information confidential

Cryptanalysis

- Cryptanalysis, cryptographic analysis, cryptoanalysis theory of security analysis of cryptographic systems
- To cryptanalyze a cryptosystem (≠ to break it)
 to prove or to disprove the security provided by a cryptosystem
- To break a cryptosystem
 to prove insecurity (= to disprove security)

Problem of this Lecture: Secure Communication over an Insecure Channel

The Fundamental Trilogy



- Confidentiality (C): only the legitimate receiver can get X
- Authentication + Integrity (A+I): only the legitimate sender can insert X and the received message must be equal to X

Basic Security Properties

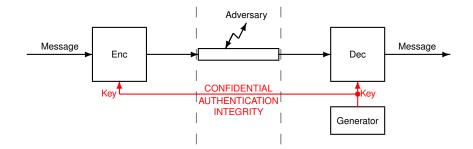
- Confidentiality
 the information should not leak to any unexpected party
- Integrity
 the information must be protected against any malicious modification
- Authentication the information should make clear who is its author

Main Cryptographic Primitives in this Lecture

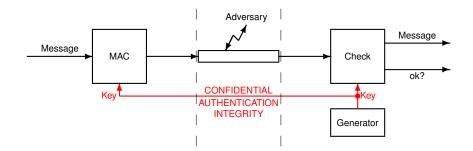
- symmetric encryption
- message authentication code
- key agreement protocol
- public-key cryptosystem
- digital signature

14 / 1098

Symmetric Encryption

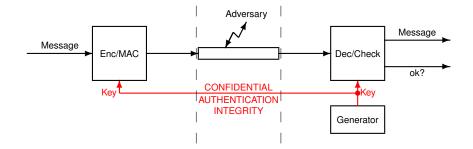


Message Authentication Code



16 / 1098

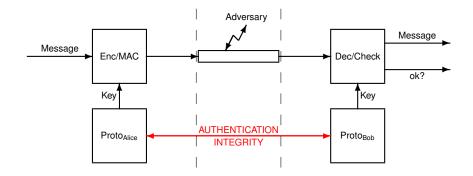
Secure Comm. based on Conventional Cryptography



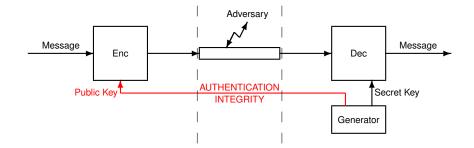
Problem of Symmetric Cryptography

Q: What is the main problem of symmetric-key cryptography?
A: Jr zhfg frg hc n flzzrgevp xrl

Key Agreement Protocol



Public-Key Cryptosystem (Key Transfer)

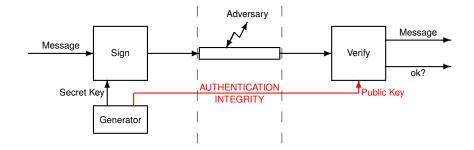


Problem of Public-Key Cryptography

Q: What is the main problem of public-key cryptography?
A: Jr zhfg nhguragvpngr n choyvp xrl

SV 2024–25 Ancient Cryptography CryptoSec 21 / 1098

Digital Signature (Public-Key Certificate)

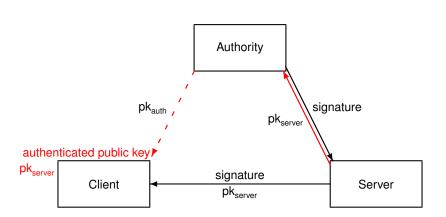


22 / 1098

Secure Communication Standards

- TLS (e-commerce, business-to-customer)
- IPSEC (VPN, corporate networks)
- SSH (secure remote connections)
- PGP (secure peer-to-peer, secure email)
- GSM/GPRS/3G/4G/5G (mobile telephones)
- Bluetooth (wireless local networks)
- WPA (WiFi)
- MRTD (e-passports)
- ...

Example of TLS



24 / 1098

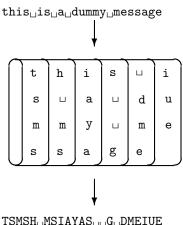
- Ancient Cryptography
 - Scope of Cryptography
 - Cryptography Prehistory
 - Pre-Modern Industrial Cryptography
 - Cryptography and Information Theory

Secret Writing

Hieroglyphs!

Transpositions

Spartan scytales



TSMSH, MSIAYAS, II G, DMEIUE

Simple Substitution: Caesar Cipher

Simple Substitution: ROT13

Application: quiz

Q: Where can we find good quiz?

A: va pnenzone pnaqvrf

▶ ROT13

Simple Substitution: Random Substitution Table

```
a b c d e f g h i j k l m n o p q r s t u v w x y z H D L X O Q K W G S Z A P F T M V C B R E U Y I N J crypto \longrightarrow LCNMRT
```

Number of possible tables: 26! $\approx 2^{88.4}$

Quiz:

Q: How to break this?
A: ol fgngvfgvpny nanylfvf

Probabilities of Occurrence in English

letter	probability	letter	probability	letter	probability
A	0.082	J	0.002	S	0.063
В	0.015	K	0.008	Т	0.091
C	0.028	L	0.040	U	0.028
D	0.043	M	0.024	V	0.010
E	0.127	N	0.067	W	0.023
F	0.022	0	0.075	Х	0.001
G	0.020	P	0.019	Y	0.020
Н	0.061	Q	0.001	Z	0.001
I	0.070	R	0.060		

Rough Frequencies in English

- most frequent: E
- very frequent: T A O I N S H R
- frequent: D L
- rare: C U M W F G Y P B
- very rare: V K J X Q Z

30 most common digrams (in decreasing order):

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI and OF.

12 most common trigrams (in decreasing order):

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.

Vigenère Cipher

Plaintext: this is a dummy message

Key: ABC

Ciphertext: TIKSJUAEWMNAMFUSBIE

$$\textit{e.g.} \ \mathtt{y} + \mathtt{C} = \mathtt{A}.$$

Character Addition Rule

		b						
Α	Α	В	С	D	Ε	F	G	
В	В	C	D	Ε	F	G	Η	
С	C	D	Ε	F	G	Η	Ι	
D	D	Ε	F	G	Η	Ι	J	
Ε	Е	F	G	Η	Ι	J	K	
F	F	G	Η	Ι	J	K	L	
G	G	Н	Ι	J	K	L	M	
÷	:	:	:	:	:	:	:	

cultural remark: using the mapping (isomorphism) $a\leftrightarrow 0, b\leftrightarrow 1, c\leftrightarrow 2, ...$ this is the addition modulo 26 (group \mathbf{Z}_{26})

Column-Dependent Substitution

Α	В	C		Α	В	С
t	h	i		T	Ι	K
s	i	s		S	J	U
a	d	u		Α	E	W
m	m	У	\longrightarrow	M	N	Α
m	е	s		М	F	U
s	a	g		S	В	I
е				Ε		

Kasiski Test Example

→ look at unexpectedly frequent patterns

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBWRVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAKLXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELXVRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHRZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJTAMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBIPEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHPWQAIIWXNRMGWOIIFKEE

CHR occurs at 1, 166, 236, 276, 286.

Question

In a random string of 313 characters from an alphabet of 26 letters, is it common to observe 5 occurences of the same trigram?

Reminders on Combinatorics

• number of k-tuples of elements in a set of size z: example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

$$z^k$$

Application (k = 3, z = 26): #possible trigrams is $26^3 = 17576$

number of possible subsets of t elements in a set of size n:
 example n = 4, t = 2: {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}

$$\binom{n}{t} = \frac{n!}{t!(n-t)!} = \frac{n \cdot (n-1) \cdots (n-t+1)}{t \cdot (t-1) \cdots 1}$$

Application: if we draw n balls with replacement in a jar of 1/p numbered balls, the probability to pick ball number u exactly t times is $\binom{n}{t} p^t (1-p)^{n-t}$ (binomial distribution)

Are 5 Occurrences Significant?

In a truly random sequence of 313 characters $x_1x_2 \dots x_{313}$ with alphabet of 26 letters

- there are n = 311 trigrams $t_1 = x_1x_2x_3$, $t_2 = x_2x_3x_4$, ... $t_n = x_nx_{n+1}x_{n+2}$
- every possible trigram *abc* has a number of occurrences $n_{abc} = \sum_{i=1}^{n} 1_{t_i = abc}$
- approximation: all t_i 's are independent and uniformly distributed in a set of $\frac{1}{n} = 26^3 = 17\,576$ possibilities
- $\Pr[n_{abc} = t] = \binom{n}{t} p^t (1-p)^{n-t}$ $(\lambda = n \times p \text{ is small so } \Pr[n_{abc} = t] \approx \frac{\lambda^t}{t!} e^{-\lambda}$: Poisson distribution)
- Application: $\Pr[\exists a, b, c \mid n_{abc} \ge 5] \approx 2.42 \times 10^{-7}$ observing 5 occurrences of CHR is significantly odd

Where does CHR Come From?

key of length multiple of 5 + frequent trigram

•	٠	•	•	•		•	•	•	٠	٠
t	h	е			-	С	Н	R		•
•	•	•	•	٠		•	•	•		
•	•	•	•	٠		•	•	•		
•	•	•		•	\longrightarrow	•	•	•		•
t	h	е		•		C	Н	R		
	•	•				•	•			
t	h	е				C	Н	R		

Kasiski Test

to check a guess *n* for the key length

- look at repeating patterns at a distance multiple of n
- check that this is significant

41 / 1098

Index of Coincidence

Index
$$(x_1, ..., x_n)$$
 = $\Pr_{I,J}[x_I = x_J | I \neq J]$
= $\frac{1}{n(n-1)} \sum_{\substack{1 \le i,j \le n \\ i \neq j}} 1_{x_i = x_j}$
= $\sum_{c \in Z} \frac{n_c(n_c - 1)}{n(n-1)}$

where $I, J \in \{1, ..., n\}$ are independent and uniformly distributed

Proposition

For any permutation σ over Z, we have

$$Index(\sigma(x_1),\ldots,\sigma(x_n)) = Index(x_1,\ldots,x_n)$$

For any permutation σ of $\{1, \ldots, n\}$, we have

$$\operatorname{Index}(x_{\sigma(1)},\ldots,x_{\sigma(n)})=\operatorname{Index}(x_1,\ldots,x_n)$$

the index of coincidence is invariant by substitution and transposition

Expected Index of Coincidence

$$E(\operatorname{Index}(x_1, \dots, x_n)) = \frac{1}{n(n-1)} \sum_{\substack{1 \le i,j \le n \\ i \ne j}} \Pr[x_i = x_j]$$
$$= \sum_{c \in Z} f_c^2$$

if all x_i have i.i.d. distribution with frequency table f_c

- Index(Random string) → 0.038
- Index(English text) \rightarrow 0.065 when $n \rightarrow +\infty$

Application to the Vigenère Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is of length 3, we can write

so we can compute the index of coincidence of TSAMMSE, IJENFB and KUWAUI.

Example — i

guess the key is of length 4

```
C H R E E V O A H M A E R A T B I A X X W T N X : : : :
```

first column:

CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE

(string of 79 characters)

$$\text{Index}(\text{col}) = \text{Index}(\mathtt{A}^{4}\mathtt{B}^{5}\mathtt{C}^{2}\mathtt{D}^{2}\mathtt{E}^{7}\mathtt{G}^{4}\mathtt{H}^{4}\mathtt{I}^{3}\mathtt{J}^{1}\mathtt{K}^{3}\mathtt{L}^{5}\mathtt{M}^{4}\mathtt{N}^{4}\mathtt{P}^{2}\mathtt{R}^{4}\mathtt{S}^{5}\mathtt{T}^{3}\mathtt{U}^{1}\mathtt{V}^{3}\mathtt{W}^{4}\mathtt{X}^{7}\mathtt{Z}^{2})$$

which is 0.0422: this is too low

Example — ii

guess the key is of length 5

first column:

CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK

(string of 63 characters)

$$\label{eq:Index} \begin{split} &\text{Index}(\text{col}) = \text{Index}(\mathtt{A}^{7}\mathtt{B}^{6}\mathtt{C}^{6}\mathtt{D}^{4}\mathtt{E}^{1}\mathtt{F}^{2}\mathtt{I}^{1}\mathtt{J}^{2}\mathtt{K}^{2}\mathtt{M}^{2}\mathtt{N}^{4}\mathtt{P}^{1}\mathtt{Q}^{4}\mathtt{R}^{3}\mathtt{T}^{2}\mathtt{U}^{1}\mathtt{V}^{1}\mathtt{W}^{9}\mathtt{X}^{5}) = 0.0630 \\ &\text{this is high enough!} \end{split}$$

Example — iii

Next:

- do a statistical analysis in each column
- look at cross-column indices (find the difference between two letters of the key)

47 / 1098

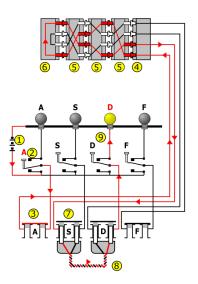
- Ancient Cryptography
 - Scope of Cryptography
 - Cryptography Prehistory
 - Pre-Modern Industrial Cryptography
 - Cryptography and Information Theory

Enigma

- electro-mechanical encryption device (typewriter)
- could be plugged to a radio transmiter
- patented (1918)
- developped to be secure even with public specifications (Kerckhoffs principle), in hostile environment (battlefield)
- used by German armies in WW2
- preliminary attacks by polish mathematician Rejewski in 1932 (before Anschluss)
- "industrial" (over 2000 messages decrypted per day) attack by UK intelligence at Bletchley Park during WW2 (performing: Turing)

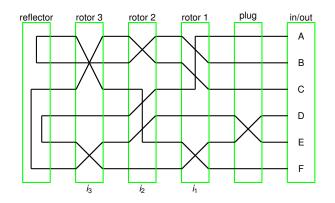
Picture of Enigma

Enigma Circuit



https://en.wikipedia.org/wiki/Enigma_machine

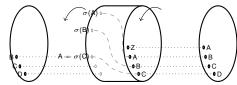
Example: DEAD BEEF



 ${\tt deadbeef} \,\,\longrightarrow\, {\tt AADCCBBB}$

Enigma Building Blocks

- given a permutation σ over $\mathcal{Z} = \{A, B, ..., Z\}$, a **fixed point** is an element $x \in \mathcal{Z}$ such that $\sigma(x) = x$
- an **involution** over \mathcal{Z} is a permutation σ of \mathcal{Z} such that $\sigma(\sigma(x)) = x$ for all x. Examples: reflector, plug board
- a **rotor** σ defines a set of permutations $\sigma_0, \ldots, \sigma_{25}$ over \mathcal{Z} the rotor in position i implements permutation σ_i such that $\sigma_i = \rho^i \circ \sigma \circ \rho^{-i}$ where $\rho(\mathsf{A}) = \mathsf{B}, \, \rho(\mathsf{B}) = \mathsf{C}, \ldots, \, \rho(\mathsf{Z}) = \mathsf{A}$



The Enigma Cipher (Mathematically)

Secret key: 3 components:

- σ (involution made of 6 pairs)
- an ordered choice $\alpha, \beta, \gamma \in S$ of pairwise different permutations (from a box of 5 rotors)
- a number a (initial position of rotors)

Plaintext: $x = x_1, \dots, x_m$

Ciphertext: $y = y_1, \dots, y_m$

Encryption:

$$y_i = \sigma^{-1} \circ \alpha_{i_1}^{-1} \circ \beta_{i_2}^{-1} \circ \gamma_{i_3}^{-1} \circ \pi \circ \gamma_{i_3} \circ \beta_{i_2} \circ \alpha_{i_1} \circ \sigma(x_i)$$

where $i_3i_2i_1$ are the last three digits of the basis 26 numeration of i + a.

Key Entropy in Enigma

σ: number of involutions with 14 fixed points

$$\begin{pmatrix} 26 \\ 14 \end{pmatrix} \times 11 \times 9 \times 7 \times \cdots \times 1$$

$$= 9657700 \times 11 \times 9 \times 7 \times \cdots \times 1$$

$$= 100391791500$$

$$\approx 2^{37}$$

• α, β, γ : number of choices for the rotors

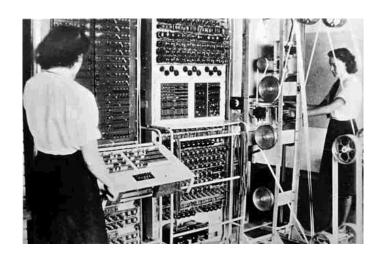
$$5 \times 4 \times 3 = 60 \approx 2^6$$

a: number of initial positions

$$26^3 = 17\,576 \approx 2^{14}$$

total: 57 bits

A Turing Machine



Q

Can we reasonably assume that the adversary ignores the cryptosystem?

The Laws of Modern Cryptography

Law I: the Kerckhoffs Principle

security should not rely on the secrecy of the cryptosystem itself

- motivation: the adversary may get some information about the system (e.g. by reverse engineering, corruption, etc)
- meaning: security analysis must assumes that the adversary knows the cryptosystem
- does not mean: cryptosystem must be public

Kerckhoffs Principles

Kerckhoffs Principles

- Le système doit être matériellement, sinon mathématiquement, indéchiffrable;
- Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi;
- La clef doit pouvoir en être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants;
- Il faut qu'il soit applicable à la correspondance télégraphique;
- Il faut qu'il soit portatif et que son maniement ou son fonctionnement n'exige pas le concours de plusieurs personnes;
- Enfin, il est nécessaire, vu les circonstances qui en commandent l'application, que le système soit d'un usage facile, ne demandant ni tension d'esprit, ni la connaissance d'une longue série de règles à observer.

Kerckhoffs Principles - Translation

Google Translate:

- The system must be materially, if not mathematically, indecipherable:
- It must not require secrecy, and it must be able to fall between the hands of the enemy:
- The key must be able to be communicated and retained without the aid of written notes, and be changed or modified at the discretion of the correspondents:
- It must be applicable to telegraphic correspondence:
- It must be portable and its handling or operation must not require assistance of several people:
- Finally, it is necessary, given the circumstances which require its application, that the system is easy to use, requiring neither mental tension nor knowledge of a long series of rules to observe

My translation:

- The system must be secure.
- Security must not depend on the secrecy of the algorithm.
- The cryptographic key must be easy to communicate or change.
- It must be compatible with telegraphic systems.
- It must be portable and usable by a single person.
- It should remain easy to use in stressful circumstances.

CryptoSec

60 / 1098

Evolution

- security by obscurity: private encryption algorithms several techniques: substitutions and transpositions
- Kerckhoffs principle
 - \rightarrow security should rely on the secrecy of the key only (not on the secrecy of the algorithm)
- encryption with a configurable secret key e.g., Vigenère, Enigma

CryptoSec

61 / 1098

The Laws of Modern Cryptography

Law II: scalability — the n^2 Problem

in a network of n users, there is a number of potential pairs of users within the order of magnitude of n^2

- we cannot assume that every pair of users share a secret key
- we must find a way for any pair of users to establish a shared secret key

The Laws of Modern Cryptography

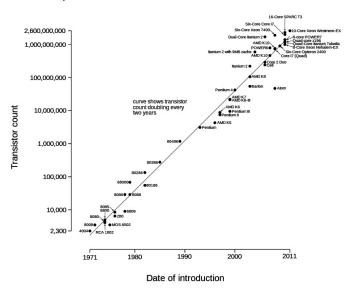
Law III: the Moore Law

the speed of CPUs doubles every 18-24 months

- we should wonder how long a system must remain secure
- we must estimate the speed of CPU at the end of this period
- we assess security against brute force attacks

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law



Security by Key Length

- a 2007-PC could test 1 000 000 keys per second a 32Y times led to a 10^5 factor speed up $\rightarrow f_t = 10^6 \times 10^{5 \frac{t-2007}{32}}$ keys per second can be tested at time t
- the number of keys we can try with one processor between time t_0 and time $t_0 + \Delta$ is

$$\begin{split} \int_{t_0}^{t_0+\Delta} f_t \ dt &= \int_{t_0}^{t_0+\Delta} 10^6 \times 10^{\frac{5}{32}(t-2007)} \ dt \\ &= \frac{10^6}{\frac{5}{32} \ln 10} \times 10^{\frac{5}{32}(t_0-2007)} \left(10^{\frac{5}{32}\Delta} - 1\right) \\ &\approx \ \ \text{cte} \times 2^{0.52 \times (t_0+\Delta-2007)} \end{split}$$

- assuming that
 - f_t is correct,
 - the key length is of 128 bits,
 - and we have 280 processors which we maintain up to date,

we need to run until $t_0 + \Delta = 2100$ to break it

A 128-Bit Key

11000000	10010011	00000011	01001001
11010011	11110010	01111011	10100101
10101001	00110001	00110000	11011110
00101110	01001110	00011111	00100001

number of possible combinations:

$$\begin{array}{r}
128 \text{ times} \\
2 \times 2 \times 2 \times \cdots \times 2 \\
= 2^{128} \\
= 340 282 366 920 938 463 463 374 607 431 768 211 456 \\
39 \text{ digits}
\end{array}$$

Exhaustive Search on 128 Bits

- in 2007, a standard PC could test 1 000 000 keys per second
- to run exhaustive search within 14 billion years, we need 770 000 billions of 2007-PCs!
- if the Moore law goes on, a single 2215-PC will do it in a second
- better create the Big Bang and take 14 billion years of vacations to solve the problem within a second!

Two Revolutions

- communicating information theory mass communication (radio)
 - \rightarrow we need standard crypto
- computing
 computer science
 automata (electromechanic devices)
 → adversaries have more power

- Ancient Cryptography
 - Scope of Cryptography
 - Cryptography Prehistory
 - Pre-Modern Industrial Cryptography
 - Cryptography and Information Theory

Bitwise Exclusive Or

exclusive or (XOR) of two bits:

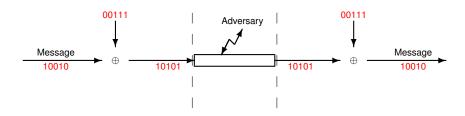
\oplus	0	1
0	0	1
1	1	0

- XOR: binary addition where carry bits are ignored
- XOR: addition modulo 2
- bitwise XOR of two bitstrings:

- XOR properties
 - closure: the XOR of bitstrings is a bitstring
 - associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - commutative: $a \oplus b = b \oplus a$
 - neutral element: $a \oplus [00 \cdots 0] = a$
 - (self-)invertibility: $a \oplus a = [00 \cdots 0]$ (or + = -)

Vernam Cipher

\oplus	0	1
0	0	1
1	1	0



Vernam Cipher

- we use a uniformly distributed random key K (a bitstring)
- every message X requires a new K of same size (one-time pad)

\oplus	0	1
0	0	1
1	1	0

- Encrypting X with K: compute $X \oplus K$
- Decrypting Y with K: compute $Y \oplus K$

	(<i>X</i>)	10010
\oplus	(<i>K</i>)	00111
=	(<i>Y</i>)	10101

\oplus	(<i>K</i>)	00111
=	(X)	10010

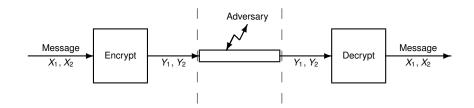
Q

When is this insecure?

Using the Same Key Twice

$$Y_1 = X_1 \oplus K$$

 $Y_2 = X_2 \oplus K$



$$Y_1 \oplus Y_2 = (X_1 \oplus K) \oplus (X_2 \oplus K) = (X_1 \oplus X_2) \oplus (K \oplus K) = X_1 \oplus X_2$$

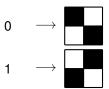
leakage of the $X_1 \oplus X_2$ value

SV 2024–25 Ancient Cryptography CryptoSec

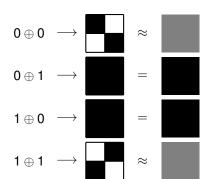
74 / 1098

Visual Cryptography

Pixel coding

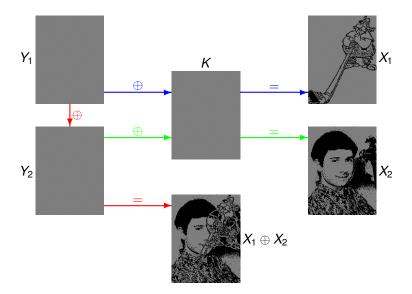


Pixel XOR



Example

Using the Same Key Twice



Insecurity Cases in the Vernam Cipher

if K is smaller than X

$$Y = (X_L \oplus K)||X_R$$

- \rightarrow insecure
- if K is not uniformly distributed

$$\Pr[K = k] \text{ high } \Longrightarrow \Pr[X = y \oplus k] \text{ high }$$

- \rightarrow insecure
- if K is used twice

$$Y_1 \oplus Y_2 = X_1 \oplus X_2 \Longrightarrow \text{ information about } X_1 \text{ and } X_2$$

 \rightarrow insecure

Summary of Security Requirements

- the key must have (at least) the same length of the message
- the key must be uniformly distributed
- the key must be thrown away after usage
- ©: this makes no sense for most of applications!
- ©: this provides perfect security
- makes sense to prepare emergency communication (red telephone)

keys are exchanged (through slow channels) before the messages to transmit are known

 bad news for other application: there is essentially no better cipher with this strong security property

Intuition on Why it is Perfectly Secure

• if the adversary gets Y = y then for any x

$$\Pr[X = x | Y = y] = \Pr[X = x | X \oplus K = y] = \Pr[X = x]$$

because X and $X \oplus K$ are statistically independent the adversary gets no information about X in knowing that Y = y

Abelian Group Laws

Definition

An **Abelian group** is a set G together with a mapping from $G \times G$ to G which maps (a, b) to an element denoted a + b and such that

- **1.** [closure] for any $a, b \in G$, we have $a + b \in G$
- **2.** [associativity] for any a, b, c, we have (a + b) + c = a + (b + c) (notation: n.a means $a + a + \cdots + a$ (n times))
- 3. [neutral element] there exists an element denoted by 0 s.t. for any a, a + 0 = 0 + a = a
- **4.** [invertibility] for any a there exists an element denoted by -a s.t. a + (-a) = (-a) + a = 0 (notation: a b means a + (-b))
- **5.** [commutativity] for any $a, b \in G$, we have a + b = b + a
- Z with the regular addition
- $\{0,1\}^n$ with \oplus
- $\{0, 1, ..., n-1\}$ with $(a, b) \mapsto \begin{cases} a+b & \text{if } a+b < n \\ a+b-n & \text{otherwise} \end{cases}$

Useful Lemma

Lemma

Let X and K be two independent random variables in a given group. If K is uniformly distributed, then Y = K + X is uniformly distributed and independent from X.

Proof.

For any x and y:

$$Pr[X = x, Y = y] = Pr[X = x, K = y - x]$$

$$= Pr[X = x] \times Pr[K = y - x]$$

$$= Pr[X = x] \frac{1}{\#group}$$

$$Pr[Y = y] = \sum_{x} Pr[X = x, Y = y]$$

$$= \frac{1}{\#group}$$

٦

Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source producing elements in G

- let K be uniformly distributed in G and independent from the plaintext
- given X, the encryption of X with key K is Y = K + X
- given Y, the decryption of Y with key K is X = (-K) + Y
- the key is used only once

Theorem

For any distribution of X over G, Y is independent from X.

(perfect secrecy)

Information Theory

Claude Shannon

[Claude Shannon]

skip reminders on Shannon entropy

CAUTION: in cryptography, "entropy" is often used in an informal way by meaning some kind of "effective bit-length"

Reminder on the Shannon Entropy — i

- H(X): number of bits of information to represent the value of X
- H(X, Y): entropy of (X, Y)
- H(X|Y) = H(X,Y) H(Y)

$$H(X) = -\sum_{x} \Pr[X = x] \log_2 \Pr[X = x]$$

$$H(X, Y) = -\sum_{x,y} \Pr[X = x, Y = y] \log_2 \Pr[X = x, Y = y]$$

$$H(X|Y) = -\sum_{x,y} \Pr[X = x, Y = y] \log_2 \Pr[X = x | Y = y]$$

Reminder on the Shannon Entropy — ii

• a real function f is convex on [a, b] iff

$$\forall \text{set } S \quad \forall t : S \to [a, b] \quad \forall p : S \to]0, 1]$$

$$\sum_{x \in S} p_x = 1 \Longrightarrow \sum_{x \in S} p_x f(t_x) \ge f\left(\sum_{x \in S} p_x t_x\right)$$

- it is strictly convex if we further have the property that equality implies all t_x are equal
- a real function f which has a second derivative on]a, b[is strictly convex on [a, b] iff its second derivative is always > 0 on]a, b[

Reminder on the Shannon Entropy — iii

Proposition

 $H(X) \ge 0$ with equality if, and only if X is constant

Proof.

• $f(t) = -\log_2 t$ is strictly convex on [0, 1] take $t_x = p_x = \Pr[X = x]$ and get

$$H(X) \ge -\log_2\left(\sum_{x \in S} p_x^2\right)$$

clearly, $\sum_{x} p_{x}^{2} \leq 1$ so this log is positive

• Assuming equality, we must have $\sum_{x} p_{x}^{2} = 1$ so all p_{x} must be equal to 1 so there must be a single x (we cannot have two different values with probability 1) (i.e. X is constant equal to this x)

Reminder on the Shannon Entropy — iv

Proposition

 $H(X, Y) \ge H(X)$ with equality if, and only if Y can be written f(X)

Proof.

We write

$$H(Y|X) = \sum_{x} \Pr[X = x] \sum_{y} \Pr[Y = y|X = x] \log_2 \Pr[Y = y|X = x]$$

We know that for each x the inner sum is ≥ 0 with equality iff there is a single y = f(x) for which $\Pr[Y = y | X = x] > 0$

- Clearly: $H(Y|X) \ge 0$
- Assuming equality, for each x we define y = f(x) and get Pr[Y = f(x)|X = x] = 1 for all x so, Pr[Y = f(X)] = 1

$$H(Y|X) = -\sum_{X,Y} \Pr[X = X, Y = y] \log_2 \Pr[Y = y|X = X]$$

SV 2024–25 Ancient Cryptography CryptoSec

Reminder on the Shannon Entropy — v

Proposition

 $H(X, Y) \le H(X) + H(Y)$ with equality if, and only if X and Y are independent.

Proof.

• $t \mapsto t \ln t$ has second derivative $\frac{1}{t}$ so it is convex and

$$-\sum_{y} \Pr[Y=y]t_y \log_2 t_y \le -\left(\sum_{y} \Pr[Y=y]t_y\right) \log_2 \left(\sum_{y} \Pr[Y=y]t_y\right)$$

with equality iff all t_y 's for $Pr[Y = y] \neq 0$ are equal

• Applying this to $t_y = \Pr[X = x | Y = y]$ yields

$$-\sum_{y} \Pr[X = x, Y = y] \log_2 \Pr[X = x | Y = y] \le -\Pr[X = x] \log_2 \Pr[X = x]$$

with equality iff Pr[X = x | Y = y] does not depend on y

• summing up for all x leads to $H(X|Y) \le H(X)$ with equality iff X and Y are independent

SV 2024–25 Ancient Cryptography

Reminder on the Shannon Entropy — vi

Proposition

If $\Pr[X = x] \neq 0$ for n values of x then $H(X) \leq \log_2 n$ with equality if, and only if all non-zero $\Pr[X = x]$ are equal to $\frac{1}{n}$.

Proof.

• $t\mapsto -\ln t$ has second derivative $\frac{1}{t^2}$ so is convex and

$$\sum_{x} \Pr[X = x] \log_2 t_x \le \log_2 \left(\sum_{x} \Pr[X = x] t_x \right)$$

with equality iff all t_x 's for $Pr[X = x] \neq 0$ are equal

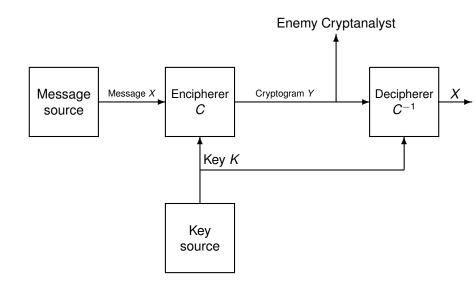
• Applying this to $t_x = 1/\Pr[X = x]$ yields

$$H(X) \leq \log_2 n$$

with equality iff all nonzero Pr[X = x] are equal

٦

The Shannon Encryption Model



The Shannon Encryption Model

- message is a random variable with a given a priori distribution for later: with any a priori distribution
- key is a random variable with specified distribution, independent from the message
- correctness property: $\Pr[C_K^{-1}(C_K(X)) = X] = 1$
- adversary gets the random variable $Y = C_K(X)$ only for other security models to be seen: other assumptions

Perfect Secrecy — i

Definition

Perfect secrecy means that the a posteriori distribution of the plaintext *X* after we know the ciphertext *Y* is equal to the a priori distribution of the plaintext:

$$\forall x, y \quad \Pr[Y = y] \neq 0 \Longrightarrow \Pr[X = x | Y = y] = \Pr[X = x].$$

The adversary learns nothing about X by intercepting Y. (Remark: this definition is relative to the distribution of X.)

Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and Y.

Proof.

Independence

$$\iff$$
 $\forall x, y$ $\Pr[X = x, Y = y] = \Pr[X = x] \Pr[Y = y].$ Since $\Pr[X = x | Y = y] = \frac{\Pr[X = x, Y = y]}{\Pr[Y = y]}$ by definition, the result is trivial!

SV 2024-25

Perfect Secrecy - iii (skip)

Proposition

Perfect secrecy is equivalent to H(X|Y) = H(X).

Proof.

Perfect secrecy is equivalent to statistic independence of X and Y.

Statistic independence of X and Y is equivalent to

$$H(X, Y) = H(X) + H(Y).$$

Since
$$H(X|Y) = H(X,Y) - H(Y)$$
 the result is trivial.

Vernam Cipher Provides Perfect Secrecy

Theorem

For any distribution of the plaintext, the generalized Vernam cipher provides perfect secrecy.

Influence of the Plaintext Distribution

Theorem

Let C_K be a cipher with K following a given distribution. Let p and p' be two distributions for X (independent of K) such that $\operatorname{support}(p') \subseteq \operatorname{support}(p)$.

 C_K has perfect secrecy with $p \Longrightarrow C_K$ has perfect secrecy with p'.

Proof. If $p'(x) \neq 0$ then $p(x) \neq 0$ and

$$\Pr_{p'}[Y = y | X = x] = \Pr[C_K(x) = y] = \Pr_{p}[Y = y | X = x] = \Pr_{p}[Y = y]$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$p'(x) \neq 0 \qquad p(x) \neq 0 \qquad \text{perfect secrecy}$$

then

$$P_{p'}[Y = y] = \sum_{x \in \text{support}(p')} P_{p'}[Y = y | X = x] p'(x)$$

$$= \sum_{x \in \text{support}(p')} P_{p}[Y = y] p'(x) = P_{p}[Y = y]$$

Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies $H(K) \ge H(X)$.

Proof. (skip)

- we have $H(Y) \ge H(Y|K)$
- knowledge of K makes $X \leftrightarrow Y$, thus H(Y|K) = H(X|K)
- since X and K are independent, we obtain H(Y|K) = H(X) we thus have $H(Y) \ge H(X)$
- knowledge of X makes $K \to Y$, thus H(Y, K|X) = H(K|X)
- since X and K are independent, H(K|X) = H(K), so H(Y, K|X) = H(K)
- we have $H(Y,K|X) \ge H(Y|X)$, thus $H(K) \ge H(Y|X)$
- if we have perfect secrecy, we have H(Y|X) = H(X|Y) + H(Y) H(X) = H(Y) thus, we have $H(K) \ge H(Y) \ge H(X)$

Other Form of the Shannon Theorem (Bad News)

Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as the support of X.

Proof. Let *y* be such that $Pr[Y = y] \neq 0$.

• since X and K must be independent

$$\Pr[X = x, Y = y] = \Pr[X = x, C_K(x) = y] = \Pr[X = x] \Pr[C_K(x) = y]$$

- perfect secrecy implies for all x such that $Pr[X = x] \neq 0$, $Pr[X = y, Y = y] = Pr[X = x] Pr[Y = y] \neq 0$
- consequently, for all x in the support of X we have $\Pr[C_K(x) = y] \neq 0$ so there exists one k in the support of K such that $C_k(x) = y$. Let's write it k = f(x).
- for any x in the support of X we have C⁻¹_{f(x)}(y) = x.
 Clearly, f(x) = f(x') implies x = x'.
 Consequently, we have an injection from the support of X to the support of K.

The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy, the number of possible keys must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher

Other Consequences (Bad News)

Theorem

Perfect secrecy implies that X has a finite support.

Proof.

- let y s.t. $p = \Pr[Y = y] \neq 0$
- $\Pr[C_K(x) = y] = \Pr[X = x | Y = y] \frac{\Pr[Y = y]}{\Pr[X = x]} = \Pr[Y = y]$ due to perfect secrecy, for all x in the support
- since $[C_K^{-1}(y) = x] \longleftarrow [C_K(x) = y]$, we have $\Pr[C_K^{-1}(y) = x] \ge \Pr[C_K(x) = y] = p$ for all x in the support thus

$$1 \ge \sum_{x \in \text{support}} \Pr[C_K^{-1}(y) = x] \ge p.\#\text{support}$$

• #support $(X) \leq \frac{1}{p}$

Leakage of Message Length

- over the infinite domain {0, 1}*, if we pick K as long as X, the length of X leaks
- over the finite domain $\bigcup_{i\leq \ell} \{0,1\}^i$ (e.g. $\ell=1$ TB), we should pick $K\in\{0,1\}^\ell$ to have security, which is a waste of bandwidth

Summary on the Shannon Results

- we have mathematically formalized the notion of perfect secrecy
- Vernam Cipher achieves perfect secrecy
- despite Vernam Cipher is expensive, there is no cheaper alternative

Q: Can the theory of cryptography stop here?

A: Abg lrg: jung zvffrf vf gur abgvba bs pbzcyrkvgl

Information Theory vs Complexity Theory

Information Theory	Complexity Theory
Is information there or not?	How much does it cost to recover information?
Is it <i>possible</i> to recover information?	Is it doable to recover information?

security shall rather be based on lower bounding the complexity of breaking the system

105 / 1098

The Early Days of Computer Science

Alan Turing

106 / 1098

Milestones of Modern Cryptography

- Vigenère (XVIth Century): secret key
- Kerckhoffs (1883): algorithm known by the adversary
- Shannon (1949): an info-theoretical approach of cryptography
- Diffie-Hellman (1976): public-key cryptography
- DES (1977): encryption standard for non-military applications

Conclusion

- in prehistory: security by obscurity
- now a need for standard solutions
- perfect security requires an unreasonable cost
- conclusion: we must trade security against cost

CryptoSec

108 / 1098

References

- Singh. The Code Book. Fourth Estate. 2000.
 Easy reading stories
- Kahn. The Codebreakers. Smith & Daniel. 1997.
 Textbook about (pre)history of cryptography
- Levy. Crypto. Penguin. 2001.
 Easy reading story about the begining of public-key cryptography
- Hinsley-Stripp. The Inside Story of Bletchley Park. Oxford University Press. 1993.
- Naor-Shamir. Visual Cryptography. In EUROCRYPT 1994, LNCS 950.
- Shannon. Communication Theory of Secrecy Systems. 1949.
 Re-edited by Sloane-Wyner Eds in Claude Elwood Shannon collected papers. IEEE Press. 1993.

Must be Known

- Kerckhoffs principle
- the ACI trilogy (Authentication, Confidentiality, Integrity)
- Vernam cipher
- Shannon model of encryption
- perfect secrecy
- Shannon Theorem

CryptoSec

Train Yourself

- Vigenère: final exam 2009–10 ex1
- Vernam: midterm exam 2010–11 ex3 midterm exam 2015–16 ex1
- entropy: final exam 2012–13 ex3
- ciphertext length: midterm exam 2022–23 ex1
- Enigma and perfect secrecy: midterm exam 2023–24 ex1

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- 8 Trust Establishment
- Case Studies

Roadmap

- reminders on arithmetics, groups, **Z**_n
- Diffie-Hellman key exchange over a group
- ullet reminders on rings, fields, ${f Z}_p^*$
- Diffie-Hellman key exchange, concretely
- ElGamal cryptosystem

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_p Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Prime Numbers

Definition

A **prime number** is a positive integer which has exactly two positive factors: 1 and itself.

Unique Factorization

Theorem

Each integer n can be uniquely written

$$n = u \times p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$$

where $p_1 < \cdots < p_r$ are prime, $u = \pm 1$, and $\alpha_1, \ldots, \alpha_r$ are positive integers.

Modulo n

Operation $x \mod n$: remainder in the Euclidean division of $x \mod n$

$$\begin{array}{c|cccc}
x = 8273 & 143 = n \\
 & -715 & 57 = \lfloor x/n \rfloor \\
 & -1001 \\
x \mod n = 122
\end{array}$$

$$8273 \mod 143 = 122$$

$$8273 = 122 + 143 \times 57$$

Euclidean Division

Theorem (Euclidean Division)

For any $x \in \mathbf{Z}$ and any n > 0 there exists a unique pair $(q, r) \in \mathbf{Z}^2$ such that x = qn + r and $0 \le r < n$.

We denote $r = x \mod n$ and have $q = \lfloor \frac{x}{n} \rfloor$.

Two Notations for "mod"

- without parentheses: x mod n
 - \rightarrow a two-input operator
 - = remainder in the Euclidean division of x by n
- with parentheses: $a \equiv b \pmod{n}$
 - \rightarrow an attribute to an equivalence relation (here: \equiv) means that b-a is divisible by n or equivalently: $a \mod n = b \mod n$
- do not mix up

```
a = b \mod n and a \equiv b \pmod n

\uparrow

a \text{ set to } (b \mod n) \uparrow

a \text{ and } b \text{ are (equal modulo } n \text{ )}
```

Z_n for Dummies (n > 1)

- $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$
- addition in \mathbf{Z}_n : $a \boxplus b = (a+b) \mod n$
- multiplication in \mathbf{Z}_n : $a \boxtimes b = (a \times b) \mod n$
- useful lemma: $(a + (b \mod n)) \mod n = (a + b) \mod n$
- useful lemma: $(a \times (b \mod n)) \mod n = (ab) \mod n$
- \boxplus and \boxtimes closure: comes from $x \mod n \in \mathbb{Z}_n$ for any $x \in \mathbb{Z}$
- associativity: comes from the lemma:

$$a \boxplus (b \boxplus c) = (a + ((b + c) \bmod n)) \bmod n = (a + b + c) \bmod n...$$

■ associativity: comes from the lemma:

$$a \boxtimes (b \boxtimes c) = (a \times ((bc) \bmod n)) \bmod n = (abc) \bmod n...$$

- neutral elements: 0 for
 ⊞ and 1 for
- invertibility for \boxplus : $(-a) \mod n$, comes from the lemma:

$$a \boxplus ((-a) \mod n) = (a+((-a) \mod n)) \mod n = (a-a) \mod n = 0$$

distributivity: comes from the lemma:

$$a \boxtimes ((b+c) \mod n) = (a \times (b+c)) \mod n = (ab+ac) \mod n...$$

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - \mathbf{Z}_n : The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_p Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Definition of a Group

Definition

A **group** is a set G together with a mapping from $G \times G$ to G which maps (a, b) to an element denoted $a \odot b$ and such that

- **1.** [closure] for any $a, b \in G$, we have $a \odot b \in G$
- **2.** [associativity] for any a, b, c, we have $(a \odot b) \odot c = a \odot (b \odot c)$
- **3.** [neutral element] there exists an element e s.t. for any a, $a \odot e = e \odot a = a$
- **4.** [invertibility] for any a there exists b s.t. $a \odot b = b \odot a = e$

Definition

An **Abelian group** is a set G together with a mapping from $G \times G$ to G which maps (a,b) to an element denoted $a \odot b$ and such that

- 1-4. [group] it is a group
 - **5.** [commutativity] for any a, b we have $a \odot b = b \odot a$

Additive vs Multiplicative Notations for Groups

	additive notations	multiplicative notations
group	(G, +)	(G, \times)
operation	a+b	ab
neutral element	0	1
inverse	− a	a^{-1}
exponential	n.a	a ⁿ

(a and b are group elements; n is an integer)

Group Homomorphism

Homomorphism: given two groups (G_1, \times_1) and (G_2, \times_2) , a mapping f from G_1 to G_2 is a group homomorphism if for any $a, b \in G_1$

$$f(a \times_1 b) = f(a) \times_2 f(b)$$

Example: If $g \in G$, the mapping $\varphi : \mathbf{Z} \longrightarrow G$ defined by $\varphi(a) = g^a$ is a group homomorphism. $\forall a, b \in \mathbf{Z} \quad \varphi(a+b) = \varphi(a)\varphi(b)$

Isomorphism: a group homomorphism which is bijective is called an isomorphism

isomorphism = change of notation

Property: A group homomorphism is injective iff $\forall a \in G_1$ f(a) neutral in $G_2 \Longrightarrow a$ neutral in G_1

Group Constructions: Subgroups

Subgroups: given (G, \times) , and given $H \subseteq G$ which is nonempty and closed by \times and inversion, consider (H, \times)

Example:

• $5Z = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$ is a subgroup of Z

Subgroups of Z

Theorem

If H is a subgroup of **Z** and $H \neq \{0\}$, then $H = n\mathbf{Z}$ where n is the smallest positive element of H.

Proof.

- let $a \in H$ and write a = qn + r with $q, r \in \mathbf{Z}$ and $0 \le r < n$ (Euclidean division)
- since H is a group and $a, n \in H$ we have $r = a qn \in H$
- since $0 \le r < n$ and n is the smallest positive element of H we must have r = 0, thus $a = qn \in n\mathbf{Z}$
- therefore, $H \subseteq n\mathbf{Z}$
- conversely, rn must be in H for all $r \in \mathbf{Z}$, therefore $H = n\mathbf{Z}$

Generators

Given a group (G,.), an element g generates/spans a subgroup

$$\langle g \rangle = \{\ldots, g^{-2}, g^{-1}, g^0, g^1, g^2, \ldots\}$$

• If $\langle g \rangle$ is finite, of cardinality n, then $g^n = 1$ and

$$\langle g \rangle = \{g^0, g^1, \dots, g^{n-1}\}$$

(see next slide)

- if $x \in \langle g \rangle$, $\log_q x$ is uniquely determined up to some multiple of n:
 - $\log_a x$ is an element of \mathbf{Z}_n
 - $i \mapsto g^i$ is a group isomorphism between \mathbf{Z}_n and $\langle g \rangle$

Finite Groups and Orders

Definition

If (G, .) is a group and if G is a finite set, then the cardinality of G is called the group **order**.

If g generates a subgroup of order n, then n is called the **order** of g.

Proposition

The order of g is the smallest i > 0 s.t. $g^i = 1$.

Proof.

- the set of all $i \in \mathbf{Z}$ such that $g^i = 1$ is a subgroup of \mathbf{Z} (preimage of subgroup $\{1\}$ by group homomorphism $i \mapsto g^i...$)
- it must be of form $n\mathbf{Z}$ where n is the smallest among all i > 0
- $\{1, g, g^2, \dots, g^{n-1}\}$ is a non-repeating exhaustive list of all $\langle g \rangle$ elements

Consequence

if g is of order n...

- then $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$
- $\forall i \quad g^i = 1 \iff n|i$
- $\forall i, j \quad g^i = g^j \iff i \equiv j \pmod{n}$

Group Constructions: Groups Product

Product groups: given (G_1, \times_1) and (G_2, \times_2) , consider $G = G_1 \times G_2$ and $(a_1, a_2) \times (b_1, b_2) = (a_1 \times_1 b_1, a_2 \times_2 b_2)$

Power groups: given (G, *) and I, consider G^I and $(a_i)_{i \in I} \times (b_i)_{i \in I} = (a_i * b_i)_{i \in I}$

Example:

- $\mathbf{C}^* \times \{-1, +1\} = \{(z, s); z \in \mathbf{C}^*, s = \pm 1\}$ with $(z, s) \times (z', s') = (zz', ss')$
- $\mathbf{Z}^{\{a,b,c\}}$ is the set of mappings from $D=\{a,b,c\}$ to \mathbf{Z} with f+g defined by (f+g)(x)=f(x)+g(x)

Functional vs Family Notations for Power Sets

	functional notations	family notations
	function domain D	index set I
	function range R	set S
finite domain	$f:\{1,\ldots,n\}\to R$	(x_1,\ldots,x_n)
infinite domain	f:D o R	$(x_i)_{i\in I}$
input	$x \in D$	$i \in I$
image	$f(x) \in R$	$x_i \in \mathcal{S}$
set	R^{D}	S^{l} or S^{n}

Group Constructions: Quotient Group

Quotient groups: given a commutative group G and a subgroup H, consider the set G/H of classes for congruence modulo H with the law induced by +

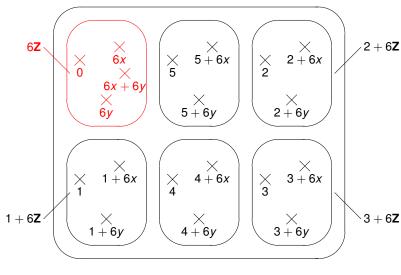
- a and b in G are said to be congruent modulo H if b − a ∈ H
 notation: a ≡ b (mod H)
- the relation "...is congruent to ... modulo H" is an equivalence relation (reflexive, symmetric, transitive)
- notation: for $a \in G$, a + H is the set of all G elements which can be written a + h for some $h \in H$ (elements congruent to a)
- every class of equivalence can be written a + H for some a ∈ G
 a is called a representative for the class

Quotient of an Abelian Group by a Subgroup



$$(a+H) + (b+H) = (a+b) + H$$

Quotient Example: Z/6Z



$$\mathbf{Z}/H = \{H, 1+H, 2+H, 3+H, 4+H, 5+H\}$$

Lagrange Theorem

Theorem (Lagrange)

In any finite group, the order of any element is a factor of the order of the group.

Proof.

in $G/\langle g \rangle$ (set quotient), all $a+\langle g \rangle$ have same number of elements so #G (the order of G) is divisible by $\#\langle g \rangle$ (the order of g)

Consequence

$$\forall g \in G \quad g^{\#G} = 1$$

Application: Generators in a Group of Prime Order

Theorem

if (G, .) has prime order, all elements (except 1) are generators

Proof.

- let p be the order of G
- an element $x \in G$ such that $x \neq 1$ has an order n > 1
- due to the Lagrange Theorem, n|p, so n=p since p is prime
- g^0, \ldots, g^{n-1} must be pairwise different, so $n \le p$
- so n = p: g must generate G

The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)

security requirement: given (g, g^x, g^y) , it must be hard to compute g^{xy} (Computational Diffie-Hellman Problem)

Using the Diffie-Hellman Key Agreement Protocol

- allows to set up a secret key over a public channel (assuming authentication)
- no further need to set up pre-shared keys: sets up keys when needed
 - → public-key cryptography

Example of Diffie-Hellman groups:

- \mathbf{Z}_{p}^{*} (compute $g^{x} \mod p$)
- elliptic curves

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - Z_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_p Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Addition with Big Numbers (in Decimal)

Input: two integers a and b of ℓ digits **Output**: one integer c = a + b

1: *r* ← 0

2: **for** i = 0 to $\ell - 1$ **do**

3: $d \leftarrow a_i + b_i + r$

4: write $d = 10r + c_i$ with $c_i < 10$

5: end for

6: $c_{\ell} \leftarrow r$

Addition in Binary

$$1 + 1 = 10$$

Input: a and b, two integers of at most ℓ bits

Output: c, an integer of at most $\ell+1$ bits representing

$$a+b$$

Complexity: $\mathcal{O}(\ell)$

2: **for**
$$i = 0$$
 to $\ell - 1$ **do**

3:
$$d \leftarrow a_i + b_i + r$$

4: set c_i and r to bits such that $d = 2r + c_i$

5: end for

6:
$$c_{\ell} \leftarrow r$$

Addition (Binary/Hexadecimal/Decimal)

hexadecimal = compact way to represent bistrings (bits groupped into "nibbles" = packets of 4 bits)

Definition of a Monoid

Definition

A **monoid** is a set G together with a mapping from $G \times G$ to G which maps (a, b) to an element denoted a + b and such that

- **1.** [closure] for any $a, b \in G$, we have $a + b \in G$
- 2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)
- **3.** [neutral element] there exists an element 0 s.t. for any a, a+0=0+a=a

multiplication of a positive integer *n* by a monoid element *a*:

$$n.a = \underbrace{a + a + \cdots + a}_{n \text{ times}}$$

Multiplication

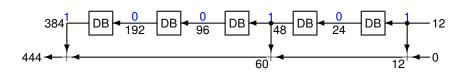
we want to multiply a monoid element (a = 12) by an integer (n = 100101 in binary):

$$12 \times 100101$$
= $12 \times (1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 1)$
= $12 \times (2^5 + 2^2 + 1)$
= $12 \times 2^5 + 12 \times 2^2 + 12 \times 1$

multiplication by 2 consists of adding to itself (= a shift left for addition over the integers in binary) multiplication by 2^i consists of multiplying i times by 2

Multiplication Algorithm

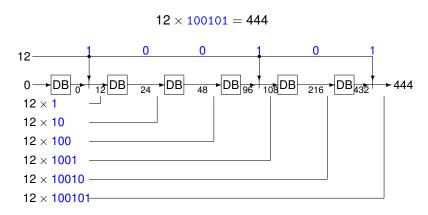
	$12 \times 100101 = 444$										
						1	1	0	0	0x00c	(12)
×				1	0	0	1	0	1	0x025	(37)
						1	1	0	0	0x00c	(12)
+					0	0	0	0		0x000	(0)
+				1	1	0	0			0x030	(48)
+			0	0	0	0				0x000	(0)
+		0	0	0	0					0x000	(0)
+	1	1	0	0						0x180	(384)
=	1	1	0	1	1	1	1	0	0	0x1bc	(444)



Double-and-Add From Right to Left

```
Input: a in monoid, n integer of at most \ell bits
         (n in binary)
Output: c = a \times n
Complexity: \mathcal{O}(\ell) monoid additions
 1: x \leftarrow 0
 2: y ← a
 3: for i = 0 to \ell - 1 do
 4: if n_i = 1 then
 5: X \leftarrow X + Y
 6: end if
 7: y \leftarrow y + y
 8: end for
 9: C \leftarrow X
```

From Left to Right



Double-and-Add From Left to Right

```
Input: a in monoid, n integer of at most \ell bits
         (n in binary)
Output: c = a \times n
Complexity: \mathcal{O}(\ell) monoid additions
 1: x \leftarrow 0
 2: for i = \ell - 1 to 0 do
 3: X \leftarrow X + X
 4: if n_i = 1 then
 5: x \leftarrow x + a
 6: end if
 7: end for
 8: C \leftarrow X
```

From Double-and-Add to Square-and-Multiply

• if we can compute a monoid law a+b in $\mathcal{O}(T)$ then we can compute n.a for $n \in \mathbf{N}$ in $\mathcal{O}(T \log n)$ instead of $\mathcal{O}(Tn)$ by trivial algorithm

Example:

- monoid (Z, +): a positive integer multiplied by a Z element
- monoid (EC, +): an integer multiplied by a point
- monoid (\mathbf{Z}_m, \times) : a \mathbf{Z}_m element raised to some integral power

Same with multiplicative notation:

• if we can compute a monoid law ab in $\mathcal{O}(T)$ then we can compute a^n for $n \in \mathbf{N}$ in $\mathcal{O}(T \log n)$

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_p Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Definition of a Ring

Definition

A **ring** is an Abelian group (R, +) together with a mapping from $R \times R$ to R which maps (a, b) to an element denoted ab and such that

- **1-4.** [group] R with + is a group
 - **5.** [Abelian] for any a, b, we have a + b = b + a
 - **6.** [closure] for any $a, b \in R$, we have $ab \in R$
 - 7. [associativity] for any a, b, c, we have (ab)c = a(bc)
 - 8. [neutral element] there exists 1 s.t. for any a, a1 = 1a = a
 - 9. [distributivity] for any a, b, c, we have a(b+c) = ab + ac and (a+b)c = ac + bc

Definition

A commutative ring is a ring R such that

- 1-9. [ring] it is a ring
 - **10.** [commutativity] for any a, b we have ab = ba

Group of Units

- not every element x in a ring R has an inverse for the multiplication
- we denote by R* the set of elements having a multiplicative inverse those elements are called units
- R* with the multiplication is a group this is the group of units of the ring R

common mistake: $R^* = R - \{0\}$

Group and Ring Constructors

- sub-structure (sub-group, ideal)
 subgroup: subset of a group stable by group law and inversion ideal: subgroup of a ring stable by multiplication by any ring element
- spanned structure set of all values generated by structure operations
- product structure
 set of pairs with inherited structure operations
- power structure
 set of tuples / set of functions of given domain with range in structure
- quotient (Abelian group by a subgroup, ring by an ideal) structure induced by grouping "equivalent" elements

Example: Z

$$\mathbf{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

- 1. Z is closed for the addition
- 2. the addition is associative in Z
- 3. 0 is neutral for the addition
- **4.** for any $a \in \mathbf{Z}$ we have $-a \in \mathbf{Z}$ which is the inverse of a for addition
- 5. the addition is commutative in Z
- 6. Z is closed for the multiplication
- 7. the multiplication is associative in Z
- 8. 1 is neutral for the multiplication
- 9. addition is distributive for multiplication
- 10. the multiplication is commutative in Z

Z is a commutative ring of infinite size

Example: Z[X]

 $\mathbf{Z}[X] = \text{set of polynomials with coefficients in } \mathbf{Z}$

example:
$$(5X^3 - 3X^2 + X - 4) + (X^2 - 2X + 1) = 5X^3 - 2X^2 - X - 3$$

- **1-5.** $\mathbf{Z}[X]$ with the addition is an Abelian group (isomorphic to $\mathbf{Z}^{(\mathbf{N})}$)
 - **6.** $\mathbf{Z}[X]$ is closed under multiplication
 - 7. multiplication is associative in $\mathbf{Z}[X]$
 - 8. the constant polynomial 1 is neutral for the multiplication
 - 9. distributivity: we have A(X)(B(X) + C(X)) = A(X)B(X) + A(X)C(X) for all $A(X), B(X), C(X) \in \mathbf{Z}[X]$
 - **10.** multiplication is commutative in $\mathbf{Z}[X]$

 $\mathbf{Z}[X]$ is a commutative ring of infinite size

(same for R[X] for any commutative ring R)

Example: Modulo 9 Reduction of Large Numbers

```
296 527 mod 9
    (200\,000+90\,000+6\,000+500+20+7)\ \mathsf{mod}\ 9
= (2 \times 100000 + 9 \times 10000 + 6 \times 1000 + 5 \times 100 + 2 \times 10 + 7) \mod 9
= (2 \times 10^5 + 9 \times 10^4 + 6 \times 10^3 + 5 \times 10^2 + 2 \times 10 + 7) \mod 9
= (2 \times (10 \mod 9)^5 + 9 \times (10 \mod 9)^4 + 6 \times (10 \mod 9)^3 +
    +5 \times (10 \mod 9)^2 + 2 \times (10 \mod 9) + 7) \mod 9
= (2 \times 1^5 + 9 \times 1^4 + 6 \times 1^3 + 5 \times 1^2 + 2 \times 1 + 7) \mod 9
= (2+9+6+5+2+7) \mod 9
= 31 mod 9
= (3+1) \mod 9
= 4 mod 9
```

"Preuve par 9"

Example: the Ring of Residues Modulo *n*

$$\mathbf{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$$

- **1.** \mathbf{Z}_n is closed for the addition modulo n
- **2.** the **addition modulo** n is associative in \mathbf{Z}_n (next slides)
- 3. 0 is neutral for the addition
- **4.** for any nonzero $a \in \mathbf{Z}_n$ we have $n a \in \mathbf{Z}_n$ which is the inverse of a for **addition modulo** n (0 is self-inverse)
- **5.** the **addition modulo** n is commutative in \mathbf{Z}_n
- **6.** \mathbf{Z}_n is closed for the multiplication modulo n
- 7. the multiplication modulo n is associative in \mathbf{Z}_n
- 8. 1 is neutral for the multiplication
- addition modulo n is distributive over multiplication modulo n (next slides)
- **10.** the **multiplication modulo** n is commutative in \mathbf{Z}_n

 \mathbf{Z}_n is a commutative ring of n elements

Cerebral Z_n

- $n\mathbf{Z}$ is an ideal of \mathbf{Z} (with laws + and \times) (ideal generated by n)
- we can do the quotient Z/nZ of Z by nZ
- congruence modulo nZ is written

$$a \equiv b \pmod{n} \iff a - b \in n\mathbf{Z} \iff a \mod n = b \mod n$$

an exhaustive list of equivalence classes is

$$0 + n\mathbf{Z}$$
, $1 + n\mathbf{Z}$, $2 + n\mathbf{Z}$, ..., $(n-1) + n\mathbf{Z}$

- note that $(a + n\mathbf{Z}) + (b + n\mathbf{Z}) = ((a + b) \mod n) + n\mathbf{Z}$
- note that $(a + n\mathbf{Z}) \times (b + n\mathbf{Z}) = ((a \times b) \mod n) + n\mathbf{Z}$
- we simply write a (the representative in [0, n-1]) instead of $a + n\mathbf{Z}$

Z_n Tips

• for any polynomial $P(x) \in \mathbf{Z}[x]$ and any $a, n \in \mathbf{Z}$ we have

$$P(a) \mod n = P(a \mod n) \mod n$$

can put "mod $\underline{\underline{n}}$ " reductions in the ground floor

• if x has order m in \mathbf{Z}_n^* then for any $i \in \mathbf{Z}$

$$x^i \mod n = x^{i \mod m} \mod n$$

can put " $mod \underline{m}$ " reductions in the upper floor

Exercise

Z₁₅ has order 15

- We have $\langle 5 \rangle = \{0, 5, 10\}$. This is a subgroup of order 3 5 has order 3 in \mathbf{Z}_{15}
- in \mathbf{Z}_{15} : $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13\}$. in \mathbf{Z}_{15} , 2 has order 15 (so, 2 is a generator)
- We have $\langle 1 \rangle = \mathbf{Z}_{15}$ 1 is a generator
- $\mathbf{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
- in \mathbf{Z}_{15}^* , 2 has the order 4: $\langle 2 \rangle = \{1, 2, 4, 8\}$

Z_n Computations

Efficiently computable operations:

- addition: $(a + b) \mod n$
- multiplication: (a × b) mod n (double-and-add)
- modulo: a mod n (Euclidean division)
- inverse: a⁻¹ mod n (when gcd(a, n) = 1) (extended Euclid algorithm)
- power: $a^e \mod n$ (for e integer only) (square-and-multiply)

Remaining problem: extracting roots: $\sqrt[n]{a} \mod n$ (or $a^r \mod n$ for r rational)

Addition in Z_n

```
Input: an integer n of ℓ bits, two integers a and b less than n
Output: c, an integer which represents a + b mod n
Complexity: O(ℓ)
1: add a and b in c
2: compare c and n
3: if c ≥ n then
4: subtract n from c
5: end if
```

remark: comparison and subtraction take $\mathcal{O}(\ell)$ time as well

Multiplication in Z_n From Left to Right

```
Input: an integer n of \ell bits, a, b \in \mathbf{Z}_n
          (b in binary)
Output: c = a \times b \mod n
Complexity: \mathcal{O}(\ell^2)
 1: x \leftarrow 0
 2: for i = \ell - 1 to 0 do
 3: x \leftarrow x + x \mod n
 4: if b_i = 1 then
 5: x \leftarrow x + a \mod n
 6: end if
 7: end for
 8: C \leftarrow X
```

Exponentiation From Left to Right

Square-and-Multiply

```
Input: a and n, two integers of at most \ell bits, an integer e (e in binary)

Output: x = a^e \mod n

Complexity: \mathcal{O}(\ell^2 \log e)

1: x \leftarrow 1

2: for i = \lfloor \log_2 e \rfloor to 0 do

3: x \leftarrow x \times x \mod n

4: if e_i = 1 then

5: x \leftarrow x \times a \mod n

6: end if

7: end for
```

Euclidean Division

we can just adapt the algorithm we have learnt at school (not trivial to implement!)

- for any $a \in \mathbf{Z}$ and n > 0 there exists a unique pair $(q, r) \in \mathbf{Z}^2$ such that a = qn + r and $0 \le r < n$ $q = \left| \frac{a}{n} \right|$ and $r = a \mod n$
- algorithm runs in $\mathcal{O}(\ell^2)$ (ℓ is the size of a, n < a)

Modular Inversion

Theorem

 $x \in \mathbf{Z}_n$ is invertible if and only if gcd(x, n) = 1.

Proof.

 \implies if gcd(x, n) = d > 1 then d divides $(x \cdot y) \mod n$ for any y so $(x \cdot y) \mod n \neq 1$ and x is non invertible.

to be seen later

Euclid Algorithm

```
Input: a and b, two integers of at most \ell bits
```

Output: d = gcd(a, b)Complexity: $O(\ell^2)$ 1: $x \leftarrow a, y \leftarrow b$

2: while y > 0 do

3: make an Euclidean division x = qy + r

4: do simultaneously $x \leftarrow y$ and $y \leftarrow x - qy$

5: end while

6: $d \leftarrow x$

Example

We run the algorithm with a=22 and b=35. We obtain the following sequence.

iteration	x y q
0	$22 - 35 \times 0$
	
1	$35 - 22 \times 1$
	∠
2	22 – 13×1
	✓
3	13 – 9 × 1
	✓
4	9 - 4 ×2
	✓
5	4 - 1 ×4
	✓
6	1 0

Thus gcd(22, 35) = 1.

Why does it Work?

- it eventually stops (y strictly decreases and $y \ge 0$)
- a divisor of x and y is a divisor of x qy for all q
- x = (x qy) (-q)y
- d divides x and $y \iff d$ divides y and x qy
- for any q, gcd(x, y) = gcd(y, x qy)
- gcd(x,0) = x
- conclusion: the algorithm terminates with gcd(a, b)
- to be discussed (in another course): runing time (complexity) is quadratic

Extended Euclid Algorithm

```
Input: a and b, two integers of at most \ell bits
Output: d, u, v such that d = au + bv =
     qcd(a, b)
Complexity: \mathcal{O}(\ell^2)
 1: \vec{x} \leftarrow (a, 1, 0), \vec{y} \leftarrow (b, 0, 1)
 2: while y_1 > 0 do
           make an Euclidean division x_1 = qy_1 + r
 3:
          do simultaneously \vec{x} \leftarrow \vec{y} and \vec{y} \leftarrow \vec{x} - q\vec{y}
 5: end while
 6: (d, u, v) \leftarrow \vec{x}
           \vec{x}, \vec{y} \in \{(\alpha, \beta, \gamma); \alpha = \mathbf{a} \cdot \beta + \mathbf{b} \cdot \gamma\}
```

Example

We run the algorithm with a=22 and b=35. We obtain the following sequence of vectors.

iteration	$ \vec{x} $	\vec{y}	q
0	(22, 1, 0) -	(35, 0, 1)	×0
1	(35, 0, 1) -	(22,1,0)	×1
2	(22, 1, 0)	(13, -1, 1)	×1
3	(13, -1, 1) -	(9,2,-1)	×1
4	$(9,2,-1)^{2}$	(4, -3, 2)	×2
5	(4, -3, 2) -	(1,8,-5)	×4
6	(1,8,-5)	(0, -35, 22))

Thus $1 = 22 \times 8 - 35 \times 5$.

Modular Inversion

to compute the inverse of *x* modulo *n*:

- run the Extended Euclid algorithm with input (x, n) and get u, v such that $ux + vn = d = \gcd(x, n)$
- ② if $d \neq 1$, x is not invertible: error!
- output u: it is such that ux mod n = 1 (Note: we may need to reduce u modulo n)

Modular Inversion

Theorem

 $x \in \mathbf{Z}_n$ is invertible if and only if gcd(x, n) = 1.

Proof:

- ⇒: already seen (slide 168)
- \Leftarrow : if gcd(x, n) = 1, run the Extended Euclid algorithm and get an equation ux + vn = 1 then deduce $ux \mod n = 1$

Conclusion: the Extended Euclid algorithm is an inversion algorithm with complexity $\mathcal{O}(\ell^2)$

Arithmetics with Big Numbers (Recap)

- addition $(\mathcal{O}(\ell))$: $x, y \mapsto x + y$
- multiplication ($\mathcal{O}(\ell^2)$): $x, y \mapsto x \times y$
- Euclidean division $(\mathcal{O}(\ell^2))$: $x, n \mapsto x \mod n$
- Euclid Algorithm ($\mathcal{O}(\ell^2)$): $x, y \mapsto u, v \text{ s.t. } ux + vy = \gcd(x, y)$

Modular Arithmetic (Recap)

- addition $(\mathcal{O}(\ell))$: $x, y, n \mapsto (x + y) \mod n$
- multiplication $(\mathcal{O}(\ell^2))$: $x, y, n \mapsto (x \times y) \mod n$
- modulo $(\mathcal{O}(\ell^2))$: $x, n \mapsto x \mod n$
- fast exponential $(\mathcal{O}(\ell^2 \log e))$: $x, e, n \mapsto x^e \mod n$
- inversion in \mathbf{Z}_n ($\mathcal{O}(\ell^2)$): $x, n \mapsto y$ s.t. $xy \mod n = 1$ (when feasible)

FFT-based Multiplication

- we could have better complexities with a better multiplication algorithm
- in this lecture, we limit to the values from the school-book algorithm
- in practice, this algorithm is sufficient for the lengths we use

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_n Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem

For all proper subgroup I of Z there exists n such that

$$I = n\mathbf{Z} = \{\ldots, -3n, -2n, -n, 0, n, 2n, 3n, \ldots\}$$

Element Order

Given x in a group G:

- $\{i \in \mathbf{Z}; x^i = 1\}$ is a subgroup of \mathbf{Z}
- so, $\{i \in \mathbf{Z}; x^i = 1\} = n\mathbf{Z}$ for some n which is the smallest positive n such that $x^n = 1$ n is called the **order** of x in G.
- n is such that

$$x^i = 1 \iff (n \text{ divides } i)$$

see slide 128

Group Exponent

Given a group G:

- $\{i \in \mathbf{Z}; \forall x \in G \ x^i = 1\}$ is a subgroup of \mathbf{Z}
- so, $\{i \in \mathbf{Z}; \forall x \in G \ x^i = 1\} = \lambda \mathbf{Z}$ for some λ which is the smallest positive λ such that $\forall x \in G, x^{\lambda} = 1$ λ is called the **exponent** of G.
- λ is such that

$$(\forall x \in G \ x^i = 1) \iff (\lambda \ \text{divides} \ i)$$

- note that for all x, $\lambda \in \{i \in \mathbf{Z}; x^i = 1\} = n\mathbf{Z}$ so λ is a multiple of n, the order of x
- note that $\#G \in \{i \in \mathbf{Z}; \forall x \in G \ x^i = 1\} = \lambda \mathbf{Z}$ so λ is a factor of #Gso, $\forall x \in G \ \text{order}(x) |\lambda| \#G$
- λ is the lcm of all order(x), $x \in G$

Orders in \mathbf{Z}_m^*

• \mathbf{Z}_m^* is of order $\varphi(m)$ (example: \mathbf{Z}_{35}^* is of order 24) \mathbf{Z}_m^* is of exponent $\lambda(m)$ (example: \mathbf{Z}_{35}^* is of exponent 12) for $m = p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$ with pairwise different prime numbers p_1, \ldots, p_r , we have

$$\varphi(m) = (p_1 - 1)p_1^{\alpha_1 - 1} \times \cdots \times (p_r - 1)p_r^{\alpha_r - 1}$$

$$\lambda(m) = \operatorname{lcm}(\lambda(p_1^{\alpha_1}), \cdots, \lambda(p_r^{\alpha_r}))$$

we have $\lambda(p^{\alpha}) = \varphi(p^{\alpha})$, except for p = 2 and $\alpha \geq 3$ for which $\lambda(p^{\alpha}) = \frac{1}{2}\varphi(p^{\alpha})$

• for any $x \in \mathbf{Z}_m^*$, $\operatorname{order}(x)|\lambda(m)|\varphi(m)$

Checking a Generator of a Group with Known Order Factorization

```
Input: an element g in an Abelian cyclic group
    of order with known factorization n = p_1^{\alpha_1} \times
    \cdots \times p_r^{\alpha_r}
Output: say if g is a generator
Complexity: \mathcal{O}(r) exponentials
 1: for i = 1 to r do
 2: \mathbf{v} \leftarrow \mathbf{g}^{n/p_i}
 3: if y = 1 then
            abort: g is not a generator
 5: end if
 6: end for
 7: q is a generator
```

Proof. The order of g is a factor of n. If it is no factor of any n/p_i then it must be n.

Discussion

- for g arbitrary, we need the factorization of n
- if g is randomly selected, we only need the small factors of n because (to be seen in the next chapter)

$$\Pr_{g}\left[g^{\frac{n}{p_{i}}}=1\right]=\frac{1}{p_{i}}$$

which is small for p_i large

- if *n* is hard to factor, we can still find generators: find the prime factors up to some bound *B*
- application: generate a generator of Z^{*}_ρ for a prime ρ
 (we will see that it is cyclic)

Picking a Generator in a Cyclic Group with Known Order

```
Input: the order n of an Abelian cyclic group, a
    bound B
Output: a generator g of the group
 1: find the list p_1, \ldots, p_s of all prime factors of n
    which are less than B
 2: repeat
        pick a random g in the group
 4: b ← true
 5: for i = 1 to s do
 6: y \leftarrow g^{n/p_i}
 7: if y = 1 then
 8:
                b \leftarrow \text{false}
           end if
 9:
        end for
10:
11: until b
  Pr[\text{output } g \text{ not a generator}] \leq \frac{1}{B \log B} \log n
```

Generating a Generator

We consider a cyclic group G of order n and we let $n = \prod_{i=1}^r p_i^{\alpha_i}$ with pairwise different primes p_i

- g is a generator of G iff $g^{\frac{n}{p_i}} \neq 1$ for $i = 1, \ldots, r$
- $\Pr_{g \in_U G} \left[g^{\frac{n}{p_i}} = 1 \right] = \frac{1}{p_i}$ and these events are independent (to be seen in next chapter with CRT)
- work with an incomplete factorization: we let $n=q\prod_{i=1}^s p_i^{\alpha_i}$ which includes all small factors $p_i \leq B$ (i.e. $p_i > B$ for all i > s) we say that g passes the test if $g^{\frac{n}{p_i}} \neq 1$ for $i=1,\ldots,s$

$$\begin{aligned} \Pr[\text{not generator}|\text{passed}] &= \Pr\left[\exists i > s \ g^{\frac{n}{p_i}} = 1 \,\middle|\, \forall i \leq s \ g^{\frac{n}{p_i}} \neq 1\right] \\ &\leq \frac{1}{B}(r-s) \\ &\leq \frac{\log q}{B \log B} \\ &\leq \frac{\log n}{B \log B} \end{aligned}$$

example: *n* of 1 024 bits, $B = 2^{32}$; Pr[not generator|passed] $\leq 2^{-27}$

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The Z_ρ Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Definition of a Field

Definition

A **field** is a commutative ring $(K, +, \times)$ such that

- **1-9.** [ring] K is a ring with + and \times
- **10.** [commutativity] for any a, b, we have ab = ba
- **11.** [invertibility] for any $a \neq 0$ there exists $b = a^{-1}$ s.t. ab = ba = 1 example:
 - Q, R, C
 - **Z**_p for p prime (next slide)
 - GF(2ⁿ) (in Chapter 4)

Z_p Properties

Theorem (Z_D structure)

Let p be a prime number.

- **Q** $\mathbf{Z}_{p}^{*} = \{1, \dots, p-1\}$
- ② (Little Fermat Theorem) for any $x \in \mathbf{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$
- 3 Z_p is a cyclic group. So, there exist g such that

$$\mathbf{Z}_{p}^{*} = \{g^{0}, g^{1}, g^{2} \bmod p, \dots, g^{p-2} \bmod p\}$$

Proof

- if $1 \le x \le p-1$, since p is prime, we must have gcd(x,p)=1 thus $x \in \mathbf{Z}_p^*$
- ② due to the Lagrange Theorem, for any $x \in \mathbf{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$
- (hard)

An Interesting Group

the subgroup

$$\langle g
angle \subseteq \mathbf{Z}_p^*$$

of prime order q

$$\langle g \rangle = \{1, g, \dots, g^{q-1}\} \leftrightarrow \{0, 1, \dots, q-1\} = \mathbf{Z}_q$$

Example: the SSH2 Parameters

$$p = 2^{1024} - 2^{960} - 1 + 2^{64} \left[2^{894} \pi + 129093 \right]$$

$$g = 2$$

$$q = \frac{p-1}{2}$$

try it with gp:

```
allocatemem(80000000)
\p 300
p=2^1024-2^960-1+2^64*floor(2^894*Pi+129093)
g=2
q=(p-1)/2
isprime(p)
isprime(q)
Mod(g,p)^q
```

Algorithms To Be Seen Later

- we can generate large prime numbers
- we can verify the primality of a number
- we can find (p, q, g) such that p and q are prime, q divides p 1, and g has order q in \mathbf{Z}_p^*

The Discrete Logarithm Problem

Definition (Discrete Logarithm (DL) Problem)

The DL problem, relative to Setup, is hard if for any PPT (probabilistic polynomial-time) algorithm \mathcal{A} , the probability that the following **game** returns 1 is $\mathbf{negl}(\lambda)$:

```
DL(\lambda):
```

- 1: Setup(1 $^{\lambda}$) \rightarrow (group, q, g)
- 2: pick $x \in \mathbf{Z}_q$
- 3: $X \leftarrow g^x$
- 4: $\mathcal{A}(\text{group}, q, q, X) \rightarrow X'$
- 5: return $1_{X=q^{X'}}$

Examples:

- **Z**_n: easy (use the Extended Euclid algorithm)
- Z_n^{*}: (maybe) hard
- over an elliptic curve: (maybe) hard

Is Logarithme Hard?!?

We can compute log

The Notion of Game

- Given a PPT adversary A:
 Game(security parameter):
 - 1: setup of parameters
 - 2: initialization of the game
 - 3: $\mathcal{A}(\mathsf{what}\;\mathsf{he}\;\mathsf{should}\;\mathsf{know}) \to \mathsf{result}$
 - 4: return 1_{winning condition}
- Advantage of A:

Adv(security parameter) =
$$Pr[Game \rightarrow 1]$$

Security:

$$\forall \mathsf{PPT}\,\mathcal{A}\quad \mathsf{Adv}=\mathsf{negl}$$

- 1: Setup(1^{λ}) \rightarrow (group, q, g)
- 2: pick $x \in \mathbf{Z}_q$
- 3: $X \leftarrow g^x$
- 4: $\mathcal{A}(\mathsf{group}, q, g, X) \rightarrow x'$
- 5: **return** $1_{X=g^{x'}}$

Negligible Function

$$f(\lambda) = \operatorname{negl}(\lambda)$$

$$\updownarrow \qquad \qquad \qquad \uparrow$$

$$\forall n \qquad f(\lambda) = \mathcal{O}(\lambda^{-n})$$

as $\lambda \to +\infty$

Example:

- $f(\lambda) = c^{-\lambda}$ is negligible (for c > 1)
- $f(\lambda) = \lambda^{-10000000000}$ is *not* negligible

Some Facts About The Discrete Logarithm Problem

in a cyclic group of order q:

- easy on a quantum computer:
 - → Shor algorithm
- easy if q has only small prime factors (e.g. < 2¹⁰⁰):
 - → Pohlig-Hellman algorithm
- best algorithm for a subgroup of Z_p* with p and q prime:
 - → General Number Field Sieve (GNFS) with complexity

$$\mathbf{p} \left(\sqrt[3]{\frac{64}{9} + o(1)} \right) (\ln p)^{\frac{1}{3}} (\ln \ln p)^{\frac{2}{3}}$$

this is mostly precomputation (without X)

the computation from y takes $e^{\left(\sqrt[3]{3+o(1)}\right)(\ln p)^{\frac{1}{3}}(\ln \ln p)^{\frac{2}{3}}}$

- generic algorithms in $\mathcal{O}(\sqrt{q})$:
 - → baby-step giant-step algorithm
 - \rightarrow Pollard ρ algorithm

Baby Step - Giant Step Algorithm

Input: g and X in a group G, B an upper bound for #G

Output: the logarithm of X in base g **Complexity**: $\mathcal{O}(\sqrt{B})$ group operations

Precomputation

1: let
$$\ell = \lceil \sqrt{B} \rceil$$
 be the size of a "giant step"

2: **for**
$$i = 0, ..., \ell - 1$$
 do

3: set
$$T\{g^{i\ell}\} \leftarrow i$$

4: end for Algorithm

5: **for**
$$j = 0, ..., \ell - 1$$
 do

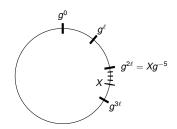
6: compute
$$z = Xg^{-j}$$

7: **if** $T\{z\}$ exists **then**

8:
$$i \leftarrow T\{z\}$$

9: yield
$$x = i\ell + j$$
 and stop

11: end for



$$\triangleright$$
 we get $Xg^{-j}=g^{i\ell}$

Attacks based on Precomputation

Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

over \mathbf{Z}_{p}^{*} , the discrete logarithm can be solved in

p length	precomputation	attack
(bits)	(core-time)	(core-time)
512	10.2 years	10 minutes
768	36 500 years	2 days
1024	45 000 000 years	30 days

example: SSH2 uses a fixed p of 1024 bits...

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_p Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

The Diffie-Hellman Key Agreement Protocol (again)

Assume a group generated by some g

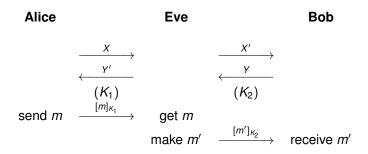
Alice Bob

pick
$$x$$
 at random
$$\begin{array}{ccc}
X \leftarrow g^x & \xrightarrow{X} & & \\
& & \downarrow & & \\
& & \downarrow & & \\
& & & \downarrow & & \\
& & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & & & \downarrow & \\
& & & & \downarrow & \\
& & & & \downarrow & \\
& & & & & \downarrow & \\
& & \downarrow & \\
& & \downarrow & \downarrow & \\
& & \downarrow & \downarrow & \\
& & \downarrow & \\
& & \downarrow & \downarrow & \\
& & \downarrow & \downarrow & \\
& & \downarrow & \downarrow & \\
& \downarrow &$$

security requirement: given (g, g^x, g^y) , it must be hard to compute g^{xy} (Computational Diffie-Hellman Problem)

An Unavoidable Active Attack

Man-in-the-Middle Attack



Passive Adversaries

- passive adversary just listens to communications and tries to decrypt communications (e.g. by recovering the key)
- the Diffie-Hellman shall resist to passive attacks: given only g, X, and Y, it must be hard to compute K

The Computational Diffie-Hellman Problem

Definition (Computational Diffie-Hellman (CDH) Problem)

The CDH problem relative to Setup is hard if for any PPT algorithm \mathcal{A} , the probability that the following game returns 1 is $negl(\lambda)$:

$CDH(\lambda)$:

- 1: Setup(1 $^{\lambda}$) \rightarrow (group, q, g)
- 2: pick $x, y \in \mathbf{Z}_q$
- 3: $X \leftarrow g^{x}, Y \leftarrow g^{y}$
- 4: $\mathcal{A}(\text{group}, q, g, X, Y) \rightarrow K$
- 5: return $1_{K=a^{xy}}$

hardness requires the Discrete Logarithm Problem to be hard (see next slide)

Examples:

- a subgroup of **Z**_p* of prime order *q*
- an elliptic curve

CDH hard ⇒ DL hard

The CDH Problem Reduces to the DL Problem

 $\mathcal{B}(\text{group}, q, g, X, Y)$:

1: run $\mathcal{A}(\text{group}, q, g, X) \rightarrow X'$

2: compute $K = Y^{x'}$

3: **return** *K*

- assume CDH is hard
- ullet to prove DL hardness, consider a DL algorithm ${\cal A}$
- construct \mathcal{B} s.t. \mathcal{A} wins DL $\Longrightarrow \mathcal{B}$ wins CDH:

$$\Pr\left[\left[\begin{array}{c} \mathsf{DL}_{\mathcal{A}} \ \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x \\ X \leftarrow g^x \\ \mathcal{A}(\dots, X) \to x' \\ \mathsf{return} \ \mathbf{1}_{X = g^{x'}} \end{array}\right] \to \mathbf{1}\right] \le \Pr\left[\left[\begin{array}{c} \mathsf{CDH}_{\mathcal{B}} \ \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ X \leftarrow g^x \\ Y \leftarrow g^y \\ \mathcal{A}(\dots, X) \to x' \\ K \leftarrow Y^{x'} \\ \mathsf{return} \ \mathbf{1}_{K = g^{xy}} \end{array}\right] \to \mathbf{1}\right] = \mathsf{negl}$$

$$X = g^{x'} \Longrightarrow K = Y^{x'} = g^{yx'} = X^y = g^{xy}$$

(More details on next slide.)

CDH hard ⇒ **DL** hard (details)

 $\mathcal{B}(\text{group}, q, g, X, Y) :$ 1: $\mathcal{A}(\text{group}, q, g, X) \rightarrow x'$ 2: $K \leftarrow Y^{x'}$

3: **return** *K*

$$\Pr\left[\begin{bmatrix} \mathsf{DL}_{\mathcal{A}} \ \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x \\ X \leftarrow g^x \\ \mathcal{A}(\dots, X) \to x' \\ \mathbf{return} \ \mathbf{1}_{X = g^{x'}} \end{bmatrix} \to \mathbf{1} \right] \quad = \quad \Pr\left[\begin{bmatrix} \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ X \leftarrow g^x \\ Y \leftarrow g^y \\ \mathcal{A}(\dots, X) \to x' \\ K \leftarrow Y^{x'} \\ \mathbf{return} \ \mathbf{1}_{X = g^{x'}} \end{bmatrix} \to \mathbf{1} \right] \\ \leq \quad \Pr\left[\begin{bmatrix} \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{K} \leftarrow g^x \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{X} \leftarrow g^x \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{Pr} \begin{bmatrix} \mathsf{Setup} \to \dots, \mathsf{g} \\ \mathsf{pick} \ x, y \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to \dots, g \\ \mathsf{Y} \leftarrow g^y \\ \mathsf{Setup} \to 1 \\ \mathsf{Pr} \end{bmatrix} \right]$$

 $X = q^{x'} \Longrightarrow Y^{x'} = q^{yx'} = X^y = q^{xy}$

DDH Problem

Definition (Decisional Diffie-Hellman (DDH) Problem)

The DDH problem relative to Setup is hard if for any PPT algorithm $\mathcal{A}, \label{eq:definition}$ we have

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \mathsf{Pr}[\mathsf{DDH}(\lambda,1) \to 1] - \mathsf{Pr}[\mathsf{DDH}(\lambda,0) \to 1] = \mathsf{negl}(\lambda)$$

$DDH(\lambda, b)$:

- 1: Setup(1^{λ}) \rightarrow (group, q, g)
- 2: pick $x, y, z \in \mathbf{Z}_q$
- 3: **if** b = 1 **then** $z \leftarrow xy$
- 4: $X \leftarrow g^x$, $Y \leftarrow g^y$, $Z \leftarrow g^z$
- 5: $\mathcal{A}(\text{group}, q, g, X, Y, Z) \rightarrow t$
- 6: return t

DDH hard \Longrightarrow CDH hard \longrightarrow i

- assume DDH is hard
- consider

$$\mathcal{C}(\mathsf{group}, q, g, X, Y, Z) : \\ 1: \mathsf{pick} \ x' \in \mathbf{Z}_q \\ 2: \ \mathbf{return} \ \mathbf{1}_{X = g^{x'}, Z = Y^{x'}} \\ \mathsf{negl} = \mathsf{Adv}_{\mathcal{C}} = \mathsf{Pr}[\mathsf{DDH}_{\mathcal{C}}(1) \to 1] - \mathsf{Pr}[\mathsf{DDH}_{\mathcal{C}}(0) \to 1] = \frac{1}{q} - \frac{1}{q^2} \sim \frac{1}{q} \\ \mathsf{hence} \ \frac{1}{q} = \mathsf{negl}(\lambda)$$

hence $\frac{1}{a} = \text{negl}(\lambda)$

DDH hard \Longrightarrow CDH hard \longrightarrow ii

- to prove CDH hardness, consider a CDH algorithm A
- we define a DDH algorithm as follows

$$\mathcal{B}(\text{group}, q, g, X, Y, Z)$$
:

1: run $\mathcal{A}(\text{group}, g, X, Y) \to K$

2: return $1_{K=Z}$

• $\mathsf{DDH}_\mathcal{B}(1) \to 1$ is equivalent to $\mathsf{CDH}_\mathcal{A} \to 1$

$$Pr[\mathsf{DDH}_\mathcal{B}(1) \to 1] = Pr[\mathsf{CDH}_\mathcal{A} \to 1]$$

• in $DDH_{\mathcal{B}}(0)$, Z is uniform in $\langle g \rangle$ and independent from K

$$\Pr[\mathsf{DDH}_\mathcal{B}(0) o 1] = \frac{1}{a} = \mathsf{negl}$$

- hence, $Adv_{\mathcal{B}}(\lambda) = Adv_{\mathcal{A}}(\lambda) negl$
- we know that $Adv_{\mathcal{B}}(\lambda) = negl(\lambda)$ (since DDH is hard)
- hence, $Pr[A \text{ wins}] = negl(\lambda)$

DDH Easy Case of a Group whose Order has a Small Factor

G of order *q* such that $q' = \frac{q}{w}$ is small and q' > 1: let $\mathcal{A}(\text{group}, g, X, Y, Z) = 1$ iff

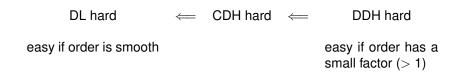
$$\log_{g^w} Z^w = \left(\log_{g^w} X^w\right) \times \left(\log_{g^w} Y^w\right)$$

we have $Adv_A(\lambda) = 1 - \frac{1}{q'}$ Indeed,

$$\Pr[\mathsf{DDH}(\lambda,0) o 1] = rac{1}{q'} \quad , \quad \Pr[\mathsf{DDH}(\lambda,1) o 1] = 1$$

If q' > 1 then $q' \ge 2$ and $Adv_{\mathcal{A}}(\lambda) \ge \frac{1}{2}$ which is not negligible.

Hardness Depending on Groups



Hard Cases

The DDH problem is believed to be hard relative to:

- large subgroup of prime order of \mathbf{Z}_p^* (p prime)
 - 1: pick a random prime q of size 2λ (so that generic algorithms have complexity $> \lambda$)
 - 2: pick a random p of size $f(\lambda)$ such that q|p-1 (so that GNFS has complexity $> \lambda$)
 - 3: start again until p is prime
 - 4: pick a random g in \mathbf{Z}_p^* of order q
- large subgroup of prime order of a "regular" elliptic curve ("pick a random prime" and Step 4 to be seen later)

Problems when not Checking Group Membership

Lim-Lee CRYPTO 1997

assume:

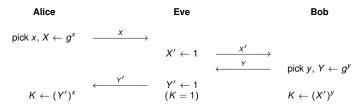
- Bob uses a static key Y
- Bob's algorithm runs even though *X* does not belong to the group

we can select X outside of the group, with a small order q'

(KDF to be seen later)

Man-in-the-Middle Attack Making $K_1 = K_2$ — i

(Using any group)



after that, Eve remains passive

 \rightarrow we must check $X \neq 1$ and $Y \neq 1$

Man-in-the-Middle Attack Making $K_1 = K_2$ — ii

(Using groups of order divisible by w s.t. DL is easy in $\langle g^w \rangle$)

after that, Eve remains passive

$$Y^{x'w} = g^{x'yw} = (g^{x'w})^y = X'^y = K$$

 \rightarrow we should use groups of prime order

Problems with Subgroups

Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

- we can compute log X modulo the small factors of the order
 - 1: set q the order of g
 - 2: **for** all small prime factor r of q **do**

3: take
$$Z = X^{\frac{q}{r}}$$
 by we have $Z \in \langle g^{\frac{q}{r}} \rangle$ of order r

- 4: find x_r s.t. $Z = (g^{\frac{q}{r}})^{x_r}$ \triangleright easy because r is small
- 5: deduce $\log X \mod r = x_r$: $\Rightarrow \text{ if } X = q^x \text{ then } (q^{\frac{q}{r}})^{x_r} = Z = (q^{\frac{q}{r}})^x \text{ so } x \equiv x_r \pmod{r}$
- 6: end for
- 7: compute CRT(all x_r) (explained in next chapter) \triangleright from $x \mod r$ for all r, we can reconstruct x with CRT
- we can deduce x = log X when it is small (example: lazy servers which select a small x)
- done for 159 DH servers (out of 3.4M) on the Internet in 2015

Other issue: Weird Key Distribution

- the final key K is random in ⟨g⟩ which has its own representation
 E.g. ⟨g⟩ ⊂ Z_p* is a very small subset. So, the binary representation of K is far from being uniformly distributed
- we need a bitstring with a "reliable distribution"
- solution: use a Key Derivation Function (KDF)

Summary: Problems with the Original DH Protocol

- nobody is checking the group membership for X and Y
- problems with subgroups of $\langle g \rangle$
 - subgroup $\{1\}$ (unavoidable): if either X or Y is 1, then K=1 for sure
 - other subgroups (avoidable): the discrete logarithm problem may become easy in subgroups
- problem with g^{xy} having a bad distribution (elements in $\langle g \rangle$ may be sparse, so there is a structured information in g^{xy})

Correct Diffie-Hellman Key Exchange

Assume a group $\langle g \rangle$ generated by some g of prime order q

Alice Bob

$$\begin{array}{cccc} \operatorname{pick} \ x \in \mathbf{Z}_q^*, \ X \leftarrow g^x & \xrightarrow{\quad X \quad} & \operatorname{if} \ X \not\in \langle g \rangle - \{1\}, \ \operatorname{abort} \\ \operatorname{if} \ Y \not\in \langle g \rangle - \{1\}, \ \operatorname{abort} & \leftarrow & \operatorname{pick} \ y \in \mathbf{Z}_q^*, \ Y \leftarrow g^y \\ K \leftarrow \operatorname{KDF}(Y^x) & K \leftarrow \operatorname{KDF}(X^y) \\ & (K = \operatorname{KDF}(g^{xy})) \end{array}$$

KDF: a Key Derivation Function

RFC 2631

Diffie-Hellman Key Agreement Method

- group parameters (p, q, g): p prime, q prime, q divides p-1 (generation algo in a next slide), $g = h^{\frac{p-1}{q}} \mod p$ with h random until 1 < h < p-1 and g > 1
- secret keys: x_A, x_B between 1 and q − 1
- public keys: $y_A = g^{x_A} \mod p$, $y_B = g^{x_B} \mod p$
- 3 modes:
 - ephemeral-ephemeral mode: both keys are fresh
 - ephemeral-static mode: recipient uses a static public key
 - static-static mode: both participants use a static public key
- shared secret: $ZZ = g^{x_A x_B} \mod p$

Exercise

• group parameters (p, q, g): p prime, q prime, q divides p-1, $g = h^{\frac{p-1}{q}} \mod p$ with any h such that 1 < h < p-1 and g > 1Show that g generates a subgroup of \mathbf{Z}_p^* of order q.

Group Parameter Generation in RFC 2631

```
1: m = \text{required length for } q, m' = \left\lceil \frac{m}{160} \right\rceil
 2: repeat
 3: pick a random seed
 4: U \leftarrow \sum_{i=0}^{m'-1} 2^{160i} \left( SHA1(seed+i) \oplus SHA1(seed+m'+i) \right) \mod 2^m
 5: a \leftarrow U \text{ OR 1 OR 2}^{m-1}
 6: until q is prime
 7: L \leftarrow \text{required length for } p, L' \leftarrow \lceil \frac{L}{160} \rceil
 8: counter ← 0
 9: repeat
           R \leftarrow \text{seed} + 2m' + (L' * \text{counter})
10:
          W \leftarrow \left(\sum_{i=0}^{L'} 2^{160i} \mathsf{SHA1}(R+i)\right) \mathsf{mod}\ 2^L
11:
12: X \leftarrow W \text{ OR } 2^{L-1}
13: p \leftarrow X - (X \mod (2q)) + 1
14: counter ← counter + 1
          if counter \geq 4096 \left\lceil \frac{L}{1024} \right\rceil then abort (fail)
16: until p > 2^{L-1} and p is prime
17: return p, q, seed, counter
```

Parameter Validation in RFC 2631 (Group Membership Verification Part)

Group parameters validation:

- p and q are prime and q divides p-1
- (optional) p and q follow parameter generation algorithm from seed and counter
- $g^q \mod p = 1 \text{ and } 1 < g < p$

Public key validation:

• check $2 \le y \le p-1$ and $y^q \mod p = 1$ \rightarrow this is enough to prove $y \in \langle g \rangle - \{1\}!$ (see next slide)

Checking Group Membership

 $(\langle g \rangle$ is the *unique* subgroup of \mathbf{Z}_{ρ}^{*} of order q)

Theorem

Let p, q, g be integers such that p and q are prime, q divides p-1, $g \mod p \neq 1$, and $g^q \mod p = 1$. Then

- $\langle g \rangle$ is a subgroup of \mathbf{Z}_{D}^{*} of order q

Application to RFC 2631: we can check that y is in the group generated by g by checking $y^q \mod p = 1$

Proof

- $\langle g \rangle$ is a subgroup of \mathbf{Z}_p^* of order q: clear
- $\langle g \rangle \subseteq \{ y \in \mathbf{Z}_p^*; y^q \bmod p = 1 \}$: clear
- $\langle g \rangle \supseteq \{ y \in \mathbf{Z}_p^*; y^q \bmod p = 1 \}$: let $y \in \mathbf{Z}_p^*$ be such that $y^q \bmod p = 1$
 - let $\theta \in \mathbf{Z}_p^*$ be a generator of \mathbf{Z}_p^* , write $g = \theta^a \mod p$, $y = \theta^b \mod p$
 - since $g^q \equiv y^q \equiv 1 \pmod{p}$, we have $qa \equiv qb \equiv 0 \pmod{p-1}$
 - so, we can write $a = \frac{p-1}{a}a'$ and $b = \frac{p-1}{a}b'$ with $a', b' \le q$
 - since $g \mod p \neq 1$, we have $1 \leq a' < q$
 - since q is prime, there exists c such that $a'c \mod q = 1$
 - we have

$$g^{b'c} \equiv \theta^{ab'c} \equiv \theta^{a'bc} \equiv y^{a'c} \equiv y^{1+kq} \equiv y \pmod{p}$$

so,
$$y \in \langle g \rangle$$

Example: Semi-Authenticated Key Exchange in SSH2

I_C and I_S: negotiation of crypto algorithms

 $Ver_{K_C}(s, H)$

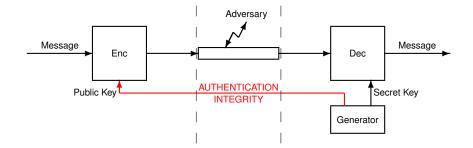
- K_S: public key of the server (may come with a certificate)
- for diffie-hellman-group1-sha1 key exchange: $p=2^{1024}-2^{960}-1+2^{64}\left\lfloor 2^{894}\pi+129093\right\rfloor$, g=2, $q=\frac{p-1}{2}$

Client Server

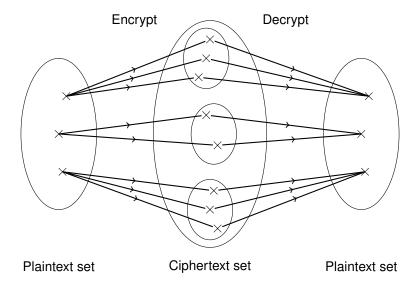
$$\begin{array}{c} \text{version } V_C, \text{ initial message } I_C \\ & & & & \\ & \text{pick } x, \, e = g^x \, \, \text{mod } p \end{array} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- Diffie-Hellman Cryptography
 - Arithmetics and Z_n
 - Some Notions of Groups Theory
 - Algorithms for Big Numbers
 - **Z**_n: The Ring of Residues Modulo n
 - Orders in a Group
 - The **Z**_n Field
 - The Diffie-Hellman Key Exchange, Concretely
 - The ElGamal Public-Key Cryptosystem

Public-Key Cryptosystem



Non-Deterministic Encryption



Semi-Static-DH to Public-Key Encryption

Towards ElGamal Encryption

Alice input: m

Bob secret key: y public key: $Y = g^y$

Υ Y

pick x at random

output: m

The Plain ElGamal Encryption Case

In the original ElGamal cryptosystem:

- in \mathbf{Z}_{p}^{*} , not of prime order...
- no KDF...
- symEnc is one-time-pad, adapted in the DH group

... this is all we should not do...

but wait: this is the basis of many cryptosystems...

In what follows: we work in $\langle g \rangle$ of order n

CAUTION: notation change

ElGamal Cryptosystem

```
Public parameters: (g, n), a group \langle g \rangle of order n generated by
```

some g

Set up: generate a random $x \in \mathbf{Z}_n$, and compute $y = g^x$

Message: an element $m \in \langle g \rangle$

Public key: pk = ySecret key: sk = x

Encryption: pick a random $r \in \mathbf{Z}_n$, compute $u = g^r$, and $v = my^r$

The ciphertext is (u, v)

Decryption: extract the *u* and *v* parts of the ciphertext and compute

 $m = vu^{-x}$

ElGamal Cryptosystem

Semi-Static DH + Vernam Generalized

Alice input: m

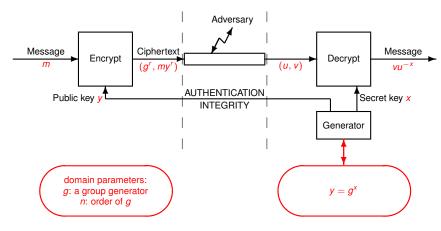
Bob secret key: x public key: $y = g^x$

pick
$$r$$
 at random
$$\begin{array}{ccc}
u = g^r & \xrightarrow{u} \\
K = y^r & & K = u^x
\end{array}$$

$$v = mK$$
 \longrightarrow $m = vK^{-1}$

output: m

Plain ElGamal Encryption



(assume $m \in \langle g \rangle$)

ElGamal Encryption Complexity

in subgroups of \mathbf{Z}_p^* with p of length ℓ :

- Domain parameter selection: $\mathcal{O}(\ell^4)$ (prime numbers generation to be seen in next chapter)
- Generator: $\mathcal{O}(\ell^3)$
- Encryption: $\mathcal{O}(\ell^3)$
- Decryption: $\mathcal{O}(\ell^3)$

ElGamal Security: ElGamal Problems

EGKR (ElGamal Key Recovery Problem)

- 1: Setup(1^{λ}) \rightarrow (group, n, g)
- 2: $Gen(group, n, g) \rightarrow (y, x)$
- 3: $\mathcal{A}(\text{group}, n, g, y) \rightarrow x'$
- 4: return $1_{x=x'}$

EGD (ElGamal Decryption Problem)

- 1: Setup(1 $^{\lambda}$) \rightarrow (group, n, g)
- 2: Gen(group, n, g) \rightarrow (y, x)
- 3: pick pt $\in \langle g \rangle$
- 4: $\operatorname{Enc}(y,\operatorname{pt}) \to (u,v)$
- 5: $A(group, n, g, y, u, v) \rightarrow m$
- 6: **return** $1_{m=pt}$

decryption problem \iff CDH problem [next slide]

 \triangleright pick $x \in \mathbf{Z}_n$, $y = g^x$

 \triangleright pick $x \in \mathbf{Z}_n$, $y = g^x$

 \triangleright pick $r \in \mathbf{Z}_n$, $u = q^r$, $v = \mathsf{pt} \cdot v^r$

 \triangleright pick pt $\in \langle a \rangle$

EGD hard ⇒ CDH hard

The EGD Problem Reduces to the CDH Problem

 $\mathcal{B}(\text{group}, n, g, y, u, v)$ 1: $\mathcal{A}(\dots, g, y, u) \rightarrow K$ 2: $m \leftarrow v/K$ 3: **return** m

- assume EGD is hard
- ullet to prove CDH hardness, consider a CDH algorithm ${\cal A}$
- construct \mathcal{B} s.t. \mathcal{A} wins CDH $\Longrightarrow \mathcal{B}$ wins EGD:

$$\Pr\left[\left[\begin{array}{c} \mathsf{CDH}_{\mathcal{A}} \; \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \; x, y \\ X \leftarrow g^x \\ Y \leftarrow g^y \\ \mathcal{A}(\dots, X, Y) \to K \\ \mathsf{return} \; \mathbf{1}_{K = g^{xy}} \end{array}\right] \to \mathbf{1}\right] \leq \Pr\left[\left[\begin{array}{c} \mathsf{EGD}_{\mathcal{B}} \; \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \; x, \; y \leftarrow g^x \\ \mathsf{pick} \; \mathsf{pt} \\ \mathsf{pick} \; r, \; u \leftarrow g^r \\ v \leftarrow \mathsf{pt} \cdot y^r \\ \mathcal{A}(\dots, y, u) \to K \\ m \leftarrow v/K \\ \mathsf{return} \; \mathbf{1}_{m = \mathsf{pt}} \end{array}\right] \to \mathbf{1}\right] = \mathsf{negl}$$

CDH hard ⇒ EGD hard

The CDH Problem Reduces to the EGD Problem

 $\mathcal{B}(\text{group}, n, g, X, Y)$ 1: pick v2: $\mathcal{A}(\dots, X, Y, v) \rightarrow m$ 3: $K \leftarrow v/m$

4. return K

- assume CDH is hard
- to prove EGD hardness, consider a EGD algorithm A
- construct \mathcal{B} s.t. \mathcal{A} wins EGD $\Longrightarrow \mathcal{B}$ wins CDH:

$$\Pr\left[\begin{bmatrix} \mathsf{EGD}_{\mathcal{A}} \ \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, \ y \leftarrow g^{\mathsf{x}} \\ \mathsf{pick} \ \mathsf{pt} \\ \mathsf{pick} \ r, \ u \leftarrow g^{\mathsf{r}} \\ v \leftarrow \mathsf{pt} \cdot y^{\mathsf{r}} \\ \mathcal{A}(\dots, y, u, v) \to m \\ \mathbf{return} \ \mathbf{1}_{m=\mathsf{pt}} \end{bmatrix} \to 1 \right] \le \Pr\left[\begin{bmatrix} \mathsf{CDH}_{\mathcal{B}} \ \mathsf{game} \colon \\ \mathsf{Setup} \to \dots, g \\ \mathsf{pick} \ x, y \\ \mathsf{X} \leftarrow g^{\mathsf{x}} \\ \mathsf{Y} \leftarrow g^{\mathsf{y}} \\ \mathsf{pick} \ \mathsf{v} \\ \mathcal{A}(\dots, X, Y, v) \to m \\ \mathsf{K} \leftarrow v/m \\ \mathbf{return} \ \mathbf{1}_{K=g^{\mathsf{x}y}} \end{bmatrix} \to 1 \right] = \mathsf{negl}$$

ElGamal Encryption Security

- key recovery is equivalent to solving DL
- decryption is equivalent to the solving CDH
- INDCPA security equivalent to solving DDH (IND-CPA security defined on slide 785)

Conclusion

- \mathbf{Z}_n ring, \mathbf{Z}_p field: a nice playground for cryptography
- algorithmic number theory: easy to add multiply, invert, compute exponentials in Z_p and Z_p
- DL, CDH, and DDH problems: some cryptosystems based on their hardness
- Diffie-Hellman key exchange: can set up a symmetric key over a public channel, resist to passive adversaries
- ElGamal encryption: an example of probabilistic cryptosystem

References

 Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb Textbook on algebra for cryptographers and applications.

• Menezes-van Oorschot-Vanstone. Handbook of Applied Cryptography. CRC. 1997. http://www.cacr.math.uwaterloo.ca/hac/ Reference book

- Vaudenay. A Classical Introduction to Cryptography —
 Applications for Communications Security. Springer. 2005.
 http://www.vaudenay.ch/crypto/
 Textbook on cryptography
- **Diffie-Hellman**. New Directions in Cryptography. *IEEE Transactions on Information Theory* vol. 22, 1976.

Must be Known

- groups, rings, fields:
 - orders + tricks to check/pick a generator
 - Lagrange Theorem
- Z_n ring: invertibility
- Z_p field: the multiplicative group is cyclic
- algorithmic number theory:
 - square-and-multiply
 - extended Euclid algorithm
- Diffie-Hellman key exchange:
 - resist to passive adversaries
 - better on a goup of prime order
 - · requires the hardness of DL
- ElGamal encryption:
 - requires the hardness of CDH
 - encrypt group elements
 - better on a group of prime order

Train Yourself

- subgroup issues: final exam 2016–17 ex5
- variant of DH: midterm exam 2017–18 ex3
- DDH mod pq: midterm exam 2022–23 ex2
- DLP in GGM: final exam 2022–23 ex3
- DH in comosite group: midterm exam 2023–24 ex2

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- more on number theory
- prime number generation
- RSA cryptosystem
- square roots
- factoring problem

- RSA Cryptography
 - Euler and Other Chinese
 - Primality Testing
 - RSA Basics
 - Quadratic Residuosity
 - The Factoring Problem

Euler Totient Function

 $\varphi(n)$ is the order of \mathbf{Z}_n^*

Theorem

Given an integer n, we have the following results.

- For all $x \in \mathbf{Z}_n$ we have $x \in \mathbf{Z}_n^* \iff \gcd(x, n) = 1$.
- \mathbf{Z}_n is a field $\iff \mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\} \iff \varphi(n) = n 1 \iff n \text{ is prime}$
- For all $x \in \mathbf{Z}_n^*$ we have $x^{\varphi(n)} \equiv 1 \pmod{n}$.
- if e is such that $gcd(e, \varphi(n)) = 1$, we let $d = e^{-1} \mod \varphi(n)$. For all $y \in \mathbf{Z}_n^*$, $y^d \mod n$ is the only eth root of y modulo n

Proof — i

For all
$$x \in \mathbf{Z}_n$$
 we have $x \in \mathbf{Z}_n^* \Longleftrightarrow \gcd(x, n) = 1$.

Proof.

 \implies : if gcd(x, n) = d > 1, then d divides $(x \cdot y) \mod n$ for any y so $(xy) \mod n$ cannot be equal to 1.

 \Leftarrow : if gcd(x, n) = 1, the extended Euclid algorithm constructs an inverse of x (see side 175)

SV 2024-25

Proof — ii

$$\mathbf{Z}_n$$
 is a field $\iff \mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\} \iff \varphi(n) = n - 1 \iff n$ is prime

Proof. By definition, \mathbf{Z}_n is a field $\iff \mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\}$.

Since $\mathbf{Z}_n^* \subseteq \mathbf{Z}_n \setminus \{0\}$, \mathbf{Z}_n^* and $\mathbf{Z}_n \setminus \{0\}$ are equal iff they have the same cardinality.

We have $\#\mathbf{Z}_n^* = \varphi(n)$ and $\#\mathbf{Z}_n \setminus \{0\} = n-1$, so we deduce $\mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\} \Longleftrightarrow \varphi(n) = n-1$.

$$\mathbf{Z}_n^* = \mathbf{Z}_n \setminus \{0\} \iff \forall x \in \{1, \dots, n-1\} \quad \gcd(x, n) = 1$$

 $\iff n \text{ is prime}$

 $(\mathbf{Z}_n \text{ field} \longleftarrow n \text{ prime was seen on } \mathbf{P} \text{ side 190})$

Proof — iii

For all
$$x \in \mathbf{Z}_n^*$$
 we have $x^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. Due to the Lagrange Theorem, the order k of x divides the order $\varphi(n)$ of \mathbf{Z}_n^* .

Let
$$\varphi(n) = k \cdot r$$
. We have $x^{\varphi(n)} \equiv x^{k \cdot r} \equiv (x^k)^r \equiv 1^r \equiv 1$.

Proof — iv

"for $y \in \mathbf{Z}_n^*$, $x = y^d$ is the unique root of equation $y = x^e$ "

If e is such that $gcd(e, \varphi(n)) = 1$, we let $d = e^{-1} \mod \varphi(n)$. For all $y \in \mathbf{Z}_n^*$, $y^d \mod n$ is the only eth root of y modulo n

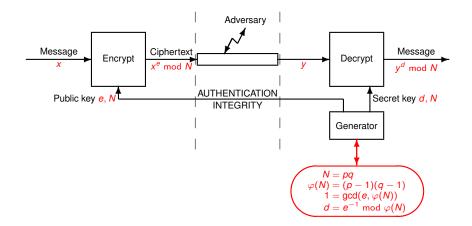
Proof. We have $e \cdot d = 1 + k \cdot \varphi(n)$ for some k.

- $x \equiv y^d \Longrightarrow x^e \equiv y^{1+k\cdot\varphi(n)} \equiv y$ so $x = y^d$ is a *e*th root of y.
- If $y \equiv x^e$, we have $x \in \mathbf{Z}_n^*$ because

$$\left(y^{-1}x^{e-1}\right)x\equiv 1$$

we have $y \equiv x^e \Longrightarrow y^d \equiv x^{1+k\cdot\varphi(n)} \equiv x$ so a *e*th root of *y* must be unique.

Application: RSA Cryptosystem



Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. For any $a, b \in \mathbf{Z}$, there exists $x \in \mathbf{Z}$ such that

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m = 5, n = 7, mn = 35, a = 3, b = 4)

We find that x = 18 is a solution and for all solution, $x \mod (mn) = 18$

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. We have

- $f: \mathbf{Z}_{mn} \to \mathbf{Z}_m \times \mathbf{Z}_n$ defined by $f(x) = (x \mod m, x \mod n)$ is a ring isomorphism
- $f^{-1}(a,b) \equiv an(n^{-1} \mod m) + bm(m^{-1} \mod n) \pmod{mn}$

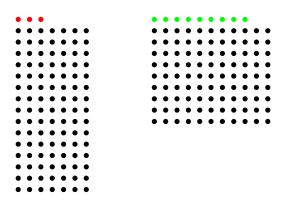
Example:
$$(m = 5, n = 7, mn = 35)$$

$$f^{-1}(3,4) = (3 \times 7 \times (7^{-1} \mod 5) + 4 \times 5 \times (5^{-1} \mod 7)) \mod 35$$

= · · · = 18

Application: $\varphi(pq) = (p-1)(q-1)$ when p and q are two different primes

Application 1: Count Soldiers



$$x \equiv 3 \cdot 11 \cdot (11^{-1} \mod 7) + 9 \cdot 7 \cdot (7^{-1} \mod 11) \pmod{77}$$

 $\equiv 3 \times 22 + 9 \times 56 \pmod{77}$
 $\equiv 31 \pmod{77}$

... there must be 108 soldiers

Application 2: Equality Modulo Composite Numbers

Theorem

For any $a, b, m, n \in \mathbf{Z}$ such that gcd(m, n) = 1, then

$$a \equiv b \pmod{m}$$

 $a \equiv b \pmod{n}$ $\Longrightarrow a \equiv b \pmod{mn}$.

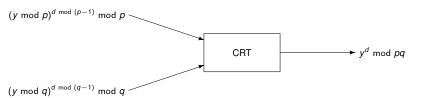
Indeed, $f(a \mod (mn)) = f(b \mod (mn))$ hence $a \mod (mn) = b \mod (mn)$

Application 3: Correctness of RSA

- let N = pq be the product of two different prime numbers p and q
- for any $x \in \mathbf{Z}$ such that $x \mod p \neq 0$ we have $(x^e \mod N)^d \mod N \equiv x \pmod p$ (comes from p-1 divides $\varphi(N)$ thus $ed \mod (p-1)=1$)
- this also holds when $x \mod p = 0$
- similarly: for any $x \in \mathbf{Z}$ we have $(x^e \mod N)^d \mod N \equiv x \pmod q$
- from CRT (Application 2): for any $x \in \mathbf{Z}$ we have $(x^e \mod N)^d \mod N \equiv x \pmod N$
- for any $x \in \mathbf{Z}_N$ we have $(x^e \mod N)^d \mod N = x$

Application 4: Exponentiation Acceleration

$$\log_2 p pprox \log_2 q pprox rac{\ell}{2}$$



$$2 \times \mathcal{O}\left(\left(\frac{\ell}{2}\right)^3\right)$$
 $\mathcal{O}\left(\ell^3\right)$

Proof of CRT — i

Fact 1: *f* is a ring homomorphism from \mathbf{Z}_{mn} to $\mathbf{Z}_{m} \times \mathbf{Z}_{n}$

- $f(x +_{\mathbf{Z}_{mn}} y) = f(x) +_{\mathbf{Z}_m \times \mathbf{Z}_n} f(y)$ indeed:
 - $((x + y) \mod (mn)) \mod m = ((x \mod m) + (y \mod m)) \mod m$ $((x + y) \mod (mn)) \mod n = ((x \mod n) + (y \mod n)) \mod n$
- $f(x \times_{\mathbf{Z}_{mn}} y) = f(x) \times_{\mathbf{Z}_{m} \times \mathbf{Z}_{n}} f(y)$ (same)
- f(1) = (1,1)

Proof of CRT — ii

Fact 2: f is an isomorphism

- f(x) = (0,0) implies m and n divide x since gcd(m,n) = 1, mn divides x (see next slide) thus $x \mod (mn) = 0$
- f is injective: for all $x, y \in \mathbf{Z}_{mn}$, if f(x) = f(y) then f(x y) = (0, 0) thus $x y \mod (mn) = 0$ hence x = y
- f is an isomorphism: \mathbf{Z}_{mn} and $\mathbf{Z}_{m} \times \mathbf{Z}_{n}$ have the same cardinality and f is injective thus f is a bijection since f is further a homomorphism, f is an isomorphism

Null Kernel

m and n divide x and are coprime

- let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ be the unique factorization of n into pairwise different primes p_i
- write x = mx' (since m divides x)
- since *n* divides *x*, each $p_i^{\alpha_i}$ divides x = mx'
- since n is coprime with m, p_i does not divide m
- hence, $p_i^{\alpha_i}$ divides x'
- each $p_i^{\alpha_i}$ divides x' so n divides x'
- write x' = nx''
- x = mnx'': mn divides x

Proof of CRT — iii

Fact 3:
$$f(an(n^{-1} \mod m) + bm(m^{-1} \mod n)) = (a, b)$$

 $an(n^{-1} \mod m) + bm(m^{-1} \mod n) \equiv a \pmod m$
 $an(n^{-1} \mod m) + bm(m^{-1} \mod n) \equiv b \pmod n$

thus f of the left hand side is (a, b)

CRT Backward: Another Approach

Theorem (CRT Backward)

Let m and n be two integers such that gcd(m, n) = 1. Let $u = n(n^{-1} \mod m)$ and $v = m(m^{-1} \mod n)$. The function

is well defined and is a ring isomorphism.

Note: g is well defined because

$$g: \mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z}_{mn}$$

 $(a,b) \longmapsto (a+im)u + (b+jn)v \mod (mn)$

does not depend on i or j

Consequence: $(u + v) \mod (mn) = g(1, 1) = 1$

Proof

Proof.

- $g(a,b) + g(a',b') \equiv g(a+a',b+b') \pmod{mn}$ so g is a group homomorphism
- g(a, b) = 0 implies $a \mod m = 0$ and $b \mod n = 0$ so g is injective
- due to cardinality, g is bijective: so, a group isomorphism
- $g^{-1}(x) = (x \mod m, x \mod n)$ is homomorphic for \times so we have a ring isomorphism

Euler Totient Function

Corollary

Let m and n be two integers such that gcd(m, n) = 1. We have $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof

Fact: f is a bijection from \mathbf{Z}_{mn}^* to $\mathbf{Z}_{m}^* \times \mathbf{Z}_{n}^*$ (thus $\varphi(mn) = \varphi(m)\varphi(n)$):

- if $x \in \mathbf{Z}_{mn}^*$ then $f(x).f(x^{-1}) = f(1) = (1,1)$ so both components of f(x) are invertible: $f(x) \in \mathbf{Z}_{m}^{*} \times \mathbf{Z}_{n}^{*}$ so f maps \mathbf{Z}_{mn}^* to $\mathbf{Z}_{mn}^* \times \mathbf{Z}_{n}^*$
- conversely, if $(a,b) \in \mathbf{Z}_m^* \times \mathbf{Z}_n^*$, let $x = f^{-1}(a,b)$ and $v = f^{-1}(a^{-1}, b^{-1})$ we have $f(xy) = f(x).f(y) = (a, b).(a^{-1}, b^{-1}) = (1, 1) = f(1)$ so xy = 1 so $x \in \mathbf{Z}_{mn}^*$ so f from \mathbf{Z}_{mn}^* to $\mathbf{Z}_m^* \times \mathbf{Z}_n^*$ is surjective
- f is an injection on \mathbf{Z}_{mn} so an injection on \mathbf{Z}_{mn}^* as well actually, \mathbf{Z}_{mn}^* and $\mathbf{Z}_{m}^* \times \mathbf{Z}_{n}^*$ are isomorphic groups (and f is such isomorphism)

Computation of Euler Totient Function

- $\varphi(p) = p 1$ for p prime
- $\varphi(mn) = \varphi(m) \times \varphi(n)$ when gcd(m, n) = 1
- $\varphi(p^a) = (p-1)p^{a-1}$ for *p* prime

$$\varphi\left(p_1^{a_1} \times \dots \times p_r^{a_r}\right) = (p_1 - 1)p_1^{a_1 - 1} \times \dots \times (p_r - 1)p_r^{a_r - 1}$$
$$= p_1^{a_1} \times \dots \times p_r^{a_r} \frac{(p_1 - 1) \times \dots \times (p_r - 1)}{p_1 \times \dots \times p_r}$$

for pairwise different prime numbers p_1, \ldots, p_r

For Generating a Generator ••••

For $g \in_U G$ in a cyclic group G of order $n = \prod_{j=1}^r p_j^{\alpha_j}$ with pairwise different primes p_j :

• let $h \in G$ be a generator; due to CRT, there is an isomorphism f

$$G \stackrel{\log_h}{\longrightarrow} \mathbf{Z}_n \stackrel{f}{\longrightarrow} \prod_{j=1}^r \mathbf{Z}_{p_j^{\alpha_j}} \quad \text{so} \quad g \stackrel{f \circ \log_h}{\longmapsto} (a_j)_{1 \le j \le r} \in_U \mathbf{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbf{Z}_{p_r^{\alpha_r}}$$

due to isomorphism,

$$g^{rac{n}{p_i}} = 1 \iff igwedge_{j=1}^r rac{n}{p_i} a_j \equiv 0 \pmod{p_i^{lpha_j}}$$
 $\iff rac{n}{p_i} a_i \equiv 0 \pmod{p_i^{lpha_i}}$
 $\iff a_i \mod p_i = 0$

CryptoSec

a_i's are independent and uniform

so
$$\Pr_{g \in UG} \left[g^{\frac{n}{p_i}} = 1 \right] = \frac{1}{p_i}$$
 and these events are independent

SV 2024–25 RSA Cryptography

- RSA Cryptography
 - Euler and Other Chinese
 - Primality Testing
 - RSA Basics
 - Quadratic Residuosity
 - The Factoring Problem

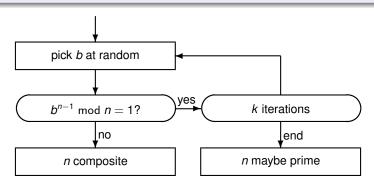
Trial Division Algorithm

```
Input: an integer n
Output: a list of prime numbers whose product
    is n
Complexity: \mathcal{O}(\sqrt{n}) iterations (poly-time arith-
    metic operations in each iteration)
 1: x \leftarrow n, i \leftarrow 2
 2: while x > 1 and i < |\sqrt{x}| do
 3: while i divides x do
 4:
           print i
 5: X \leftarrow X/i
 6: end while
 7: i \leftarrow i + 1
 8: end while
 9: if x > 1 then print x
```

Fermat Test

Theorem (Little Fermat Theorem)

If *n* is prime, for any $b \in \{1, ..., n-1\}$, $b^{n-1} \mod n = 1$.



CryptoSec

276 / 1098

Fermat Test

```
Parameter: k, an integer
Input: n, an integer of \ell bits
Output: notification of non-primality or pseudo-
    primality
Complexity: \mathcal{O}(k\ell^3)
 1: repeat
       pick a random b such that 0 < b < n
 2:
 3: x \leftarrow b^{n-1} \mod n
 4: if x \neq 1 then
           output "composite" and stop
 5:
       end if
 6:
 7: until k iterations are made
 8: output "maybe prime" and stop
```

Significance of the Fermat Test

- False Negative: Pr[output : composite|n prime] = 0
- False Positive: there exist pathologic numbers n which are not prime such that $\Pr[\text{output}: \text{maybe prime}|n]$ is high. Carmichael Numbers n are composite such that for any b, $b \in \mathbf{Z}_n^* \iff b^{n-1} \mod n = 1$. Hence

 $Pr[output : maybe prime | n] = \left(\frac{\varphi(n)}{n-1}\right)^k$.

Carmichael Numbers

Definition

We call **Carmichael number** any integer n which is a product of (at least 2) pairwise different prime numbers p_i such that $p_i - 1$ is a factor of n - 1.

Theorem

An integer n is a Carmichael number if and only if it is composite and for any b s.t. gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \pmod{n}$.

Proof.

- \Rightarrow : get $b^{n-1} \mod p_i = 1$ then apply CRT
- \Leftarrow : get $b^{n-1} \mod p_i = 1$ for a genarator b of $\mathbf{Z}_{p_i}^*$ so $p_i 1|n-1$ PB to show that n is square-free (p_i 's are pairwise different)

CryptoSec

Carmichael Numbers: the 561 Case

Example: $n = 561 = 3 \cdot 11 \cdot 17$ is such that for all b s.t. gcd(b, n) = 1, we have $b^{n-1} \equiv 1 \pmod{n}$. $n-1 = 560 = 2^4 \times 5 \times 7$ is divisible by 3-1, 11-1, 17-1

The Fermat test may be wrong with probability

$$\left(\frac{\varphi(n)}{n-1}\right)^k = \left(\frac{2 \times 10 \times 16}{560}\right)^k = \left(\frac{4}{7}\right)^k$$

Carmichael Numbers: the 949 631 589 089 Case

$$\begin{array}{lll} 949\,631\,589\,089 & = & 6917\times10193\times13469 \\ 949\,631\,589\,088 & = & 2^5\times7^3\times13\times19\times37\times9467 \end{array}$$

- 6917 is prime, $6916 = 2^2 \times 7 \times 13 \times 19$
- 10193 is prime, $10192 = 2^4 \times 7^2 \times 13$
- 13469 is prime, $13468 = 2^2 \times 7 \times 13 \times 37$
- the test may be wrong with probability

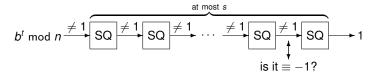
$$\left(\frac{\varphi(n)}{n-1}\right)^k = \left(\frac{9464}{9467}\right)^k \approx (1 - 0.000317)^k$$

example: for k = 20 the error probability is approximately 1 - 0.00631

Towards The Miller-Rabin Test

- We write $n-1=2^st$ with t odd
- If n is prime, we have $b^{n-1} \mod n = \left(\cdots \left((b^t)^2\right)^2\cdots\right)^2 \mod n = 1$
- If n is prime, +1 and -1 are the only possible square roots of 1 (1) slide 297

The Miller-Rabin Test



Miller-Rabin test with basis b: check that the sequence $(b^t, b^{2t}, \dots, b^{2^st})$ is of form either $(1, 1, \dots, 1)$ or $(\star, \dots, \star, -1, 1, \dots, 1)$

The Miller-Rabin Primality Test

```
Parameter: k, an integer
                                             8: repeat
                                                   pick b \in \{1, ..., n-1\}
Input: n, an integer of \ell bits
                                             9:
                                           10: x \leftarrow b^t \mod n
Output: notification of non-primality
    or pseudo-primality
                                           11: i \leftarrow 0
Complexity: \mathcal{O}(k\ell^3)
                                                   if x \neq 1 then
                                            12:
 1: if n = 2 then
                                                       while x \neq n-1 do
                                            13:
                                                          x \leftarrow x^2 \mod n
        return "prime"
                                            14:
 3: end if
                                           15:
                                                           i \leftarrow i + 1
 4. if n is even then
                                           16:
                                                           if i = s or x = 1 then
        return "composite"
                                           17:
                                                               return "composite"
 6: end if
                                           18:
                                                           end if
 7: write n = 2^{s}t + 1 with t odd
                                                       end while
                                           19
                                                   end if
                                           20:
                                           21: until k iterations are made
                                           22: return "maybe prime"
```

284 / 1098

Miller-Rabin Criterion

Theorem

An integer n is prime if and only if it passes the Miller-Rabin test for all $b \in \mathbf{Z}_n^*$.

Proof (Sketch).

- ⇒ trivial
- observe that passing Miller-Rabin implies passing Fermat
 - \rightarrow just prove that Carmichael numbers do not pass

SV 2024-25

Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of $b \in \mathbf{Z}_n^*$ pass the Miller-Rabin test, then all $b \in \mathbf{Z}_n^*$ do so.

Consequence: false positives are negligible:

 $Pr[output maybe prime | n composite] \le 4^{-k}$

Prime Number Generation

Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in $\{2,3,\ldots,N\}$. We have $p(N) \sim \frac{N}{\ln N}$ when N increases toward the infinity.

- ightarrow the probability that a random ℓ -bit number is prime is $pprox rac{1}{\ell \ln 2}$ Example: a 512-bit random integer is prime with probability $pprox rac{1}{355}$
- ightarrow generating a random ℓ -bit prime number takes $\mathcal{O}(\ell^4 + k\ell^3)$



Implementation

Input: ℓ

Output: a random prime number less than 2^{ℓ} **Complexity**: $\mathcal{O}(\ell^4)$ arithmetic operations

1: repeat

2: pick a random number n of ℓ bits

3: **until** a primality test with *k* iterations accepts *n* as a prime number

4: output n

With $k=\frac{1}{2}(\log_2\ell-\log_2\varepsilon)$ the probability that this algorithm outputs a composite number is less than ε .

$$Pr[output not prime] \leq \mathcal{O}(\ell) \times 4^{-k} = \mathcal{O}(\varepsilon)$$

(next slide)

Incorrectness Probability

- p_i: probability to make exactly i iterations and make an incorrect response at the i-th iteration
- Pr[output not prime] = $\sum_i p_i$
- we have

$$p_i \le \Pr[\text{pick composite and be wrong}] \Pr[\text{pick composite}]^{i-1} \le \Pr[\text{wrong—composite}] \Pr[\text{pick composite}]^{i-1} \le 4^{-k} \Pr[\text{pick composite}]^{i-1}$$

hence

$$\begin{array}{ll} \Pr[\text{output not prime}] & = & \sum_{i} p_{i} \\ & \leq & 4^{-k} \sum_{i} \Pr[\text{pick composite}]^{i-1} \\ & = & 4^{-k} / \Pr[\text{pick prime}] \\ & = & \mathcal{O}(\ell) \times 4^{-k} \end{array}$$

- RSA Cryptography
 - Euler and Other Chinese
 - Primality Testing
 - RSA Basics
 - Quadratic Residuosity
 - The Factoring Problem

Plain RSA Cryptosystem

```
Public parameter: an integer \ell.

Set up: find two random different prime numbers p and q of size \frac{\ell}{2} bits. Set N=pq. Select e such that \gcd(e,(p-1)(q-1))=1:

• either pick a random e until it is valid
• or pick e=17 or e=2^{16}+1 if valid.

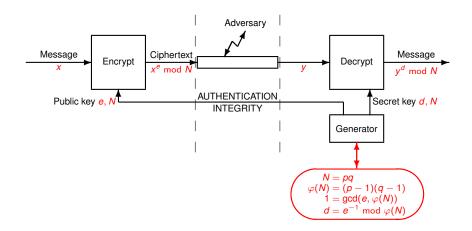
Set d=e^{-1} \mod ((p-1)(q-1)).
```

Message: an element $x \in \mathbf{Z}_N$.

Public key: pk = (e, N). Secret key: sk = (d, N). Encryption: $y = x^e \mod N$.

Decryption: $x = y^d \mod N$.

Plain RSA



292 / 1098

RSA Correctness

Theorem (Euler)

Let p, q be two different primes and $N = p \times q$. For any $x \in \{0, ..., N-1\}$ and any k, we have $x^{k\varphi(N)+1} \mod N = x$.

Consequence: RSA decryption works!

Proof. from CRT...

RSA Complexity

RSA with a modulus of ℓ bits and a random e.

- Generator: $\mathcal{O}(\ell^4)$ (prime numbers generation)
- Encryption: $\mathcal{O}(\ell^3)$
- Decryption: $\mathcal{O}(\ell^3)$

RSA with a modulus of ℓ bits and a constant e (e.g. $e = 2^{16} + 1$).

- Generator: $\mathcal{O}(\ell^4)$ (prime numbers generation)
- Encryption: O(ℓ²)
- Decryption: $\mathcal{O}(\ell^3)$

ElGamal vs RSA

- Complexity of Gen is much lower for ElGamal (ElGamal is better)
- Complexity of Enc is lower for RSA (constant *e*) (RSA is better)
- Problem: ElGamal encryption is length-increasing (RSA is better)
- ElGamal can be easily adapted to other groups (e.g. elliptic curves) (ElGamal is better)
- ElGamal is probabilistic, (plain) RSA is deterministic

- RSA Cryptography
 - Euler and Other Chinese
 - Primality Testing
 - RSA Basics
 - Quadratic Residuosity
 - The Factoring Problem

Square Roots in Fields

Lemma

Let **K** be a field. For any $x \in \mathbf{K}$ we have

$$x^2 = 1 \Longrightarrow \begin{cases} x = 1 \\ \text{or} \\ x = -1 \end{cases}$$

Proof. Assume that $x^2 = 1$. We know that $x^2 - 1 = (x - 1)(x + 1)$.

- Case 1: x 1 = 0 thus x = 1.
- Case 2: $x 1 \neq 0$ so we can divide $0 = x^2 1$ by x 1 and obtain x + 1 = 0 thus x = -1.

Consequence: $x^2 = a$ has at most 2 roots in a field

SV 2024-25

Existence of Square Roots in Z_p

Theorem

Let p be an odd prime number.

 $b \in \mathbf{Z}_p^*$ has a square root if and only if $b^{\frac{p-1}{2}} \mod p = 1$. In that case, we say that b is a **quadratic residue**.

Proof:

- \Rightarrow if $c^2 \equiv b$ then $b^{\frac{p-1}{2}} \equiv c^{p-1} = 1$
- \Leftarrow since \mathbf{Z}_p^* is cyclic, let g be a generator and write $b \equiv g^e$ we have $b^{\frac{p-1}{2}} \equiv 1$ so $\frac{p-1}{2}e$ is multiple of p-1 thus e is even, let e=2e' and we have $b\equiv g^{2e'} \equiv \left(g^{e'}\right)^2$ so b has a square root $g^{e'}$

Computing Square Roots in \mathbb{Z}_p , $p = 3 \pmod{4}$

 $\frac{p+1}{4}$ is integer!

Lemma

Let p be a prime number such that $p \equiv 3 \pmod{4}$. For any $x \in \mathbf{Z}_p$ we have

$$y^2 \equiv x \pmod{p} \Longrightarrow \left\{ \begin{array}{l} y \equiv x^{\frac{p+1}{4}} \pmod{p} \\ \text{or} \\ y \equiv -x^{\frac{p+1}{4}} \pmod{p} \end{array} \right.$$

Proof.

In \mathbf{Z}_p , we have

$$\left(x^{\frac{p+1}{4}}\right)^2 = x^{\frac{p+1}{2}} = y^{p+1} = y^{p-1} \times y^2 = y^2 = x$$

so
$$x^{\frac{p+1}{4}} = \pm y$$
.

SV 2024–25 RSA Cryptography CryptoSec

Example

square root of 5 in \mathbf{Z}_{11}

- remark that 11 mod 4 = 3
- remark that $5^{\frac{11-1}{2}} \mod 11 = 5 \times (5^2)^2 \mod 11 = 1$ so 5 has a square root modulo 11
- compute $5^{\frac{11+1}{4}} \mod 11 = 5 \times 5^2 \mod 11 = 4$
- remark that 4² mod 11 = 5 so 4 is a square root of 5
- other square root is −4 mod 11 = 7

Tonelli Algorithm

```
Input: a quadratic residue a \in \mathbf{Z}_p^* where p \geq 3
     is prime
Output: b such that b^2 \equiv a \pmod{p}
Complexity: \mathcal{O}((\log p)^3)
 1: repeat
         choose g \in \mathbf{Z}_{p}^{*} at random
 3: until g is not a quadratic residue
 4: let p - 1 = 2^{s}t with t odd
 5: e ← 0
 6: for i = 2 to s do
 7: if (ag^{-e})^{\frac{p-1}{2^i}} \mod p \neq 1 then
 8: e \leftarrow 2^{i-1} + e
 9: end if
10: end for
11: b \leftarrow q^{-t\frac{e}{2}}a^{\frac{t+1}{2}} \mod p
```

Square Roots in Z_n , n = pq

Lemma

Let p, q be two different prime numbers and n = pq. Let $x \in \mathbf{Z}_n$, and a and b such that

$$x \equiv a^2 \pmod{p}$$
$$x \equiv b^2 \pmod{q}$$

We have

$$x \equiv y^2 \pmod{n} \Longleftrightarrow \begin{cases} y \equiv \pm a \pmod{p} \\ y \equiv \pm b \pmod{q} \end{cases}$$

Consequence: in general, x has 4 square roots in \mathbb{Z}_n . **Proof.** Thanks to the CRT $x \equiv y^2 \pmod{n}$ is equivalent to

$$\begin{array}{c} x \equiv y^2 \pmod{p} \\ x \equiv y^2 \pmod{q} \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} a^2 \equiv y^2 \pmod{p} \\ b^2 \equiv y^2 \pmod{q} \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} y \equiv \pm a \pmod{p} \\ y \equiv \pm b \pmod{q} \end{array} \right.$$

- RSA Cryptography
 - Euler and Other Chinese
 - Primality Testing
 - RSA Basics
 - Quadratic Residuosity
 - The Factoring Problem

Factoring Problem

Gen-Factoring Problem

```
Factoring(\lambda):

1: Gen(1^{\lambda}) \rightarrow n

2: \mathcal{A}(n) \rightarrow (p, q)

3: return 1_{p \times q = n \ \land \ p, q \in \{2, ..., n-1\}}
```

Example: Gen generates an RSA modulus (Note: this is the splitting problem, not the full factoring problem.)

Record using the Number Field Sieve Algorithm

Complexity:
$$e^{\mathcal{O}\left((\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right)}$$

RSA768

×

- = 1230186684530117755130494958384962720772853569595334792197322452151726400507 2636575187452021997864693899564749427740638459251925573263034537315482685079 1702612214291346167042921431160222124047927473779408066535141959745985690214 3413
- = 3347807169895689878604416984821269081770479498371376856891243138898288379387 8002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603228381573966651 1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on one core 2.2GHz Opteron.

305 / 1098

Factorization Tomorrow

Factorization of n with complexity $\mathcal{O}((\ln n)^2 \ln \ln n \ln \ln \ln n)$ by using Shor's algorithm

It only works on a quantum computer

Factoring Algorithms on Classical Computers

GNFS: factor n

complexity =
$$e^{\sqrt[3]{\frac{64}{9} + o(1)}(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}}$$

best algorithm for RSA moduli

ECM: finds a factor p

complexity =
$$e^{\sqrt{2+o(1)}(\ln p)^{\frac{1}{2}}(\ln \ln p)^{\frac{1}{2}}}$$

useful for numbers with a small prime factor

Square Roots in Z_{pq}

RSA-Gen: generates integers of form n = pq with $p \neq q$ both prime

RSA-Factoring

Factoring(λ):

1: RSA-Gen(1
$$^{\lambda}$$
) $\rightarrow n$

2:
$$A(n) \rightarrow (p,q)$$

3: **return**
$$1_{p \times q = n \land p, q \in \{2, ..., n-1\}}$$

 \updownarrow

RSA-Square roots

Factoring(λ):

1: RSA-Gen(1 $^{\lambda}$) $\rightarrow n$

2: pick $x \in QR_n$

3: $A(n,x) \rightarrow y$

4: return $1_{v^2 \mod n = x}$

Factoring $n \Longrightarrow$ Computing Square Roots in \mathbf{Z}_n

```
Input: n, x
Output: y such that y^2 \mod n = x
Complexity: \mathcal{O}((\log n)^3) + factoring n
\mathcal{B}(n,x):
 1: \mathcal{A}(n) \to (p,q) \Rightarrow \mathcal{A} playing the factoring
    game
 2: find y_p, a square roots of x modulo p by using
    efficient algorithms
          (e.g. for p \mod 4 = 3 compute x^{\frac{p+1}{4}} \mod
    p)
 3: find y_a, a square roots of x modulo q
 4: return y = CRT_{p,q}(y_p, y_q)
      Pr[B \text{ wins SQRT}] > Pr[A \text{ wins FACT}]
```

Computing Square Roots in $Z_n \Longrightarrow$ Factoring n

Input: n

Output: p, q prime such that n = pq

Complexity:

$$\mathcal{O}((\log n)^2) + |\mathsf{SQRT}|$$

 $\mathcal{B}(n)$:

1: pick $y_0 \in \{1, \dots, n-1\}$

2: **if** $y_0 \notin \mathbf{Z}_n^*$ **then** factor...

3: $x \leftarrow y_0^2 \mod n$

4: $y \leftarrow \mathring{\mathcal{A}}(n, x)$ \triangleright SQRT

5: **if** $y = y_0$ or $y = -y_0 \mod n$ **then** abort

6: $p \leftarrow \gcd(y - y_0, n)$

7: *q* ← *n*/*p*

8: **return** (*p*, *q*)

- since there are 4 square roots, we have $Pr[y = y_0 \text{ or } y = -y_0 \text{ mod } n] = \frac{1}{2}$
- in other cases, y y₀ is zero modulo one of the two factors but not modulo the other: gcd(y - y₀, n) is the former factor

$$Pr[\mathcal{B} \text{ wins FACT}] \ge \frac{1}{2} Pr[\mathcal{A} \text{ wins SQRT}]$$

Note

Lemma

For
$$y_0,y_1\in \mathbf{Z}_n$$

$$\begin{cases} y_0^2 &\equiv y_1^2 \pmod{n} \\ y_0 &\not\equiv y_1 \pmod{n} \\ y_0 &\not\equiv -y_1 \pmod{n} \end{cases} \Longrightarrow \gcd(y_0 - y_1, n) \notin \{1, n\}$$

Proof.

- $y_0 y_1 \not\equiv 0 \Longrightarrow \gcd(y_0 y_1, n) \neq n$.
- $y_0^2 y_1^2 \equiv 0 \Longrightarrow n|(y_0 y_1)(y_0 + y_1).$
- If $gcd(y_0 y_1, n) = 1$ then $n|y_0 + y_1$ which contradicts $y_0 + y_1 \not\equiv 0$.
- Hence $gcd(y_0 y_1, n) \notin \{1, n\}.$

RSA Security: RSA Problems

RSADP (RSA Decryption Problem)

1: RSA.Gen(1 $^{\lambda}$) \rightarrow (n, e, d)

2: pick $x \in \mathbf{Z}_n$

3: $y \leftarrow x^e \mod n$

4: $A(n, e, y) \rightarrow z$

5: return $1_{x=z}$

(implicit: n is product of two different large primes and $gcd(e, \varphi(n)) = 1$)

GOP (Group Order Problem)

1: RSA.Gen(1 $^{\lambda}$) \rightarrow (n, e, d)

2: $A(n) \rightarrow z$

3: return $1_{\varphi(n)=z}$

RSAKRP (RSA Key Recovery Problem)

1: RSA.Gen(1 $^{\lambda}$) \rightarrow (n, e, d)

2: $A(n, e) \rightarrow z$

3: return $1_{z=d}$

RSAFP (RSA Factorization Problem)

1: RSA.Gen(1 $^{\lambda}$) \rightarrow (n, e, d)

2: $\mathcal{A}(n) \rightarrow (p,q)$

3: return $1_{pq=n,1 < p,q < n}$

1: RSA.Gen(1 $^{\lambda}$) \rightarrow (n, e, d)

2: $A(n) \rightarrow \hat{z}$

3: **return** $1_{\varphi(n) \text{ divides } z \text{ and } z \neq 0}$

$RSAKRP \Longrightarrow RSADP$

$$\Pr\left[\begin{array}{c} \mathbf{RSAKP}_{\mathcal{A}}: \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n,e) \to d' \\ \mathbf{return} \ \mathbf{1}_{d=d'} \\ \mathbf{1} \end{array}\right] \leq \Pr\left[\begin{array}{c} \mathbf{RSADP}_{\mathcal{B}}: \\ \operatorname{Gen} \to (n,e,d) \\ \operatorname{pick} \ x \\ y \leftarrow x^e \ \operatorname{mod} \ n \\ // \ \mathcal{B}(n,e,y) \to x': \\ \mathcal{A}(n,e) \to d' \\ x' \leftarrow y^{d'} \ \operatorname{mod} \ n \\ \mathbf{return} \ \mathbf{1}_{x=x'} \\ \mathbf{1} \end{array}\right]$$

because $x = y^d \mod n$ due to correctness

$GOP \Longrightarrow RSAKRP$

$$\Pr\left[\begin{array}{c} \mathbf{GOP}_{\mathcal{A}}: \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n) \to \mathbf{Z} \\ \mathbf{return} \ \mathbf{1}_{\varphi(n)=\mathbf{Z}} \\ \mathbf{1} \end{array}\right] \leq \Pr\left[\begin{array}{c} \mathbf{RSAKRP}_{\mathcal{B}}: \\ \operatorname{Gen} \to (n,e,d) \\ //\ \mathcal{B}(n,e) \to \mathbf{d}': \\ \mathcal{A}(n) \to \mathbf{Z} \\ \mathbf{d}' \leftarrow \mathbf{e}^{-1} \ \mathbf{mod} \ \mathbf{Z} \\ \mathbf{return} \ \mathbf{1}_{d=d'} \\ \mathbf{1} \end{array}\right]$$

because $d = e^{-1} \mod \varphi(n)$

$RSAKRP \Longrightarrow OMP$

$$\Pr\left[\begin{array}{c} \mathbf{RSAKRP}_{\mathcal{A}}: \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n,e) \to d' \\ \mathbf{return} \ \mathbf{1}_{d=d'} \\ \mathbf{1} \end{array}\right] \leq \Pr\left[\begin{array}{c} \mathbf{OMP}_{\mathcal{B}}: \\ \operatorname{Gen} \to (n,e,d) \\ //\ \mathcal{B}(n) \to z: \\ \mathcal{A}(n,e) \to d' \\ \mathbf{z} \leftarrow ed' - \mathbf{1} \\ \mathbf{return} \ \mathbf{1}_{\varphi(n) \text{ divides } z \text{ and } z \neq 0} \\ \downarrow \\ \mathbf{1} \end{array}\right]$$

because e > 1, $d \ge 0$, $ed \equiv 1 \pmod{\varphi(n)}$

$RSAFP \Longrightarrow GOP$

$$\Pr\left[\begin{array}{c} \mathbf{RSAFP}_{\mathcal{A}}: \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n) \to (p,q): \\ \mathbf{return} \ \mathbf{1}_{pq=n,1 < p,q < n} \\ \downarrow \\ \mathbf{1} \end{array}\right] \leq \Pr\left[\begin{array}{c} \operatorname{GOP}_{\mathcal{B}}: \\ \operatorname{Gen} \to (n,e,d) \\ // \ \mathcal{B}(n) \to z: \\ \mathcal{A}(n) \to (p',q') \\ \mathbf{z} \leftarrow (p'-1) \times (q'-1) \\ \mathbf{return} \ \mathbf{1}_{\varphi(n)=z} \\ \downarrow \\ \mathbf{1} \end{array}\right]$$

because $\varphi(n) = (p-1) \times (q-1)$

$GOP \Longrightarrow RSAFP$

$$\Pr\left[\begin{array}{c} \mathbf{GOP}_{\mathcal{A}}: \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n) \to z \\ \mathbf{return} \ \mathbf{1}_{\varphi(n)=z} \\ \downarrow \\ \mathbf{1} \end{array}\right] \le \Pr\left[\begin{array}{c} \mathbf{RSAFP}_{\mathcal{B}}: \\ \operatorname{Gen} \to (n,e,d) \\ //\ \mathcal{B}(n) \to (p,q): \\ \mathcal{A}(n) \to z \\ p,q \leftarrow \text{ roots in } \mathbf{Z} \text{ of } \\ X^2 - (n-z+1)X + n = 0 \\ \mathbf{return} \ \mathbf{1}_{pq=n,1 < p,q < n} \\ \downarrow \\ \mathbf{1} \end{array}\right]$$

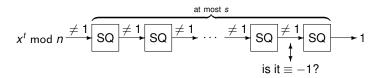
because $p + q = n - \varphi(n) + 1$ and $p \times q = n$

$OMP \Longrightarrow RSAFP$

$$\Pr\left[\begin{array}{c} \mathbf{OMP}_{\mathcal{A}} : \\ \operatorname{Gen} \to (n,e,d) \\ \mathcal{A}(n) \to z : \\ \mathbf{return} \ \mathbf{1}_{\varphi(n) \ \text{divides} \ z \ \text{and} \ z \neq 0} \\ \mathbf{1} \end{array}\right] \leq \Pr\left[\begin{array}{c} \mathbf{RSAFP}_{\mathcal{B}} : \\ \operatorname{Gen} \to (n,e,d) \\ // \ \mathcal{B}(n) \to (p,q) : \\ \mathcal{A}(n) \to z \\ \text{run "factor using } \varphi(n) \text{"algo using } z \\ \mathbf{return} \ \mathbf{1}_{pq=n,1 < p,q < n} \\ \mathbf{1} \end{array}\right]$$

factorization using $\varphi(n)$ also works with any nonzero multiple of $\lambda(n)$

Factorization using $\lambda(n)$ Multiple



- write $z = 2^s t$ with t odd
- pick a random x, replace x by x^t mod N
- iteratively square x, get the last x which is not 1
- if $x \equiv -1$, try again, otherwise, output gcd(x 1, N)

CryptoSec

Factorization using $\lambda(n)$ Multiple

```
Input: \lambda(n) (n odd)
Output: a non trivial factor of n
\mathcal{B}(n):
 1: \mathcal{A}(n) \rightarrow z
 2: write z = 2^{s}t with t odd
 3: repeat
         pick a random x in \mathbf{Z}_n^*
 4:
 5: x \leftarrow x^t \mod n
 6: y ←⊥
 7: while x \neq 1 do
 8:
             V \leftarrow X
             x \leftarrow x^2 \mod n
         end while
10:
11: until y \neq \perp and y \not\equiv -1
     (mod n)
12: f \leftarrow \gcd(y-1,n)
13: return (f, n/f)
```

Fact. For $x \in \mathbf{Z}_n$, if $x^2 \mod n = 1$, $x \neq 1$, $x \neq n - 1$ then $1 < \gcd(n, x - 1) < n$ which is a non-trivial factor of n:

- n divides (x-1)(x+1)
- if gcd(n, x 1) = n then n divides x 1 thus x = 1 which is wrong
- if gcd(n, x 1) = 1 then ndivides x + 1 thus x = n - 1which is wrong

RSA Security

- key recovery is equivalent to factoring n
- decryption is the RSA problem (not known to be equivalent to factoring)
- knowing pk and sk in RSA implies factoring n

Conclusion

- **Euler** φ **function**: to compute the order of \mathbf{Z}_n^*
- Chinese Remainder Theorem: parallel Z_m and Z_n
- primality testing: efficient, used to generate prime numbers
- RSA cryptosystem: public-key cryptosystem
- factoring problem: believed to be hard

Computational Problems

easy

- gcd
- inverse modulo n
- exponential
- square root mod n when factorization of n is known
- Legendre/Jacobi symbol
- checking primality
- finding a generator when group order is known
- computing order when factorization of group order is known

hard (maybe)

- factoring
- discrete logarithm (sometimes)
- square root mod n
- computing $\varphi(n)$, $\lambda(n)$
- checking quadratic residuosity
- computing order in group

References

 Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb

Textbook on algebra for cryptographers and applications.

 Menezes-van Oorschot-Vanstone. Handbook of Applied Cryptography. CRC. 1997.

http://www.cacr.math.uwaterloo.ca/hac/ Reference book

- Vaudenay. A Classical Introduction to Cryptography —
 Applications for Communications Security. Springer. 2005.
 http://www.vaudenay.ch/crypto/
 Textbook on cryptography
- Rivest-Shamir-Adleman. A Method for Obtaining Digital Signatures and Public-key Cryptosystem. Communications of the ACM vol. 21, 1978.

Must be Known

- Euler ϕ function: formula, properties
- Chinese Remainder Theorem: how to use it
- primality testing: properties, how to use to generate prime numbers
- RSA: why it works, complexity
- quadratic residuosity: how to check, when it is easy to extract square roots
- factoring problem: some reductions to other problems

Train Yourself

- Chinese Remainder Theorem:
 midterm exam 2018–19 ex2 (RSA with Carmichael numbers)
 midterm exam 2013–14 ex1
 final exam 2012–13 ex1
 midterm exam 2012–13 ex2
 midterm exam 2011–11 ex2
 midterm exam 2010–11 ex1
 midterm exam 2010–11 ex2
 midterm exam 2009–10 ex2
 midterm exam 2008–09 ex1
- square roots, cubic roots: midterm exam 2013–14 ex2 midterm exam 2009–10 ex1
- quadratic residuosity: midterm exam 2012–13 ex1
- prime number generation: midterm exam 2014–15 ex1
- RSA variant: final exam 2015–16 ex2 midterm exam 2017–18 ex1
- arithmetic modulo 99 991: midterm exam 2023-24 ex3

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- Galois fields
- elliptic curves over Z_p
- elliptic curves over GF(2^k)
- using standard curves
- Diffie-Hellman over elliptic curves
- ElGamal over elliptic curves
- pairing-based cryptography

- Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

$GF(p^k)$ for Dummies

p: a prime number.

- Euclidean division in $\mathbb{Z}_{\rho}[x]$: for any polynomials A(x) and P(x) such that $P \neq 0$, there exists polynomials R(x) and B(x) such that $A(x) = R(x) + P(x) \cdot B(x)$ and $\deg(R) < \deg(P)$. $R(x) = A(x) \mod P(x)$ is the remainder of A(x) in the division by P(x).
- Select a monic (i.e. with leading coefficient 1) irreducible (i.e. who cannot be expressed as a product of polynomials with smaller degree) polynomial P(x) of degree k in Z_p[x].
- Let $GF(p^k)$ be the set of all polynomials in $\mathbf{Z}_p[x]$ of degree at most k-1.
- Addition: regular polynomial addition modulo p.
- Multiplication: regular multiplication in $\mathbf{Z}_p[x]$ reduced modulo P(x).
- We can prove that this constructs a field.

Example: GF(8)

In order to construct GF(23):

- consider the ring $\mathbf{Z}_2[x]$ of polynomials
- take the monic irreducible (mod 2) polynomial $P(x) = x^3 + x + 1$ of degree 3
- construct

$$\mathsf{GF}(2^3) = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$$

Example: $(x + 1) + (x^2 + 1) = x^2 + x$ in GF(2³).

Example: $(x + 1) \times (x^2 + 1) = x^3 + x^2 + x + 1 = x^2$ in GF(2³).

Cerebral $GF(p^k)$

p: a prime number.

- Z_p[x] is a Euclidean ring.
- Select a monic irreducible polynomial P(x) of degree k in $\mathbf{Z}_p[x]$.
- P(x) spans a maximal ideal (P(x))
- Let $GF(p^k) = \mathbf{Z}_p[x]/(P(x))$ be the quotient of ring $\mathbf{Z}_p[x]$ by ideal (P(x)).
- We obtain a field who inherits the addition and multiplication from the ring structure of $\mathbf{Z}_{p}[x]$.

Galois Fields

Theorem

We have the following results.

- The cardinality of any finite field is a prime power p^k.
- For any prime power p^k, there exists a finite field of cardinality p^k. p is called the characteristic of the field.
- Two finite fields of same cardinality are isomorphic, so the finite field of cardinality p^k is essentially unique. We denote it $GF(p^k)$ as **Galois field** of cardinality p^k .
- $GF(p^k)$ is isomorphic to a subfield of $GF(p^{k \times \ell})$.
- GF(p^k) can be defined as the quotient of ring of polynomials with coefficients in \mathbf{Z}_p by a principal ideal spanned by an irreducible polynomial of degree $k: \mathbf{Z}_p[x]/(P(x))$.

Example: GF(5)

$$GF(5) = \boldsymbol{Z}_5 = \{0,1,2,3,4\}$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$$(GF(5), +) \approx (\mathbf{Z}_5, +) \quad (GF(5)^*, \times) \approx (\mathbf{Z}_4, +)$$

Example: GF(4)

$$GF(4) = \{0, 1, x, x + 1\} \neq \mathbf{Z}_4$$

+	0	1	Х	<i>x</i> + 1
0	0	1	Х	<i>x</i> + 1
1	1	0	x + 1	X
X	X	x + 1	0	1
<i>x</i> + 1	<i>x</i> + 1	X	1	0

×	0	1	Х	<i>x</i> + 1
0	0	0	0	0
1	0	1	X	x + 1
X	0	X	x + 1	1
<i>x</i> + 1	0	<i>x</i> + 1	1	X

$$(GF(4),+) \approx (\mathbf{Z}_2 \times \mathbf{Z}_2,+) \quad (GF(4)^*,\times) \approx (\mathbf{Z}_3,+)$$

$$P(x) = x^2 + x + 1$$
 irreducible in $\mathbb{Z}_2[x]$, $GF(4) = \mathbb{Z}_2[x]/(P(x))$

Example: GF(2⁸)

Arithmetics in AES

A byte $a = a_7 \dots a_1 a_0$ represents an element of the finite field $GF(2^8)$ as a polynomial $a_0 + a_1 \cdot x + \dots + a_7 \cdot x^7$ modulo $x^8 + x^4 + x^3 + x + 1$ and modulo 2

byte	polynomial
0x00	0
0x01	1
0x02	X
0x03	<i>x</i> + 1
0x1b	$x^4 + x^3 + x + 1$

Addition: bitwise XOR

Multiplication by 0x02: shift and XOR with 0x1b if carry

Most Important Finite Fields

• "prime field": \mathbf{Z}_p for a large prime p

• "binary field": GF(2^k)

	$\mathbf{Z}_{ ho}$	GF(2 ^k)
representation	integers from 0 to $p-1$	polynomials in x of degree at most $k-1$ with binary coefficients (k -bit strings) requires the choice of an irreducible polynomial $P(x)$ of degree k
addition	addition modulo p	bitwise XOR
multiplication	multiplication modulo p	ad-hoc algorithms multiplication by 0x2: shift to the left and XOR to a con- stant if carry

Characteristic 2 Tips

```
In GF(2^k):
```

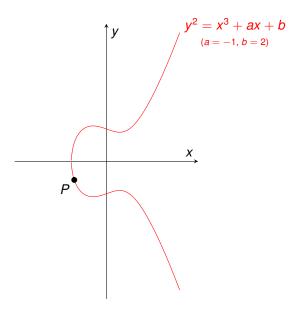
- 1+1=0
- minus = plus: -a = a
- square is linear: $(a+b)^2 = a^2 + b^2$
- power 2ⁱ is linear
- for k > 1, $a^{2^{k-1}}$ is the unique square root of a
- trace function: $\text{Tr}(a) = a + a^2 + a^{2^2} + \dots + a^{2^{k-1}} \in \{0, 1\}$ (traces are roots of $z^2 = z$)

Fact: Tr is linear: Tr(a + b) = Tr(a) + Tr(b)

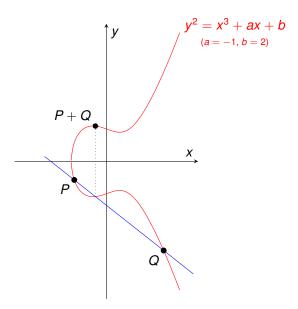
Fact: for all a in $GF(2^k)$ we have $Tr(a^2) = Tr(a)$

- Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

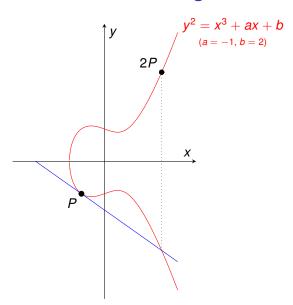
Elliptic Curves



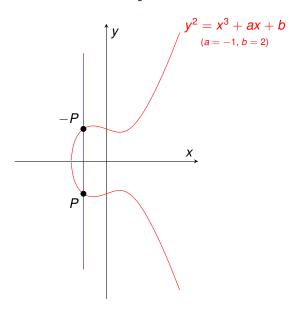
Elliptic Curves - Point Addition



Elliptic Curves - Point Doubling



Elliptic Curves - Point Symmetric



Addition in Elliptic Curves

Chord and Tangent Formula

$$E_{a,b} = \{\mathcal{O}\} \cup \{(x,y); y^2 = x^3 + ax + b\}$$

- we assume that $E_{a,b}(\mathbf{K})$ is **non-singular**: when a point is non-singular we can define the tangent to this point singular point \iff differential of $y^2 (x^3 + ax + b)$ vanishes \iff y = 0 and x multiple root of $x^3 + ax + b = 0$ curve non-singular \iff $4a^3 + 27b^2 \neq 0$
- $\lambda = \frac{y_Q y_P}{x_Q x_P}$ is the chord slope
- $\lambda = \frac{3x_P^2 + a}{2y_P}$ is the tangent slope $(\lambda = \infty \iff y_P = 0 \iff P + P = \mathcal{O})$
- the sum of the 3 roots x of the intersection between $E_{a,b}(\mathbf{K})$ and the straight line $y = \lambda x + \mu$ is $\lambda^2 = x_P + x_O + x_B$

Group Structure

$$E_{a,b} = \{\mathcal{O}\} \cup \{(x,y); y^2 = x^3 + ax + b\}$$

- Given $P = (x_P, y_P)$, we define $-P = (x_P, -y_P)$ and $-\mathcal{O} = \mathcal{O}$.
- Given $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if Q = -P, we define $P + Q = \mathcal{O}$.
- Given $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, if $Q \neq -P$, we let

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q \end{cases}$$

$$x_R = \lambda^2 - x_P - x_Q$$

$$y_R = (x_P - x_R)\lambda - y_P$$

 $R = (x_R, y_R)$ and P + Q = R.

• In addition, $P + \mathcal{O} = \mathcal{O} + P = P$ and $\mathcal{O} + \mathcal{O} = \mathcal{O}$.

Elliptic Curves are Abelian Groups

by restricting to $x, y \in \mathbf{K}$ where \mathbf{K} is a field (example: $\mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathsf{GF}(p^k)$)

- **1.** $E_{a,b}(\mathbf{K})$ is closed for the addition
- 2. the addition is associative in $E_{a,b}(\mathbf{K})$ HARD (from the chord and tangent formula)
- **3.** \mathcal{O} is neutral for the addition
- **4.** for any $P \in E_{a,b}(\mathbf{K})$ we have $-P \in E_{a,b}(\mathbf{K})$ which is the inverse of P for addition
- 5. the addition is commutative

 $E_{a,b}(\mathbf{K})$ is an Abelian group

Remark on Points of Order 2 (Characteristic > 2)

order-2 points in elliptic curves:

$$P = (x, y)$$
 has order 2 \iff $P = -P$ and $P \neq \mathcal{O}$
 \iff $y = 0$ and $x^3 + ax + b = 0$

So, the number of points of order 2 is the number of roots of $x^3 + ax + b$ in **K**

- order-2 elements in cyclic groups:
 being cyclic is equivalent to being isomorphic to some Z_n in Z_n, we have one (n even) or no (n odd) element of order 2
- conclusion: the group is not cyclic if $x^3 + ax + b$ has two distinct roots in **K**

Recap

(for characteristic > 3)

- EC are curves (set of points whose coordinate satisfy an equation)
- the curve must be non-singular ($\Delta \neq 0$ for some parameter Δ)
- EC can (depending on the field) be defined by the equation $y^2 = x^3 + ax + b$ (need to add a point \mathcal{O})
- EC have an addition rule, making a group structure
 - → can multiply a point by an integer
 - \rightarrow some curves can be isomorphic
 - \rightarrow contrarily to \mathbf{Z}_p^* , EC are not always cyclic (but we can work on a cyclic subgroup)

- 4 Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

Roadmap

- same formulas, but over Z_p
- notion of twist: elliptic curves come in pairs
- notion of *j*-invariant: an invariant value by isomorphism
- cardinality close to p

Addition over an Elliptic Curve (Characteristic

(Field **K** of characteristic p > 3)

$$E_{a,b}(\mathbf{K}) = \{\mathcal{O}\} \cup \{(x,y) \in \mathbf{K}^2; y^2 = x^3 + ax + b\}$$

Hypothesis: (discriminant) $\Delta = -16(4a^3 + 27b^2) \neq 0$

• for
$$P = (x_P, y_P)$$
, we let $-P = (x_P, -y_P)$ and $-\mathcal{O} = \mathcal{O}$.

• for
$$P = (x_P, y_P)$$
 and $Q = (x_Q, y_Q)$, if $Q = -P$ we let $P + Q = \mathcal{O}$.

• for
$$P = (x_P, y_P)$$
 and $Q = (x_Q, y_Q)$, if $Q \neq -P$ we let

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q \end{cases}$$

$$x_R = \lambda^2 - x_P - x_Q$$

$$y_R = (x_P - x_R)\lambda - y_P$$

$$R = (x_R, y_R)$$
 and $P + Q = R$.

• addition to \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$ and $\mathcal{O} + \mathcal{O} = \mathcal{O}$.

Maybe Useful to Know (p > 3) — i

Hypothesis: field **K** of characteristic p > 3 and $\Delta \neq 0$

• $E_{a,b}$ and E_{u^4a,u^6b} are isomorphic (by $(x,y)\mapsto (u^2x,u^3y)$)

$$y^2 = x^3 + ax + b \iff (u^3y)^2 = (u^2x)^3 + (u^4a)(u^2x) + (u^6b)$$

and addition is homomorphic:

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} \\ \frac{3x_P^2 + a}{2y_P} \end{cases} \iff (u\lambda) = \begin{cases} \frac{(u^3y_Q) - (u^3y_P)}{(u^2x_Q) - (u^2x_P)} \\ \frac{3(u^2x_P)^2 + (u^4a)}{2(u^3y_P)} \end{cases}$$

$$x_R = \lambda^2 - x_P - x_Q \iff (u^2x_R) = (u\lambda)^2 - (u^2x_P) - (u^2x_Q)$$

$$y_R = (x_P - x_R)\lambda - y_P \iff (u^3y_R) = ((u^2x_P) - (u^2x_R))(u\lambda) - (u^3y_P)$$

• $E_{a,b}$ and E_{v^2a,v^3b} are **twist** of each other if v is not a square Remark: they become isomorphic in $\mathbf{K}[\theta]/(\theta^2-v)$: an extension of \mathbf{K} where v becomes a square $(v=\theta^2)$

Maybe Useful to Know (p > 3) — ii

Hypothesis: field **K** of characteristic p > 3 and $\Delta \neq 0$

• $\#E_{a,b}$ is between $q+1-2\sqrt{q}$ and $q+1+2\sqrt{q}$ where q is the cardinality of **K** (Hasse Theorem)

Remark: for two twists, the average of $\#E_{a,b}$ is q+1 indeed, if v is not a square, if we write $a'=v^2a$, $b'=v^3b$, x'=vx, for any x, we have

$$\#\{y; y^2 = x^3 + ax + b\} + \#\{y'; {y'}^2 = {x'}^3 + a'x' + b'\} = 2$$
 so $\#E_{a,b} + \#E_{a',b'} = 2q + 2$

Maybe Useful to Know (p > 3) — iii

Hypothesis: field **K** of characteristic p > 3 and $\Delta \neq 0$

• *j*-invariant:
$$j = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

same *j*-invariant
$$\iff$$
 same $a^3/b^2 \iff \exists v \ a' = v^2 a, b' = v^3 b$ \implies isomorphic groups (over **K** or $\mathbf{K}[\theta]/(\theta^2 - v)$)

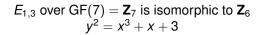
to find
$$\nu$$
, write (Bezout) $3\alpha + 2\beta = 1$ ($\alpha = 1$, $\beta = -1$) then

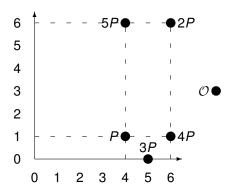
$$V = \left(\frac{b'}{b}\right)^{\alpha} \left(\frac{a'}{a}\right)^{\beta}$$

we have:
$$v^2 = \left(\frac{b'}{b}\right)^{2\alpha} \left(\frac{a'}{a}\right)^{2\beta} = \left(\frac{a'}{a}\right)^{3\alpha} \left(\frac{a'}{a}\right)^{2\beta} = \frac{a'}{a}$$
 and

$$v^{3} = \left(\frac{b'}{b}\right)^{3\alpha} \left(\frac{a'}{a}\right)^{3\beta} = \left(\frac{b'}{b}\right)^{3\alpha} \left(\frac{b'}{b}\right)^{2\beta} = \frac{b'}{b}$$

Other Example





Recap

- EC can be defined by the equation $y^2 = x^3 + ax + b$ (plus a point O)
- twist: pair of non-isomorphic curves which become isomorphic when defined over a larger field
- j-invariant: parameter which is always the same for isomorphic curves and for twists
- the order of a curve is close to the cardinality of the field

- 4 Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

Pollard p-1 **Factorization Algorithm**

```
Input: n s.t. there exists a prime
                                      5: i \leftarrow 1
   factor p of n s.t. p-1 is
                                      6: while gcd(x - 1, n) = 1 do
                                7: X \leftarrow X^i \mod n > X_1^{i!} \mod n
    smooth (the largest prime
    fact r of p-1 is at most B)
                                  8: i \leftarrow i + 1
Output: a nontrivial factor of n
                                  9: end while
Complexity: \mathcal{O}(B) arithmetic
                                    10: if x = 1 then
   operations
                                      11: fail
 1: pick x at random in
                                      12: else
    \{2, \ldots, n-1\}
                                      13: output gcd(x-1, n) and
 2: if gcd(x, n) \neq 1 then
                                         stop
   output this gcd and stop
                                      14: end if
 4: end if
```

trick: if p-1|i| then $x_1^{i|} \equiv 1 \pmod{p}$

Pollard p-1 **Factorization with** n=18923

```
initial x = 2347
          i = 5 x = 18431 \text{ gcd} = 1
           i = 6 x = 7247 \text{ gcd} = 1
           i = 7 \quad x = 13590 \quad \text{gcd} \quad = 127
\longrightarrow 18923 = 127 × 149
(Note that p - 1 = 2 \times 3^2 \times 7 and q - 1 = 2^2 \times 37)
```

Potential Problem

The algorithm is essentially doing:

- 1: pick $x \in \mathbf{Z}_p^*$
- 2: *i* ← 1
- 3: while $x \neq 1$ do
- 4: $x \leftarrow x^i \text{ in } \mathbf{Z}_n^*$
- 5: $i \leftarrow i + 1$
- 6: end while
- 7: deduce something about n

- computation in \mathbf{Z}_p^* is done in \mathbf{Z}_p^*
- x = 1 test is done by gcd(x 1, n)

Wish: there is a factor p s.t. \mathbf{Z}_p^* has a smooth order (so that #iterations is small)

If not, we would like to "randomize" the group \mathbf{Z}_{p}^{*}

ECM Factorization

- same algorithm as the p-1 algorithm, but on a "random elliptic curve" over \mathbf{Z}_p instead of \mathbf{Z}_p^*
- we use the probability that an elliptic curve over \mathbf{Z}_{ρ} has a smooth order
- Complexity: $\mathcal{O}\left(e^{\sqrt{(1+o(1))\log p\log\log\log p}}\right)$
- pretty good to find a small factor p!

ECM Factorization with n = 44023

pick
$$a = 13$$
 and $X = (23482, 9274)$, deduce $b = 21375$ from $y^2 \equiv x^3 + ax + b$

$$X_1 = 1.X = (23482, 9274)$$

 $X_2 = 2.X_1 = (18935, 21838)$
 $X_3 = 3.X_2 = (2.X_2) + X_2 = (15187, 29168)$
 $X_4 = 4.X_3 = 2.(2.X_3) = (10532, 5412)$

$$X_5 = 5.X_4 = (2.(2.X_4)) + X_4 = \dots$$
 error

 $(2.(2.X_4)) + X_4 = (27556, 42335) + (10532, 5412)$, but this requires computing

$$\lambda = \frac{42335 - 5412}{27556 - 10532} \bmod n$$

and 27556 - 10532 = 17024 is not invertible modulo n: $gcd(17024, n) = 133... \longrightarrow n = 133 \cdot 331$

ECM Factorization Algorithm

Input: n

Output: a nontrivial factor *p* of *n*

Complexity: $\mathcal{O}(B)$ arithmetic operations where

$$B \approx \underset{N \in [p-2\sqrt{p}, p+2\sqrt{p}]}{E} (\max\{\text{prime factors of } N\})$$

1: pick a and $X = (x, y)$ at random in \mathbf{Z}_n

2: let b such that $y^2 \equiv x^3 + ax + b \pmod{n}$

3: $i \leftarrow 1$

4: **repeat**

5: $i \leftarrow i + 1$

6: $X \leftarrow i \cdot X$ over the curve (modulo n)

7: **until** division error modulo n

8: if divisor multiple of n then fail

9: output $\gcd(\text{divisor}, n)$

- Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

Hardness of the Discrete Logarithm

- DL is easy in anomalous curves over Z_p
- binary curves may be exposed to recent attacks
- there are other families of weak curves
- in a group of order n, Pollard Rho algorithm solves DL in $\mathcal{O}(\sqrt{n})$
- we can consider tradeoffs: run precomputation of $\mathcal{O}(n^{\frac{2}{3}})$ then compute any DL in $\mathcal{O}(n^{\frac{1}{3}})$ (people tend to use the very same curves...)
- in general, DL is harder than in \mathbf{Z}_{D}^{*} with similar size

Note: there are curves with easy DH problem and hard DL which may be useful (e.g. pairing-based cryptography)

Using Point Compression (Prime Field Case)

Elliptic curve equation:

$$y^2 = x^3 + ax + b$$

A single x leads to two y which are opposite from each other.

- \rightarrow we can get y from
 - X
 - the parity of y (y and p y have different parity)

Format "hh hexstring"

- hh = 00 point \mathcal{O} (following: nothing)
- hh = 02 point compression with y even (following: x)
- hh = 03 point compression with y odd (following: x)
- hh = 04 no compression (following: x and y)

Manipulating Elliptic Curves in Practice

A representation problem:

- bit strings
- byte strings
- integers
- polynomials
- field elements
- elliptic curve points

see http://www.secg.org/sec1-v2.pdf for an example of representation standard

Domain Parameters

- a field
 - either a prime number p
 - (or a power q of 2 together with an irreducible polynomial over GF(2) of degree log₂ q)
- field elements defining an elliptic curve E (coefficients)
- a point G in E
- the order *n* of *G* in *E* (may be smaller than the order of *E*)
- (for pseudorandom curves) a seed s (to generate a *j*-invariant)

ECDSA Parameters Generation

(ECDSA to be seen later)

- Choose the finite field \mathbf{F}_q .
- ② Pseudo-randomly generate a c from seed. Take an elliptic curve defined by some a and b such that the j-invariant is $j=6912\frac{4c}{4c+27}$ for q prime (i.e. $c=a^3/b^2$) and $j=\frac{1}{c}$ (i.e. c=b) otherwise.
- **3** For q prime, check that $4a^3 + 27b^2 \mod q \neq 0$. For q a power of two, check that $b \neq 0$. If this is not the case, go back to Step 2.
- **③** Count the number of points on the elliptic curve and isolate a prime factor n greater than 2^{160} . If this does not work or if $n \le 4\sqrt{q}$, go back to Step 2.
- Check the MOV and anomalous condition for C. If this does not hold, go back to Step 2.
- Pick a random point on the elliptic curve and raise it to the cofactor of *n* power in order to get *G*. If *G* is the point at infinity, try again.

Set parameters to (q, representation, a, b, n, G, seed).

ECDSA Parameters Validation

Parameters: (q, representation, a, b, n, G, seed).

- Check that *q* is an odd prime or a power of 2 of appropriate size. In the latter case, check that the field representation choice is valid.
- Oheck that a, b, x_G, y_G (where $G = (x_G, y_G)$) lie in \mathbf{F}_q .
- ① Check that seed certifies a and b by generating c again and checking that $\frac{a^3}{b^2} = c$ or b = c depending on the field type.
- **●** For q prime, check that $4a^3 + 27b^2 \mod q \neq 0$. For q a power of two, check that $b \neq 0$. Check that G lies in the elliptic curve. Check that n is a prime greater than both 2^{160} and $4\sqrt{q}$. Check that $nG = \mathcal{O}$, the neutral element. Check the MOV and anomalous condition.

ECDSA Parameters Selection: Conclusion

- making new parameters is not easy
- rather use parameters from standards

Standard Curves

- pseudorandom curves over Z_p
 - $y^2 = x^3 + ax + b$
 - provide seed to generate j
 - → Discrete Log is assumed to be hard
- ordinary curves over a binary field
 - $y^2 + xy = x^3 + a_2x^2 + a_6$
 - for pseudorandom curves: provide seed to generate *i*
 - for special curves (Koblitz curves): $a_6 = 1$, $a_2 \in \{0, 1\}$

NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use Appendix D of FIPS186–4

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

- pseudorandom over Z_p: P192, P224, P256, P384, P521
- ordinary curves over binary fields:
 - pseudorandom: B163, B233, B283, B409, B571
 - special: K163, K233, K283, K409, K571 (called Koblitz curves or anomalous binary curves (ABC))

SECG Standard Curves (2010)

SEC2: Recommended Elliptic Curve Domain Parameters http://www.secg.org/sec2-v2.pdf

- pseudorandom over Z_p: secp192r1, secp224r1, secp256r1, secp384r1, secp521r1
- special over Z_p: secp192k1, secp224k1, secp256k1 (called generalized Koblitz curves)

Other Standards

- ANSI X9.62
- IEEE P1363

Example: secp192r1 = P192

secp192r1 =
$$\{\mathcal{O}\} \cup \{(x,y) \in \mathbf{Z}_p; y^2 = x^3 + ax + b\}$$

p = 6277101735386680763835789423207666416083908700390324961279

a = p-3

 $= \quad 6277101735386680763835789423207666416083908700390324961276$

b = 2455155546008943817740293915197451784769108058161191238065

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 03:602046282375688656758213480587526111916698976636884684818

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

note that $p = 2^{192} - 2^{64} - 1$, $2^{192} - 2^{95} < n < 2^{192}$, and n is prime

Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports

Example: Curve25519

Curve25519 =
$$\{\mathcal{O}\} \cup \{(x,y) \in \mathbf{Z}_p; y^2 = x^3 + 486 \ 662x^2 + x\}$$

$$p = 2^{255} - 19$$

 $x_G = 9$
order(G) = $2^{252} + 27742317777372353535851937790883648493$

Some X25519 function comes with it for ECDH

- equation different than previous ones!
- optimized implementations
- made by no company or government agency
- used in SSH, Tor, Signal, Bitcoin, ...

- Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

Elliptic Curve Cryptography

- key agreement: ECDH
- digital signature scheme: ECDSA
- public-key cryptosystem: ECIES

ECDH: Elliptic Curve Diffie-Hellman

- specified in SEC1 (http://www.secg.org/sec1-v2.pdf) and IEEE1363
- used in Bluetooth 2.1

▶ in Bluetooth slide 1049

used in the PKI of Swiss biometric passports

▶ see slide 379

used in EAC for epassports

▶ see EAC slide 1086

ECDH

$\mathsf{GF}(2^m) = \mathbf{Z}_2[x]/(f(x))$

Participants: U and V

- *U* and *V* agree on domain parameters T = (p, a, b, G, n, h) or T = (m, f(x), a, b, G, n, h) +make sure that T is valid (h) is the cofactor $\frac{1}{n} \# E(GF(q))$ with q = p or $(q = 2^m)$
- *U* resp. *V* selects his secret key d_U resp. $d_V \in \mathbf{Z}_n^*$ and compute his public key $Q_U = d_U.G$ resp. $Q_V = d_V.G$
- U and V exchange their public keys
- both check $Q \in E(GF(p))$, $Q \neq \mathcal{O}$, $n.Q = \mathcal{O}$
- both compute $P = d_U \cdot Q_V = d_V \cdot Q_U$
- set $z = x_P$
- convert the field element z into a byte string Z
- use a KDF as agreed to derive a key K

$$\begin{aligned} & \text{pick } d_U \in \mathbf{Z}_n^*, \, Q_U \leftarrow d_U.G \\ & \text{if } Q_V = \mathcal{O} \text{ or } n.Q_V \neq \mathcal{O}, \, \text{abort} \\ & Z \leftarrow \text{xcoord}(d_U.Q_V) \end{aligned}$$

U

$$\xrightarrow{Q_U} \xrightarrow{Q_V} (Z = \operatorname{xcoord}(d_U d_V . G))$$

if
$$Q_U = \mathcal{O}$$
 or $n.Q_U \neq \mathcal{O}$, abort pick $d_V \in \mathbf{Z}_n^*$, $Q_V \leftarrow d_V.G$
 $Z \leftarrow \mathsf{xcoord}(d_V.Q_U)$

V

Checking Subgroup Membership

Lemma

Let G be an element of order n in a group of order hn with neutral element O. If n is prime and is coprime with h, then

$$\langle G \rangle = \{ Q \in \text{group}; n.Q = \mathcal{O} \}$$

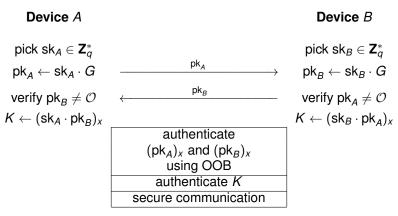
Proof. \subseteq is trivial

for \supseteq :

- assume that $Q \in \text{group and } nQ = \mathcal{O}$
- the mapping $f: \mathbb{Z}_n^2 \to \text{group defined by } f(u, v) = uG + vQ \text{ is a group homomorphism}$
- f injective would imply that \mathbf{Z}_n^2 is isomorphic to $f(\mathbf{Z}_n^2)$ which is a subgroup of group
- since $\#\mathbf{Z}_n^2$ does not divide #group, this cannot be injective
- so, there exists a nonzero $(u, v) \in \mathbf{Z}_n^2$ such that $uG + vQ = \mathcal{O}$
- we must have $v \neq 0$ since G has order n, so $v \in \mathbf{Z}_n^*$ and $Q = (-uv^{-1} \mod n).G$
- hence, $Q \in \langle G \rangle$

Problems without Membership Verification

The Case of Secure Simple Pairing (SSP) in Bluetooth



scalar multiplication is done by the double-and-add algorithm, using point addition

The Invalid Curve Attack on Bluetooth

Biham-Neumann; Breaking the BT Pairing: Fixed Coordinate Invalid Curve Attack

- note: point addition does not depend on the curve equation
- note: only the x-coordinates are authenticated
- the adversary can replace y to make pk have degree 2
- with probability $\frac{1}{4}$...

Device A Device B pick $sk_A \in \mathbf{Z}_a^*$ pick $\mathsf{sk}_B \in \mathsf{Z}_a^*$ pk_A $((pk_A)_x,0)$ $pk_B \leftarrow sk_B \cdot G$ $\mathsf{pk}_{A} \leftarrow \mathsf{sk}_{A} \cdot G$ $((pk_B)_x,0)$ pk_B verify $pk_B \neq \mathcal{O}$ verify $pk_A \neq \mathcal{O}$ $K_A \leftarrow (\mathsf{sk}_A \cdot \mathsf{pk}_B)_x$ $K_B \leftarrow (\mathsf{sk}_B \cdot \mathsf{pk}_A)_x$ authenticate $(pk_A)_X$ and $(pk_B)_X$ using OOB auth. K₄ auth. K_R

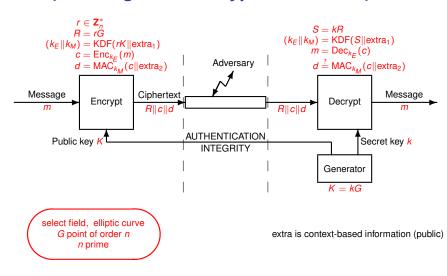
Principles of ECIES

- proposed by Victor Shoup in 2001
- in SEC1, IEEE1363a, ANSI X9.63, ISO/IEC 18033-2
- use Diffie-Hellman to exchange a symmetric $k_E || k_M$
- use k_E to encrypt
- use k_M for integrity protection

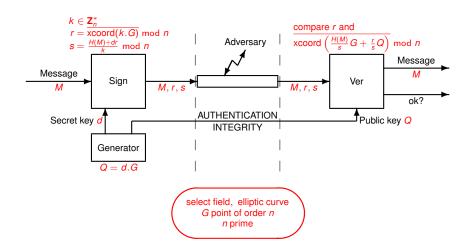
this is a hybrid encryption:

we use public-key cryptosystem to exchange a symmetric key and symmetric cryptography to transport the message securely

ECIES (EC Integrated Encryption Scheme)



ECDSA Signature



Exercise

identify the algebraic structure (group/ring/field), the corresponding law(s) and neutral element(s)

• **Z**₂₆...

• the set of permutations over the alphabet...

secp192r1...

• GF(2¹²⁸)...

- Elliptic Curve Cryptography
 - Galois Fields
 - Elliptic Curves
 - Elliptic Curves over a Prime Field
 - Elliptic Curve and Factoring
 - Using Elliptic Curves
 - Elliptic Curve Cryptography
 - Pairing-Based Cryptography

Pairing of Elliptic Curves

for some pairs of elliptic curves G_1 and G_2 we can construct a function

$$e: \mathcal{G}_1 \times \mathcal{G}_2 \rightarrow \mathcal{G}_T$$

to a group $\mathcal{G}_{\mathcal{T}}$ (with multiplicative notations) such that

- e is **bilinear**: $e(aP, bQ) = e(P, Q)^{ab}$ for $a, b \in \mathbf{Z}$, $P \in \mathcal{G}_1$, $Q \in \mathcal{G}_2$ $\rightarrow e(P + P', Q) = e(P, Q)e(P', Q)$ $\rightarrow e(P, Q + Q') = e(P, Q)e(P, Q')$
- e is **non-degenerate**: $e(P,Q) \neq 1$ for some $P \in \mathcal{G}_1$ and $Q \in \mathcal{G}_2$ (pairing is not available for all curves)

Types of Pairing

- Type-1 pairing: we have $G_1 = G_2$ (common on supersingular elliptic curves)
- **Type-2 pairing**: we have $\mathcal{G}_1 \neq \mathcal{G}_2$ and there exists an efficiently computable (non-degenerate) homomorphism from \mathcal{G}_2 to \mathcal{G}_1
- Type-3 pairing: we have $\mathcal{G}_1 \neq \mathcal{G}_2$ and there exists no efficiently computable (non-degenerate) homomorphism between \mathcal{G}_1 and \mathcal{G}_2
- Type-4 pairing: we have same as Type-2 with efficient hashing into G₂ (those pairings are usually not efficient)

Type-1 and Type-3 are most common

Pairing-Friendly Elliptic Curves

- q: cardinality of the field
- r: (large prime) order of G
- such that there exists a **small** k such that r divides $q^k 1$ (embedding degree)
- μ_r subgroup of all $z \in GF(q^k)$ such that $z^r = 1$
- we have Type-1 pairing with $G_1 = G_2 = \langle G \rangle$ and $G_T = \mu_r$

Pairing of Elliptic Curves

consequences:

- this may be bad for DDH-security in $\mathcal{G}_1 = \mathcal{G}_2$ as we can distinguish (P, xP, yP, xyP) from (P, xP, yP, zP) by checking e(xP, yP) = e(P, xyP) we call $\mathcal{G}_1 = \mathcal{G}_2$ a **gap group** because the *computational Diffie-Hellman problem* may remain hard even though the *decisional Diffie-Hellman problem* is easy
- this may be bad for DL-security in $\mathcal{G}_1 = \mathcal{G}_2$ DL in \mathcal{G}_1 reduces to DL in \mathcal{G}_T (MOV): $\log_q(h) = \log_{e(q,q)}(e(g,h))$
- good thing: this may create new cryptographic primitives

3-Party Diffie-Hellman Key Agreement in a Single Round

let G generate a subgroup of order p of $\mathcal{G}_1=\mathcal{G}_2$ such that $e(G,G)\neq 1$

- Alice picks $a \in \mathbf{Z}_p^*$ and broacasts A = aG
- Bob picks $b \in \mathbf{Z}_p^*$ and broacasts B = bG
- ullet Charly picks $c\in \mathbf{Z}_p^*$ and broacasts C=cG
- all compute $K = e(G, G)^{abc}$ Alice computes $e(B, C)^a = K$ Bob computes $e(C, A)^b = K$ Charly computes $e(A, B)^c = K$

Popular Cryptographic Constructions based on Pairings

- Joux 2000: 3-party Diffie-Hellman key agreement in one round
- Boneh-Franklin 2001: identity-based encryption

▶ slide 950

Boneh-Lynn-Shacham 2003: a signature scheme (<u>short</u>)

▶ slide 773

Boneh-Boyen 2004: a signature scheme (with no H)

▶ slide 774

 Sahai-Water 2004: attribute-based encryption secret keys have attributes (e.g. membership) we can encrypt for sets of people who own some given attributes

Conclusion

- elliptic curves are groups which can be used in cryptography
- advantage: smaller parameters for the same security
- better complexity than RSA
- many standards are using elliptic curves

References

- Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press. 2005. http://shoup.net/ntb
- http://www.secg.org/sec1-v2.pdf
- http://www.secg.org/sec2-v2.pdf

Must be Known

- understand how to add points with the help of the formulas (don't learn them!)
- understand how to manipulate objects (field elements, points, integers)
- understand point compression
- understand the standards

Train Yourself

- finite fields: midterm 2008–09 ex3
- projective coordinates: midterm 2013–14 ex3
- discrete logarithm: final exam 2013–14 ex3
- mapping a message to a point: midterm exam 2014–15 ex2
- elliptic curve factoring method: midterm exam 2015–16 ex2
- ECDSA: final exam 2016–17 ex1
- pairing: midterm exam 2016 ex3
- invalid curve attack: midterm exam 2018-19 ex3

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

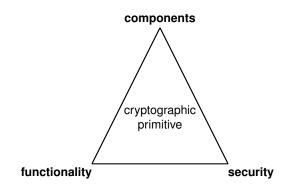
- block ciphers: DES, triple-DES, AES
- modes of operations: ECB, CBC, OFB, CTR, XTS
- stream ciphers: RC4, A5/1
- exhaustive search and tradeoffs
- meet-in-the-middle attack

CryptoSec

410 / 1098

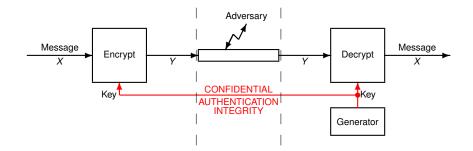
- 5 Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Cryptographic Primitive (Reminder)



412 / 1098

Symmetric Encryption



Symmetric Encryption (Informal)

Alice and Bob, Generator, Encrypt, Decrypt

components

symmetric
encryption

 $\mathsf{Decrypt}_{K}(\mathsf{Encrypt}_{K}(X)) = X$

security confidentiality is preserved

414 / 1098

Example: Vernam Cipher

components: Alice and Bob, a parameter *n*

- Generator: select $K \in \{0,1\}^n$ uniformly at random and set it up for Alice and Bob
- **Encrypt**: for $X \in \{0,1\}^n$, compute $Y = X \oplus K$, send Y and discard K
- **Decrypt**: for $Y \in \{0,1\}^n$, compute $X = Y \oplus K$ and discard K

functionality: for any X we have $\mathsf{Decrypt}_K(\mathsf{Encrypt}_K(X)) = X$

security: perfect secrecy (*X* and *Y* have independent distribution)

Warning: use K only once

Two Categories of Symmetric Encryption

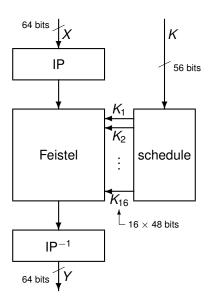
stream ciphers	block ciphers
RC4	DES
GSM-A5/1	3DES
Bluetooth-E0	IDEA
CSS	BLOWFISH
	RC5
	AES
	KASUMI
	SAFER
	CS-Cipher
	FOX

- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

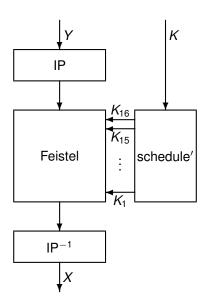
DES: the Data Encryption Standard

- US Standard from NBS (now NIST), branch of the Department of Commerce in 1977
- secret design by IBM based on a call for proposal
- based on LUCIFER by Horst Feistel (from IBM)
- design influenced by the NSA
- rationales of the design published by Don Coppersmith in 1994
- dedicated to hardware implementation
- block cipher with 64-bit blocks
- key of 56 effective bits

DES



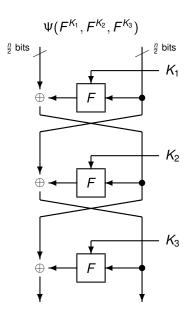
DES^{-1}



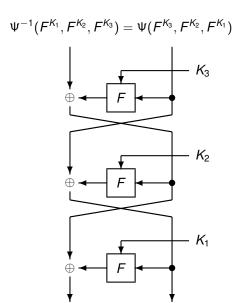
Feistel Scheme

- transform function over $\{0,1\}^{\frac{n}{2}}$ into permutations over $\{0,1\}^n$
- inverse permutations have same structure
- alternate round functions and halve swaps
- final halve swap omitted

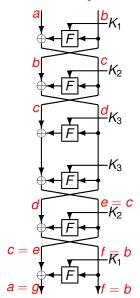
(Direct) Feistel Scheme



(Inverse) Feistel Scheme



(Direct + Inverse) Feistel Scheme



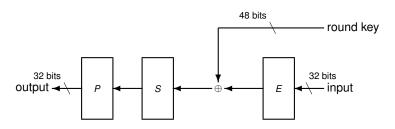
$$\bullet \ e = c \oplus F^{K_3}(d) \oplus F^{K_3}(d) = c$$

•
$$f = d \oplus F^{K_2}(e) = (b \oplus F^{K_2}(c)) \oplus F^{K_2}(c) = b$$

•
$$g = e \oplus F^{K_1}(f) = c \oplus F^{K_1}(b) = (a \oplus F^{K_1}(b)) \oplus F^{K_1}(b) = a$$

DES: the Gory Details

DES Round Function Overview



- E: expansion (32 to 48 bits)
- ⊕: bitwise XOR to a round key
- S: eight 6-bit to 4-bit S-boxes (substitution boxes)
- P: permutation

DES Round Function

round key 48 bits S_1 S_2 S_3 output 32 bits input 32 bits S_4 S_5 S_6 S_7 Ε S

Example: $S_3(111000) = 0101$:

$$\begin{array}{rcl}
1 & 1100 & 0 & = & 56 \\
1100 & = & 12 \\
10 & = & 2 \\
0101 & = & 5
\end{array}$$

DES Key Schedule

schedule(K)

1:
$$K \xrightarrow{PC1} (C, D)$$

2: **for**
$$i = 1$$
 to 16 **do**

3:
$$C \leftarrow ROLr_i(C)$$

4:
$$D \leftarrow ROLr_i(D)$$

5:
$$K_i \leftarrow PC2(\hat{C}, \hat{D})$$

6: end for

K: 56-bit register

C, D: two 28-bit registers

 K_1, \ldots, K_{16} : sixteen 48-bit registers

DES Inverse Key Schedule

schedule'(K)

1:
$$K \xrightarrow{PC1} (C, D)$$

2: **for** i = 16 down to 1 **do**

3: $K_i \leftarrow PC2(C, D)$

4: $C \leftarrow \mathsf{ROR}r_i(C)$

5: $D \leftarrow \mathsf{ROR}r_i(D)$

6: end for

K: 56-bit register

C, D: two 28-bit registers

 K_1, \ldots, K_{16} : sixteen 48-bit registers

Security Notions

- adversary objective: learn confidential information
- typically: key recovery
- ciphertext only attack: using ciphertexts in transit only
- known plaintext attack: same + know (or guess) the corresponding plaintexts
- chosen plaintext attack: force the sender to encrypt some messages selected by the adversary
- chosen ciphertext attack: force the receiver to decrypt some messages selected by the adversary

Attacks on DES

- weak keys (1977)
- optimized exhaustive search (Hellman 1980)
- study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
- chosen plaintext attack with 2⁴⁷ chosen plaintexts (Biham-Shamir 1992)
- known plaintext attack with 2⁴³ known plaintexts (Matsui 1994) or actually a little less 2⁴⁰ (Junod 2001)
- optimized exhaustive search within 4 days on a dedicated hardware (EFF 1998)

AES: the Advanced Encryption Standard

- US Standard from NIST, branch of the Department of Commerce in 2001
- public process based on a call for proposal
- standard version of Rijndael
- Rijndael was designed by Joan Daemen and Vincent Rijmen in Belgium
- dedicated to software on 8-bit microprocessors
- block cipher with 128-bit blocks
- key of length 128, 192, or 256
- cartoon: www.moserware.com/2009/09/ stick-figure-guide-to-advanced.html

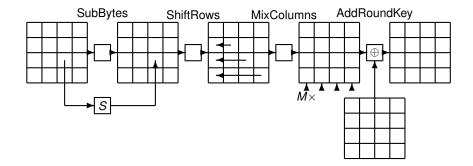
Rijndael Skeleton

- 128-bit block → 4 × 4 square matrix of bytes
- Nr = 10, 12 or 14 rounds depending on the key size of 128, 192 or 256 bits

```
AES encryption(s, W)
```

- 1: AddRoundKey (s, W_0)
- 2: **for** r = 1 to Nr 1 **do**
- 3: SubBytes(s)
- 4: **ShiftRows**(s)
- 5: **MixColumns**(s)
- 6: AddRoundKey (s, W_r)
- 7: end for
- 8: SubBytes(s)
- 9: ShiftRows(s)
- 10: AddRoundKey (s, W_{Nr})

One Non-Terminal Round of Rijndael



SubBytes

SubBytes(s)

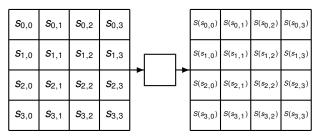
1: **for** i = 0 to 3 **do**

2: **for** j = 0 to 3 **do**

3: $s_{i,j} \leftarrow \text{S-box}(s_{i,j})$

4: end for

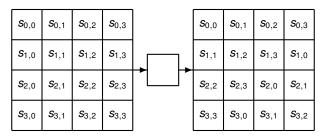
5: end for



ShiftRows

ShiftRows(s)

- 1: replace $[s_{1,0}, s_{1,1}, s_{1,2}, s_{1,3}]$ by $[s_{1,1}, s_{1,2}, s_{1,3}, s_{1,0}]$
- 2: replace $[s_{2,0}, s_{2,1}, s_{2,2}, s_{2,3}]$ by $[s_{2,2}, s_{2,3}, s_{2,0}, s_{2,1}]$
- 3: replace $[s_{3,0}, s_{3,1}, s_{3,2}, s_{3,3}]$ by $[s_{3,3}, s_{3,0}, s_{3,1}, s_{3,2}]$



AddRoundKey

AddRoundKey(s, k)

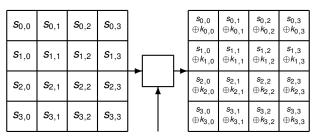
1: **for** i = 0 to 3 **do**

2: **for** j = 0 to 3 **do**

3: $s_{i,j} \leftarrow s_{i,j} \oplus k_{i,j}$

4: end for

5: end for



Introduction to GF Arithmetics in Rijndael

look at ▶ slide 338

we use the following representation rule

byte	bit string	polynomial
В	$b_7 \cdots b_2 b_1 b_0$	$b_7.x^7 + \cdots + b_2.x^2 + b_1.x + b_0$

- we reduce everything modulo 2
 → monomial coefficients are binary
- we reduce everything modulo $x^8 + x^4 + x^3 + x + 1$ $x^8 = x^4 + x^3 + x + 1$.

$$x^9 = x^8 \times x = (x^4 + x^3 + x + 1) \times x = x^5 + x^4 + x^2 + x$$

...

→ polynomials have degree at most 7

Examples

• 0x5c + 0x2a = 0x76

	byte	bit string	polynomial
		01011100	$x^6 + x^4 + x^3 + x^2$
+	0x2a	00101010	$x^5 + x^3 + x$
=			$x^6 + x^5 + x^4 + 2 \cdot x^3 + x^2 + x$
=	0x76	01110110	$\begin{vmatrix} x^6 + x^5 + x^4 + 2 \cdot x^3 + x^2 + x \\ x^6 + x^5 + x^4 + x^2 + x \end{vmatrix}$

• $0x9e \times 0x02 = 0x27$

	byte	bit string	polynomial
		10011110	$x^7 + x^4 + x^3 + x^2 + x$
×	0x02	00000010	X
=			$x^8 + x^5 + x^4 + x^3 + x^2$
=			$x^5 + 2.x^4 + 2.x^3 + x^2 + x + 1$
=	0x27	00100111	$x^5 + x^2 + x + 1$

GF Arithmetics

A byte $a = a_7 \dots a_1 a_0$ represents an element of the finite field $GF(2^8)$ as a polynomial $a_0 + a_1 \cdot x + \dots + a_7 \cdot x^7$ modulo $x^8 + x^4 + x^3 + x + 1$ and modulo 2

byte	bit string	polynomial
0x00	00000000	0
0x01	00000001	1
0x02	00000010	X
0x03	00000011	x + 1
0x1b	00011011	$x^4 + x^3 + x + 1$

Addition: a simple XOR

Multiplication by 0x01: nothing

Multiplication by 0x02: shift and XOR with 0x1b if carry

Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02

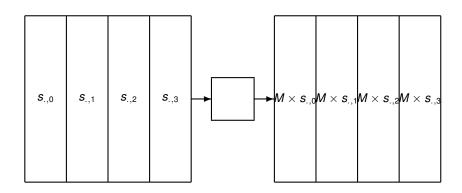
MixColumns

MixColumns(s)

- 1: **for** i = 0 to 3 **do**
- 2: let v be the 4-dimensional vector with coordinates $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$
- 3: replace $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$ by $M \times V$
- 4: end for

$$M = \left(\begin{array}{cccc} 0x02 & 0x03 & 0x01 & 0x01 \\ 0x01 & 0x02 & 0x03 & 0x01 \\ 0x01 & 0x01 & 0x02 & 0x03 \\ 0x03 & 0x01 & 0x01 & 0x02 \end{array}\right).$$

MixColumns



InvMixColumns

InvMixColumns(s)

- 1: **for** i = 0 to 3 **do**
- 2: let v be the 4-dimensional vector with coordinates $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$
- 3: replace $s_{0,i}s_{1,i}s_{2,i}s_{3,i}$ by $M^{-1} \times V$
- 4: end for

$$M^{-1} = \left(egin{array}{ccccc} 0 x 0 e & 0 x 0 b & 0 x 0 d & 0 x 0 9 \\ 0 x 0 9 & 0 x 0 e & 0 x 0 b & 0 x 0 d \\ 0 x 0 d & 0 x 0 9 & 0 x 0 e & 0 x 0 b \\ 0 x 0 b & 0 x 0 d & 0 x 0 9 & 0 x 0 e \end{array}
ight).$$

AES Decryption

```
AES decryption(s, W)

1: AddRoundKey(s, W_{Nr})

2: for r = Nr - 1 down to 1 do

3: InvSubBytes(s)

4: InvShiftRows(s)

5: AddRoundKey(s, W_r)

6: InvMixColumns(s)

7: end for

8: InvSubBytes(s)

9: InvShiftRows(s)

10: AddRoundKey(s, W_0)
```

Key Expansion

- we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60) rows (32-bit words) w
- we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows
- the *w_i* are iteratively loaded:
 - the first w_i are loaded with the key
 - w_i is loaded with w_{i-Nk} ⊕ w_{i-1}
 - every Nk iterations, the w_i is modified before the XOR
 - for Nk = 8, we add an extra modification

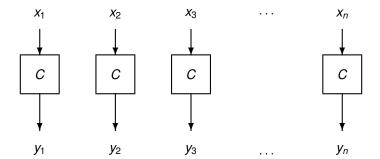
Key Expansion

```
KeyExpansion(key, Nk)
 1: for i = 0 to Nk - 1 do
    w_i \leftarrow \text{key}_i
 3: end for
 4: for i = Nk to 4(Nr + 1) - 1 do
 5: t \leftarrow W_{i-1}
 6: if i \mod Nk = 0 then
            replace [t_1, t_2, t_3, t_4] by [t_2, t_3, t_4, t_1] in t
 7:
            apply S-box to the four bytes of t
 8:
            XOR x^{i/Nk-1} (in GF) onto the first byte
 9:
    of t
        else if Nk = 8 and i \mod Nk = 4 then
10.
            apply S-box to the four bytes of t
11:
        end if
12:
13:
        W_i \leftarrow W_{i-Nk} \oplus t
14: end for
```

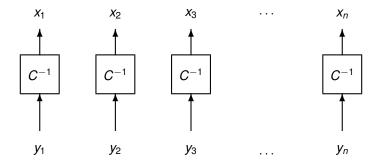
Modes of Operation

- transform a block cipher into a symmetric encryption with variable message length
- encrypt and decrypt "on the fly" (online encryption)
- (in some sense: transform a block cipher into a stream cipher)
- may require an Initialization Vector (IV)
- typically: message length must be multiple of the block length

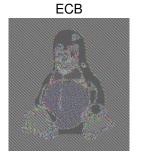
ECB Mode



ECB Decryption

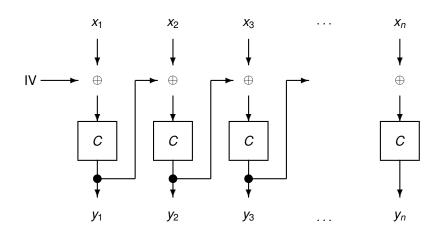


ECB vs CBC

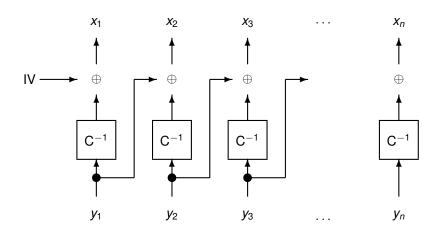


en.wikipedia.org

CBC Mode



CBC Decryption



Note on the CBC Mode

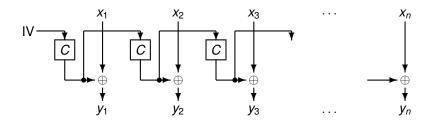
Three possibilities for dealing with IV

- Using a (non secret) constant IV example: MRTD (IV= 0) (not a good idea)
- Using a secret IV which is part of the key example: TLS (ok if used only once like in TLS)
- Using a random IV which is sent in clear with the ciphertext

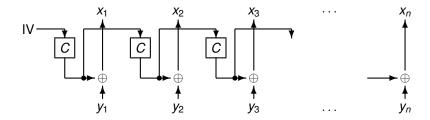
Property

If y_i is corrupted, only x_i and x_{i+1} are badly decrypted. If y_i is lost, only x_i is incorrect (and one block is missing).

OFB Mode



OFB Decryption

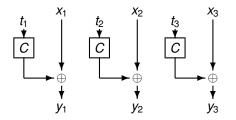


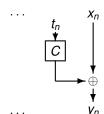
Note on the OFB Mode

- IV must be new for every plaintext!
- two possibilities:
 - Use a random one which is sent in clear...
 - ... or use a counter-based IV
- Can easily handle message length not multiple of the blocklength
- These are not only specific properties of the OFB mode: properties of stream ciphers
- OFB actually transforms a block cipher into a stream cipher
- Interesting property: can encrypt incomplete blocks

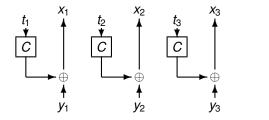
IV is used as a **nonce** (<u>n</u>umber used <u>once</u>)

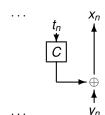
CTR Mode





CTR Decryption





Note on the CTR Mode

- t_i must be new for every block! (a nonce) Example 1: $t_i = \text{nonce} \| \text{blk_counter}$ with nonce = msg_counter or random Example 2: $t_i = t_1 + (i-1)$ where t_1 is the last t_n plus 1 Example 3: $t_i = t_1 + (i-1)$ where t_1 is a (unique) nonce
- Can easily handle message length not multiple of the blocklength
- CTR also transforms a block cipher into a stream cipher
- advantage over OFB: can be parallelized random restart on any t_i

Example from the GCM mode: $GCTR_K((nonce||0^{31}1), msg)$ with

$$\mathsf{GCTR}_{\mathcal{K}}(\mathsf{ct},X) = \mathsf{trunc}_{\mathsf{length}(X)} \left(C_{\mathcal{K}}(\mathsf{ct}) \| C_{\mathcal{K}}(\mathsf{ct}+1) \| C_{\mathcal{K}}(\mathsf{ct}+2) \cdots \right) \oplus X$$
 (do not encrypt 2³² blocks...)

XTS Mode

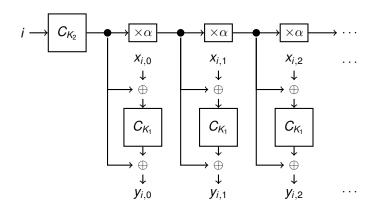
- used to encrypt a hard disk
- hard disks are made of "sectors" of various lengths length may not be a multiple of the block length
- requirements: encryption shall not increase space encryption shall allow random access with small overhead
- uses two keys (K₁, K₂)
- for a block of index *j* in sector of index *i*:

$$y_{i,j} = \mathsf{Enc}_{i,j}(x_{i,j}) = C_{\mathcal{K}_1}(x_{i,j} \oplus t_{i,j}) \oplus t_{i,j} \quad t_{i,j} = \alpha^j \times C_{\mathcal{K}_2}(i)$$

in a GF structure, with a constant α

use ciphertext stealing for the last two blocks

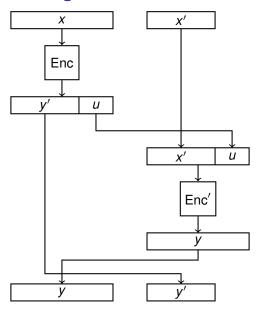
XTS



Ciphertext Stealing

- used to encrypt two blocks x and x' (typically, the last two) with Enc and Enc' respectively
- Case 1 (easy): if x and x' have regular length, encrypt normally
 y = Enc(x), y' = Enc'(x')
- Case 2: if x' is shorter than usual.
 - 1: split $\operatorname{Enc}(x) = y' \| u$ with y' of same length as x'
 - 2: y = Enc'(x'||u|)
 - 3: give y and y'
 - to decrypt y and y':
 - 1: split $Dec'(y) = x' \| u$ with x' of same length as y'
 - 2: x = Dec(y'||u)
 - 3: give x and x'

Ciphertext Stealing



To Be Known About Modes of Operation

- ECB should be avoided
- CBC requires IV
- OFB (stream cipher) requires a nonce
- CTR (stream cipher) requires a nonce

CryptoSec

Classical Skeletons for Block Ciphers

- Feistel schemes
 ...and extensions

 DES, 3DES, BLOWFISH, KASUMI
- Lai-Massey scheme IDEA, FOX
- Substitution-permutation network (SPN) SAFER, CS-Cipher, AES

CryptoSec

466 / 1098

The Symmetric Encryption Zoo

- fauna: ARMADILLO BEAR BLOWFISH DRAGON FOX FROG LION MOSQUITO RABBIT SERPENT SHACAL SHARK TWOFISH
- flora: CAMELLIA LILY SEED
- pantheon: ANUBIS MARS KHAFRE KHUFU LUCIFER MICKEY SHANNON TURING
- the gastronomics: COCONUT GRANDCRU KFC MILENAGE PEANUT WALNUT
- the elements: CRYPTON ICE ICEBERG RAINBOW SNOW
- the originals: ABC ACHTERBAHN AKELARRE CAST DEAL DECIM EDON FEAL FUBUKI GOST HELIX HIEROCRYPT IDEA KASUMI KATAN KHAZAD KTANTAN LEX LEVIATHAN LOKI MACGUFFIN MADRYGA MAGENTA MIR MISTY NIMBUS NOEKEON NUSH PHELIX PRESENT PY QUAD REDOC RIJNDAEL SAFER SALSA SCREAM SFINKS SKIPJACK SMS4 SQUARE SOBER SOSEMANUK XTEA 3-WAY YAMB
- the uninspired: A5 AES BMGL C2 CJCSG CMEA CS-CIPHER DES DFC E0 E2 FCSR HPC MMB Q RC2 RC4 RC5 RC6 SC TSC WG

The Symmetric Encryption Zoo ...in practice

BLOWFISH

MILENAGE

IDEA KASUMI

468 / 1098

SAFER

A5 AES DES

E0 RC4

Block Ciphers Characteristics

cipher	release	block	key	# rounds	comment
DES	1977	64	56	16	secretly developed
3DES	1985	64	112,168	48	pragmatic solution
IDEA	1990	64	128	8.5	
SAFER K-64	1993	64	64	6	
BLOWFISH	1994	64	0–448	16	
RC5	1996	2–256	0–255	0-255	64/128/12 recommended
CS-Cipher	1998	64	0-128	8	
AES	2001	128	128,192,256	10,12,14	dependent parameters
KASUMI	2002	64	128	8	dedicated
FOX	2003	64,128	0–256	12–255	

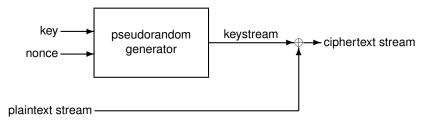
- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Stream Ciphers

- adapt the Vernam cipher
- use a pseudorandom generator to generate a key stream the PRNG avoids having to store large secret keys
- seed the PRNG with a fixed secret key and a nonce: a number to be used only once the nonce avoids reuse of the same keystream
- variant 1: participants are synchronized to a nonce (e.g. a counter or the clock value)
 - Problem: stateful
- variant 2: the encrypting nonce is sent in clear with the ciphertext (asynchronous)
 - Problem: nonce becomes under the control of the adversary (at least for decryption)

Stream Ciphers from a High Level

(= Vernam cipher with a pseudorandom key)

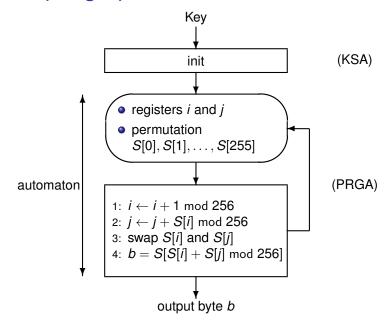


nonce = **n**umber which can be used **once** (necessary to avoid re-using a keystream)

RC4

- Designed at MIT in 1987 by Ronald Rivest
- Trade secret of RSA Security Inc.
- illegally disclosed in 1994
- well known to be used in SSL/TLS
- dedicated to software on 8-bit microprocessors
- stream cipher with bytes streams
- key length from 40 bits to 256 ($\ell = 5$ to 32 bytes)

RC4 (Alleged)



RC4 Key Schedule (KSA)

```
1: j \leftarrow 0

2: for i = 0 to 255 do

3: S[i] \leftarrow i

4: end for

5: for i = 0 to 255 do

6: j \leftarrow j + S[i] + K[i \mod \ell] \mod 256

7: swap S[i] and S[j]

8: end for

9: i \leftarrow 0

10: j \leftarrow 0
```

RC4 in Security Protocols

- In SSL/TLS:
 - key is used only once
 - state is kept from one message to the other
- In WEP:
 - key is the concatenation of a 3-byte nonce (sent in clear) and a 5-byte or 13-byte key

Known Weaknesses

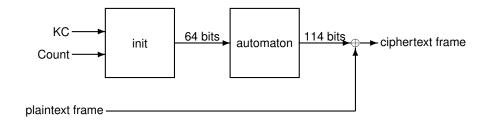
- some correlations between some output bytes and key bytes when the nonce is known
 - \rightarrow (passive) key recovery attack in WEP after seeing 22500 packets
- output bytes are not uniformly distributed
 - \rightarrow ciphertext-only decryption attacks in TLS if a plaintext is encrypted several times (e.g. secure http cookies)
- speculations that some state agencies can break RC4
- RC4 is now prohibited (RFC 7465 and similar recommendations)

Case Study: WiFI: WEP/WPA/WPA2

GSM A5/1

- Designed at ETSI by the SAGE group
- Trade secret of the GSM consortium
- reverse engineered
- dedicated to lightweight hardware
- stream cipher with bit streams
- 64-bit key and 22-bit counter

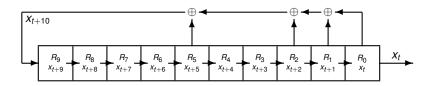
A5/1 from a High Level



480 / 1098

Linear Feedback Shift Register (LFSR)

• when CLK = 1, increment t, load R_i with R_{i+1} and R_{d-1} with a XOR of some R_i 's

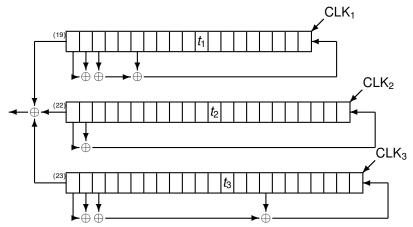


- at time t, $R_i = x_{t+i}$
- $x_{t+d} = a_{d-1}x_{t+d-1} \oplus \cdots \oplus a_0x_t$ for any t (linear recursion)
- $a_d x_{t+d} \oplus \cdots \oplus a_1 x_{t+1} \oplus a_0 x_t = 0$ for any $t (a_d = 1)$
- connection polynomial: $a_d x^d + \cdots + a_1 x + a_0$ example: $x^{10} + x^5 + x^2 + x + 1$
- $\bullet \ \, \text{maximal period} \Longleftrightarrow \text{primitive polynomial} \Longrightarrow \text{irreducible} \\ \text{polynomial}$

A5/1 Automaton

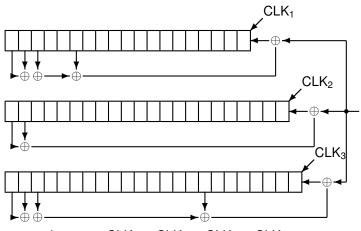
$$x^{19} + x^{18} + x^{17} + x^{14} + 1$$

 $x^{22} + x^{21} + 1$
 $x^{23} + x^{22} + x^{21} + x^{8} + 1$



asynchronous: $CLK_i = CLK$ if $t_i = majority(t_1, t_2, t_3)$, 0 otherwise

A5/1 Initialization



synchronous: $CLK_1 = CLK_2 = CLK_3 = CLK$

A5/1 Initialization

```
    set all registers to zero

 2. for i = 0 to 63 do
 3: R_1[0] \leftarrow R_1[0] \oplus KC[i]
 4: R_2[0] \leftarrow R_2[0] \oplus KC[i]
 5: R_3[0] \leftarrow R_3[0] \oplus \mathsf{KC}[i]
 6: clock registers (synchronous)
 7: end for
 8: for i = 0 to 21 do
 9: R_1[0] \leftarrow R_1[0] \oplus \text{Count}[i]
10: R_2[0] \leftarrow R_2[0] \oplus Count[i]
11: R_3[0] \leftarrow R_3[0] \oplus \text{Count}[i]
12: clock registers (synchronous)
13: end for
14: for i = 0 to 99 do
        clock registers (asynchronous)
16: end for
```

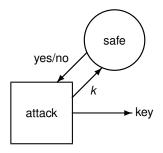
Known Weaknesses

- key recovery known plaintext attack (kind of time-memory tradeoff)
- active attacks on GSM (chosen cipher attack)
- ciphertext-only key recovery attack (optimized bruteforce)

- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Example: Opening a Safe

For any k, we can ask the safe whether the key K is equal to k



This attack makes online queries to test *k*

Key Recovery Game - Online (with no Clue)

"online with a stop-test oracle \mathcal{O} "

Game:

 $\mathcal{O}(\mathsf{query})$:

1: pick $K \in_D \mathcal{K}$

4: return 1_{K=query}

2: $\mathcal{A}^{\bigcirc} \to k$

3: return $1_{K=k}$

notation $\mathcal{A}^{\mathcal{O}}$: algorithm \mathcal{A} who can query oracle \mathcal{O} (independent subroutine)

Variations

- K is uniform
- K follows a known distribution D
- K follows an unknown distribution D

Exhaustive Search Algorithm (Uniform Case)

(online, with no clue, D uniform)

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$ **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

1: **for** all i = 1 to N **do**

2: query k_i

3: **if** answer is yes **then**

4: yield k_i and stop

5: end if 6: end for

$$E(\text{\#iterations}) = \sum_{i=1}^{N} \Pr[K = k_i]i$$
$$= \sum_{i=1}^{N} \frac{1}{N}i$$
$$= \frac{N+1}{2}$$

Exhaustive Search Algorithm (Optimal Case)

(online, with no clue, D known)

```
Input: a set of possible keys \mathcal{K} = \{k_1, \dots, k_N\}
Challenger interface: input is an element of \mathcal{K}.
    output is Boolean
 1: take the permutation \sigma of \{1,\ldots,N\} sorting
    k_{\sigma(i)} by decreasing order of likelihood
 2: for all i = 1 to N do
 3: query k_{\sigma(i)}
 4: if answer is yes then
             yield k_{\sigma(i)} and stop
         end if
 6:
 7: end for
   E(\#\text{iterations}) = \min_{\sigma} \left( \sum_{i=1}^{N} \Pr[K = k_{\sigma(i)}]i \right)
```

which is sometimes called the guesswork entropy of D

Exhaustive Search Algorithm (Any Case)

(online, with no clue)

Input: a set of possible keys $\mathcal{K} = \{k_1, \dots, k_N\}$ **Challenger interface**: input is an element of \mathcal{K} , output is Boolean

1: pick a random permutation σ of $\{1, \dots, N\}$

2: **for** all i = 1 to *N* **do**

3: query $k_{\sigma(i)}$

4: **if** answer is yes **then**

5: yield $k_{\sigma(i)}$ and stop

6: **end if** 7: **end for**

$$E(\# iterations) = \sum_{i=1}^{N} E(\Pr[K = k_{\sigma(i)}])i$$

since σ is random we have $E(\Pr[K = k_{\sigma(i)}]) = \frac{1}{N}$ for all i:

$$E(\#iterations) = \sum_{i=1}^{N} \frac{1}{N}i = \frac{N+1}{2}$$

Complexity Analysis (All Cases)

key of distribution D in a set of N elements

worst case complexit	N iterations	
average complexity	D uniform	$\frac{N+1}{2}$ iterations
	D known	smaller
	<i>D</i> unknown	$\frac{N+1}{2}$ iterations
memory complexity	constant	
success probability	1	

Key Recovery Game - With Clue

Online Key Recovery with Clue:

 $\mathcal{O}(\mathsf{query})$:

1: pick $K \in_D \mathcal{K}$

5: **return** 1_{K=query}

2: $W \leftarrow \text{clue about } K$

3: $\mathcal{A}^{\mathcal{O}}(W) o k$

4: **return** 1_{K=k}

Offline Key Recovery with Clue:

1: pick $K \in_D \mathcal{K}$

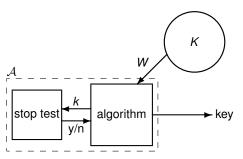
2: $W \leftarrow \text{clue about } K$

3: $\mathcal{A}(W) \to k$

4: return $1_{k=K}$

Offline Attack with Clue

 \mathcal{A} uses W to emulate a stop-test oracle



Examples:

	witness	stop test
known plaintext attack	$W=(x,C_K(x))$	$C_k(W_1) = W_2$
ciphertext only attack	W = ciphertext	$C_k^{-1}(W)$ meaningful
salted key hash	W = (F(K, salt), salt)	$F(k, W_2) = W_1$

Cases for Deterministic Clues

- chosen plaintext attack: get $W = C_K(x)$ for some fixed x chosen by the adversary
- fixed plaintext attack / deterministic hash: get $W = C_K(x_0)$ for some constant x_0 (e.g. $x_0 = 0$)

Cases for Non-Deterministic Clues

- no chosen plaintext attack:
 known plaintext attack with random W = (x, C_K(x)) pair
 ciphertext only attack with redundant plaintexts
- randomized key hash: leak W = (F(K, salt), salt) with salt randomly selected by the challenger (salt to be seen on • side 513)

Access Control

Enrolment

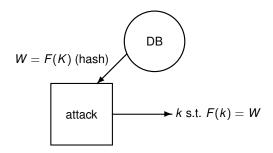
Enter user ID and password Register user ID and a <u>clue</u> about password

Access Control

Enter user ID and password
User ID and password are verified using the clue

→ any key passing the test is enough to break example: clue = password hash

Password Hash Inversion



the adversary has to find **one** password with correct hash (the problem is to **invert** F, i.e. to find a preimage)

Game: Key Recovery vs Inversion

Offline key recovery:

1: pick $K \in_{\mathcal{D}} \mathcal{K}$

2: $W \leftarrow F(K)$

3: $\mathcal{A}(W) \rightarrow k$

4: return $1_{k=K}$

Offline inversion:

1: pick $K \in_{\mathcal{D}} \mathcal{K}$

2: $W \leftarrow F(K)$

3: A(W) → k
 4: return 1_{F(k)=W}

Two Forms of Bruteforce Attack with Clue

- key recovery in symmetric encryption
 - chosen plaintext attack (→ clue)
 - known plaintext attack (→ clue)
 - ciphertext only attack (→ clue)

we want to find K given a clue

- preimage recovery from a password hash (→ clue)
 - deterministic hash
 - salted hash

we want to find any password consistent with a clue

Inversion by Exhaustive Search

Goal: find any preimage of w (but preimages may not exist!)

Input: an image w

1: shuffle K with a random permutation

2: **for** all i = 1 to N **do** 3: **if** $F(k_i) = w$ **then**

4: yield k_i and stop

5: **end if** 6: **end for**

If $F: \mathcal{K} \to \mathcal{Y}$ is a uniformly distributed random function, $\#\mathcal{K} = N$, $\#\mathcal{Y} = M$: for any $w \in_{\mathcal{U}} \mathcal{Y}$

$$E_F[Pr[complexity > i]] = \left(1 - \frac{1}{M}\right)^i$$

Complexity of an Inversion Attack

$$E(\text{complexity}) = \sum_{i=0}^{N} i \Pr[\text{complexity} = i] \quad (\sum \text{rows})$$

$$\frac{\Pr[>0] \Pr[>1] \Pr[>2]}{\Pr[1]} = \sum_{i=0}^{N-1} \Pr[\text{complexity} > i] \quad (\sum \text{columns})$$

$$\frac{\Pr[2] + \Pr[2]}{\Pr[3] + \Pr[3] + \Pr[3]} = \sum_{i=0}^{N-1} x^{i} \quad \text{with } x = 1 - \frac{1}{M}$$

$$= \frac{1 - x^{N}}{1 - x}$$

$$\approx \frac{1 - e^{-\frac{N}{M}}}{1 - x} \quad \text{as } \frac{N}{M} \to +\infty$$

$$= M \left(1 - e^{-\frac{N}{M}}\right)$$

$$\approx M \text{ for } N \gg M$$

Dictionary Inversion Attack (Full Book)

(assume a deterministic function F)

Game:

- 1: setup F
- 2: $\mathcal{A}_1^F \to \text{dict}$
- 3: pick $K \in_{\mathcal{D}} \mathcal{K}$
- 4: $w \leftarrow F(K)$
- 5: $\mathcal{A}_2^F(\text{dict}, w) \to k$
- 6: **return** $1_{F(k)=w}$

- A_1^F : (preprocessing)
 - 1: **for** all candidates k **do**
 - 2: compute F(k)
 - 3: $\operatorname{dict}\{F(k)\} \leftarrow k$
 - 4: end for
 - 5: return dict
- $\mathcal{A}_2^F(\mathrm{dict},w)$: (attack)
 - $\overline{6}$: **return** dict $\{w\}$

Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F)

Game:

- 1: setup F
- 2: $\mathcal{A}_1^F \to \operatorname{dict}$
- 3: pick $K \in_{\mathcal{D}} \mathcal{K}$
- 4: $w \leftarrow F(K)$
- 5: $\mathcal{A}_2^F(\text{dict}, w) \to k$
- 6: **return** $1_{F(k)=w}$

- A_1^F : (preprocessing)
 - 1: for M candidates k do
 - 2: compute F(k)
 - 3: $\operatorname{dict}\{F(k)\} \leftarrow k$
 - 4: end for
 - 5: return dict
- $\mathcal{A}_2^F(\mathrm{dict},w)$: (attack)
 - $\overline{6}$: **return** dict $\{w\}$

Metrics of Algorithms

for comparing algorithms, we must look at:

- precomputation time
- memory complexity
- time complexity
- number of online queries
- probability of success

Complexity Analysis

Precomputation time MMemory complexity MTime complexity ≈ 1 Probability of success (with randomly selected dictionary keys) M/N

Summary of Single-Target Brute Force Attacks

key search: N = # key space inversion: N = # output range

strategy	preprocessing	memory	time	success proba.
exhaustive search	0	1	Ν	1
dictionary attack	N	N	1	1
tradeoffs	N	$N^{\frac{2}{3}}$	$N^{\frac{2}{3}}$	cte
partial ex. search dictionary attack	0 <i>M</i>	1 <i>M</i>	<i>M</i> 1	M/N M/N

Application to DES

strategy	preprocessing	memory	time
exhaustive search	0	1	2^{56}
dictionary attack	2 ⁵⁶	2 ⁵⁶	1
tradeoffs	2 ⁵⁶	2 ³⁷	2 ³⁷

 \rightarrow the key of DES is too short!

Security of Passwords with less than 48 Bits of Entropy

An 8 i.u.d. random characters password in $\{a,\ldots,z,A,\ldots,Z,0,\ldots,9\}$ has less than 48 bits of entropy

- classical conventional cryptography may require about 300 cycles on a P4 2GHz to check a guess (= 2^{22.6} guesses per second)
 - \longrightarrow 256d to find a password with a PC
- time-memory tradeoffs (complexity $N^{\frac{2}{3}}$ + precomputation N) [cracked a 36-bit entropy password within a few seconds]
 - \longrightarrow 1 h to find a password (+ a year of precomputation)
- special purpose hardwares [cracked 56-bit keys within a day]
 - \longrightarrow 5 min to find a password
- distributed.net
 [cracked 64-bit keys in 2002 after 1757 days]

 → 40 min to find a password

Extension: Multi-Target Dictionary Inversion Attack

(assume a deterministic function F)

```
Game:
 1: setup F
 2: \mathcal{A}_1^F \to \text{dict}
 3: pick K_1, \ldots, K_T \in_D \mathcal{K}
 4: w_i \leftarrow F(K_i) for i = 1, ..., T 4: end for
 5: \mathcal{A}_{2}^{F}(\text{dict}, w_{1}, \ldots, w_{T}) \rightarrow (i, k)
 6: return 1_{F(k)=w_i}
```

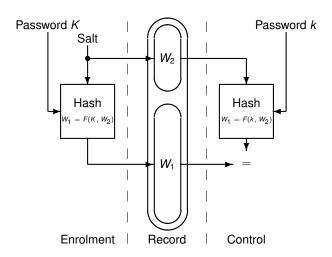
```
1: for M candidates k do
 2: compute F(k)
 3: \operatorname{dict}\{F(k)\} \leftarrow k
 5: return dict
\mathcal{A}_2^F(\text{dict}, w_1, \dots, w_T): (attack)
 6: for i = 1 to T do
 7: if dict\{w_i\} exists then
             return dict{w<sub>i</sub>}
        end if
10: end for
11: return |
```

 \mathcal{A}_1^F : (preprocessing)

Complexity Analysis

```
Precomputation time M
Memory complexity M
Time complexity T
Probability of success 1-\left(1-\frac{M}{N}\right)^T\approx 1-e^{-\frac{MT}{N}}
This is quite interesting when M\approx T\approx \sqrt{N}...
```

Password Recovery from a Salted Password Hash



Offline Inversion Attack with Salt

```
Input: a set of possible keys \mathcal{K} = \{k_1, \dots, k_N\}, a salted witness W = (W_1, W_2) (salt is W_2)

Challenger interface: input is an element of \mathcal{K}, output is Boolean

1: shuffle \mathcal{K} with a random permutation

2: for all i = 1 to N do

3: if F(k_i, W_2) = W_1 then

4: yield k_i and stop

5: end if

6: end for

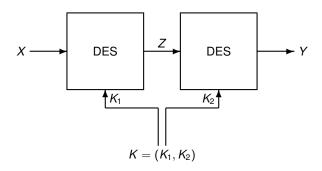
7: search failed
```

The Role of Salt

- mitigates dictionary attacks (or dictionaries are bigger)
- mitigates tradeoffs
- mitigates multitarget attacks

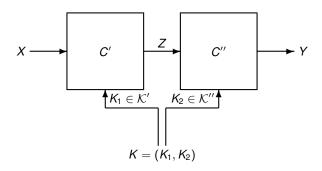
- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Double DES



this is not much more secure than single DES

Double Encryption



this is not much more secure than single encryption

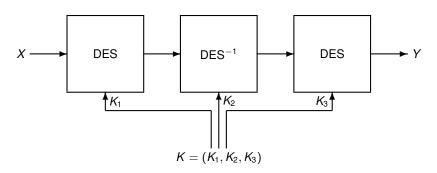
Meet-in-the-Middle Attack

```
Input: two encryption schemes C' and C'' with
    two corresponding sets of possible keys \mathcal{K}'
    and \mathcal{K}'', an (x, y) pair with y = C''_{\kappa_2}(C'_{\kappa_1}(x))
 1: for all k_1 \in \mathcal{K}' do
 2: compute z = C'_{k}(x)
        insert k_1 in dict\{z\}
 4: end for
 5: for all k_2 \in \mathcal{K}'' do
 6: compute z = C''_{k_0}^{-1}(y)
 7: for all k_1 in dict\{z\} do
             yield (k_1, k_2) as a possible key
 9:
        end for
10: end for
```

Complexity Analysis

```
Memory complexity \#\mathcal{K}' (2<sup>56</sup> for double DES)
Time complexity \#\mathcal{K}' + \#\mathcal{K}'' (2<sup>57</sup> for double DES)
Probability of success 1
```

Triple DES



a 3DES chip can do

- 3-key triple DES: K_1 , K_2 , K_3
- 2-key triple DES: $K_1 = K_3$, K_2
- DES: $K_1 = K_2 = K_3$

Generic Attacks on Triple DES

2 keys

- key length: 112
- chosen plaintext (×2⁵⁶): time complexity 2⁵⁷ memory complexity 2⁵⁷ [Merkle-Hellman 1981] [exercise 2.5 in exercise book]
- known plaintext (×2³²): time complexity 2⁸⁸ memory complexity 2⁵⁷ [van Oorschot-Wiener 1990]

3 keys

- key length: 168
- known plaintext (×3): time complexity 2¹¹³ memory complexity 2⁵⁶ [meet-in-the-middle]

Time-Memory Tradeoffs — i

```
Input: a deterministic function F
Parameter: \ell, m, t
Preprocessing
 1: for s=1 to \ell do
       pick a reduction function R_s at random
   and define f_s: k \mapsto R_s(F(k))
 3: for i = 1 to m do
          pick k' at random
 4:
 5: k \leftarrow k'
 6:
          for j = 1 to t do
              compute k \leftarrow f_s(k)
 7:
 8: end for
          T_{s}\{k\} \leftarrow k'
 9:
       end for
10:
11: end for
```

Precomputed Tables

$$T_{1}:\begin{bmatrix} k_{1,0}^{1} \\ k_{2,0}^{1} \\ k_{3,0}^{1} \\ \vdots \\ k_{m,0}^{1} \end{bmatrix} \xrightarrow{f_{1}^{1}} k_{1,1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{1,2}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{1,3}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} \cdots \xrightarrow{f_{1}^{1}} k_{2,t-1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{2,t}^{f_{1}^{1}} \\ k_{3,1}^{1} \xrightarrow{f_{1}^{1}} k_{3,1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{3,2}^{f_{2}^{1}} \xrightarrow{f_{1}^{1}} k_{3,3}^{f_{3}^{1}} \xrightarrow{f_{1}^{1}} \cdots \xrightarrow{f_{1}^{1}} k_{3,t-1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{3,t}^{f_{1}^{1}} \\ \vdots \\ k_{m,0}^{1} \xrightarrow{f_{1}^{1}} k_{m,1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{m,2}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{m,3}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} \cdots \xrightarrow{f_{1}^{1}} k_{3,t-1}^{f_{1}^{1}} \xrightarrow{f_{1}^{1}} k_{m,t}^{f_{1}^{1}} \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{1}^{\ell}} k_{1,1}^{\ell} \xrightarrow{f_{1}^{\ell}} k_{1,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{1,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{2,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,t}^{\ell} \\ k_{2,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{2,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,t}^{\ell} \\ k_{2,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{2,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{2,t}^{\ell} \\ k_{3,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,t}^{\ell} \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,t}^{\ell} \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,t}^{\ell} \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,t}^{\ell} \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,2}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,3}^{\ell} \xrightarrow{f_{2}^{\ell}} \cdots \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{3,t-1}^{\ell} \\ \vdots \\ \vdots \\ k_{m,0}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,1}^{\ell} \xrightarrow{f_{2}^{\ell}} k_{m,2}^{\ell} \xrightarrow{$$

Time-Memory Tradeoffs — ii

```
Attack
Attack input: W = F(K)
 1: for s = 1 to \ell do
       set i to 0
 3: set k to R_s(W)
 4:
       while T_s\{k\} does not exist and i < t do
           increment i
 5:
           k \leftarrow f_s(k)
 6:
 7:
     end while
 8:
       if T_s\{k\} exists then
 9:
           k' \leftarrow T_s\{k\}
           while F(k') \neq W and i < t do
10:
               increment i
11:
               k' \leftarrow f_s(k')
12:
13:
          end while
14:
           if F(k') = W then
               yield k' as a possible key
15:
           end if
16:
17:
       end if
18: end for
```

Complexity Analysis

```
N = \# output range of F
```

Precomputation time $\ell \times m \times t$

Memory complexity $\ell \times m$

Time complexity $\ell \times t$

Probability of success can be shown to be greater than $\frac{1}{2}$ for

$$\ell \approx m \approx t \approx \sqrt[3]{N}$$

time and memory complexity of $N^{\frac{2}{3}}$

- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Order of Magnitudes

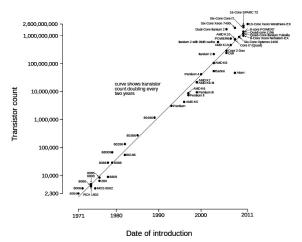
for exhaustive search on a 128-bit key:

- # clock cycles needed to perform a typical cryptographic operation (encryption of one block): 300
- clock rate in 2007: 2GHz
- age of the universe: $14BY = 14 \times 10^9 Y \approx 440 \times 10^{15} s$
- # machines to do the exhaustive search within 14BY: 115×10^{12}

Moore's Law

- Gordon Moore 1965: # transistors / IC doubles every year
- Gordon Moore 1975: # transistors / IC doubles every 2 years
- popular version: speed of CPU's doubles every 18 months

Microprocessor Transistor Counts 1971-2011 & Moore's Law



Better Strategy (of Metaphysical Interest)

remember: slide 67

create the universe then take 14BY of vacations humankind will create itself, invent computers, and solve the problem

Energy Bill

- minimal energy spent to erase one bit: $kT \ln 2$ [Landauer 1961] $k = 1.38 \times 10^{-23} J/K$ (Boltzmann constant) T: absolute temperature (absolute 0 is -273C)
- example: assume we run an exhaustive search with 2^{128} loops but we erase 128 bits per loop assume the computer operates at $3\mu K$ (very cold!) energy bill: $1.2\times 10^9 J$ if we want to do it within 1s we need a 1 200MW nuclear powerplant
- we can compute without burning energy! [Bennett 1973] need supraconductors and invertible computation gates but all computations must be invertible!

exhaustive search must keep lots of garbage in memory

Fully Reversible Exhaustive Search

define

```
\begin{array}{llll} \text{INC:} & \langle x,y,k,z,t \rangle & \mapsto & \langle x,y,k+1,z,t \rangle \\ \text{ENC:} & \langle x,y,k,z,t \rangle & \mapsto & \langle x,y,k,z \oplus \mathsf{Enc}(k,x),t \rangle \\ \text{CMP:} & \langle x,y,k,z,t \rangle & \mapsto & \langle x,y,k,z,t \oplus k \cdot 1_{y=z} \rangle \end{array}
```

The sequence ENC, CMP, ENC, INC does

$$\langle x, y, k, z, t \rangle \mapsto \langle x, y, k+1, z, t \oplus k \cdot 1_{y=z \oplus \mathsf{Enc}(k,x)} \rangle$$

- If we do it 2^{128} times on $\langle x, y, 0, 0, 0 \rangle$, we obtain the XOR of all keys such that y = Enc(k, x).
- assuming K is unique, we get $\langle x, y, 0, 0, K \rangle$

Grover Algorithm

- if the input domain of F has size N and y has a unique preimage
- the Grover algorithm finds $F^{-1}(y)$ in complexity $\mathcal{O}(\sqrt{N})$ F-equivalent evaluations
- it only runs on a quantum computer
- this may be a motivation to use 256-bit AES

- Symmetric Encryption
 - A Cryptographic Primitive
 - Block Ciphers
 - Stream Ciphers
 - Bruteforce Inversion Algorithms
 - Subttle Bruteforce Inversion Algorithms
 - Pushing the Physical Limits
 - Formalism

Block Cipher

Definition

A **block cipher** is a tuple $(\{0,1\}^k,\{0,1\}^n, Enc, Dec)$ with a key domain $\{0,1\}^k$, a block domain $\{0,1\}^n$, and two <u>efficient deterministic</u> algorithms Enc and Dec. It is such that

$$\forall K \in \{0,1\}^k \quad \forall X \in \{0,1\}^n \quad \mathsf{Dec}(K,\mathsf{Enc}(K,X)) = X$$

Write
$$C_K(\cdot) = \operatorname{Enc}(K, .)$$
 and $C_K^{-1}(\cdot) = \operatorname{Dec}(K, .)$.

(operate on bitstrings)

Remark: for all K, $X \mapsto \text{Enc}(K, X)$ is a permutation of $\{0, 1\}^n$

Variable-Length Symmetric Encryption

Definition

A (variable-length, length-preserving) symmetric encryption scheme is a tuple $(\{0,1\}^k, \mathcal{D}, \mathsf{Enc}, \mathsf{Dec})$ with a key domain $\{0,1\}^k$, a plaintext domain $\mathcal{D} \subseteq \{0,1\}^*$, and two efficient deterministic algorithms Enc and Dec.

It is such that

$$\forall K \in \{0,1\}^k \quad \forall X \in \mathcal{D} \quad \left\{ \begin{array}{rcl} \operatorname{Dec}(K,\operatorname{Enc}(K,X)) & = & X \\ |\operatorname{Enc}(K,X)| & = & |X| \end{array} \right.$$

Write
$$C_K(\cdot) = \operatorname{Enc}(K, .)$$
 and $C_K^{-1}(\cdot) = \operatorname{Dec}(K, .)$.

→ can be made from block ciphers using a mode of operation

Nonce-Based Symmetric Encryption

Definition

A (nonce-based, variable-length, length-preserving) symmetric encryption scheme is a tuple $(\{0,1\}^k,\mathcal{D},\mathcal{N},\mathsf{Enc},\mathsf{Dec})$ with a key domain $\{0,1\}^k$, a plaintext domain $\mathcal{D}\subseteq\{0,1\}^*$, a nonce domain \mathcal{N} , and two efficient deterministic algorithms Enc and Dec. It is such that

$$\forall K \in \{0,1\}^k \quad \forall X \in \mathcal{D} \quad \forall N \in \mathcal{N} \quad \begin{cases} \mathsf{Dec}(K,N,\mathsf{Enc}(K,N,X)) = X \\ |\mathsf{Enc}(K,N,X)| = |X| \end{cases}$$

N is supposed to be used only once for encryption random nonce (beware of random repetitions), counter, sent in clear or synchronized

→ could be a mode of operation (IV...), a stream cipher

Security against Key Recovery

Definition

A symmetric encryption scheme ($\{0,1\}^k, \mathcal{D}, \mathcal{N}$, Enc, Dec) is **secure** against key recovery under chosen plaintext attacks (CPA) if for any algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε , where

$$Adv = Pr[game returns 1]$$

Game

1: $K \stackrel{\$}{\leftarrow} \{0,1\}^k$

2: Used $\leftarrow \emptyset$

3: $\mathcal{A}^{\mathsf{OEnc}} o K'$

4: return $1_{K=K'}$

Oracle OEnc(N, X):

5: if $N \in \text{Used then return} \perp$

6: Used ← Used \cup {*N*}

7: **return** Enc(K, N, X)

CPCA Security against Key Recovery

Definition

A symmetric encryption scheme ($\{0,1\}^k, \mathcal{D}, \mathcal{N}, \text{Enc}, \text{Dec}$) is **secure** against key recovery under chosen plaintext/ciphertext attacks (CPCA) if for any algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε , where

$$Adv = Pr[game returns 1]$$

Game

1: $K \leftarrow \{0,1\}^k$

2: Used $\leftarrow \emptyset$

3: $\mathcal{A}^{\mathsf{OEnc},\mathsf{ODec}} o \mathcal{K}'$

4: **return** 1_{K=K'}

Oracle OEnc(N, X):

5: if $N \in Used$ then return \perp

6: Used ← Used \cup {*N*}

7: **return** Enc(K, N, X)

Oracle ODec(N, Y):

8: **return** Dec(K, N, Y)

About Nonce Reuse in Decryption

 the sender who chooses the nonce can make sure it does not repeat

example: a counter (stateful)

example: time

example: a random nonce (large enough)

the receiver cannot enforce non-reuse of nonces

CPCA Security is Stronger than CPA Security

- assume we have CPCA security
- ullet to prove CPA security, consider a CPA adversary ${\cal A}$
- we define a CPCA adversary $\mathcal{B}=\mathcal{A}$ (same adversary who just never use decryption queries)
- ullet and ${\mathcal A}$ have the same advantage
- since the one of \mathcal{B} is bounded by ε , the one of \mathcal{A} as well

CPA-breaking ⇒ CPCA-breaking CPCA-secure ⇒ CPA-secure

SV 2024-25

Not Good Enough Security

Not good enough security: what follows is correct and secure!

- Enc(K, N, X) = X
- Dec(K, N, Y) = Y

Security against Decryption

Definition

A symmetric encryption scheme $(\{0,1\}^k,\mathcal{D},\mathcal{N},\mathsf{Enc},\mathsf{Dec})$ is (q,t,ε) -secure against decryption under CPA resp. CPCA if for any algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε .

Adv = Pr[game returns 1]

Game

1:
$$K \stackrel{\$}{\leftarrow} \{0,1\}^k$$

2:
$$X_0 \stackrel{\$}{\leftarrow} \mathcal{D}, N_0 \stackrel{\$}{\leftarrow} \mathcal{N}$$

3: Used ←
$$\{N_0\}$$

4:
$$Y_0 \leftarrow \operatorname{Enc}(K, N_0, X_0)$$

5:
$$\mathcal{A}^{\mathsf{OEnc},\mathsf{ODec}}(N_0,Y_0) \to X$$

6: return
$$1_{X=X_0}$$

Oracle OEnc(N, X):

1: if
$$N \in U$$
sed then return \perp

3: **return**
$$Enc(K, N, X)$$

Oracle ODec(N, Y):

4: if
$$(N, Y) = (N_0, Y_0)$$
 then return \bot

5: return Dec(K, N, Y)

Example: Vernam-Based Ciphers

$$Enc(K, N, X) = X \oplus PRNG(K, N)$$

CPCA decryption attack:

 $A(N_0, Y_0)$:

1: pick Y' of same length as Y_0

2: query $ODec(N_0, Y') \rightarrow X'$

3: $X \leftarrow Y_0 \oplus Y' \oplus X'$

4: return X

Decryption Security is Stronger than Key Recovery Security $\mathcal{B}^{\cdots}(Y_0)$

1: $\mathcal{A}^{\cdots} \to K'$ 2: $X \leftarrow \text{Dec}(K', Y_0)$ 3: return X

(nonce-less cipher here)

- assume decryption security
- consider a key recovery adversary A
- define a decryption adversary \mathcal{B} ...

$$\Pr\left[\left[\begin{array}{c} \mathbf{KR}*_{\mathcal{A}} \text{ game:} \\ \text{pick } K \\ \mathcal{A}^{\cdots} \to K' \\ \mathbf{return 1}_{K=K'} \end{array}\right] \to 1\right] \leq \Pr\left[\left[\begin{array}{c} \mathbf{OW}*_{\mathcal{B}} \text{ game:} \\ \text{pick } K \\ \text{pick } X_0 \\ Y_0 \leftarrow \operatorname{Enc}(K, X_0) \\ // \mathcal{B}^{\cdots}(Y_0) \to X: \\ \mathcal{A}^{\cdots} \to K' \\ X \leftarrow \operatorname{Dec}(K', Y_0) \\ \mathbf{return 1}_{X=X_0} \end{array}\right] \to 1\right] \leq \varepsilon$$

Not Good Enough Security

 some parts of the plaintext may be more private than others how about a cipher letting half of the plaintext in clear and strongly encrypting the other half?
 it would be secure against decryption

$$\begin{array}{lcl} \mathsf{Enc}(K,N,X) & = & \mathsf{Enc}_0(K,N,\mathsf{lefthalf}(X)) \| \mathsf{righthalf}(X) \\ \mathsf{Dec}(K,N,Y) & = & \mathsf{Dec}_0(K,N,\mathsf{lefthalf}(Y)) \| \mathsf{righthalf}(Y) \\ \end{array}$$

Exercise:

```
If (\{0,1\}^k, \mathcal{D}_0, \mathcal{N}, \mathsf{Enc}_0, \mathsf{Dec}_0) is secure, then (\{0,1\}^k, \mathcal{D}, \mathcal{N}, \mathsf{Enc}, \mathsf{Dec}) is secure.
```

The Ideal Cipher

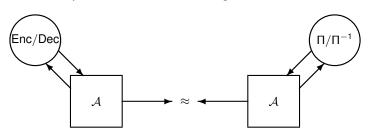
(assume Enc :
$$\{0,1\}^k \times \mathcal{N} \times \mathcal{D} \to \mathcal{D}$$
)

• the "ideal cipher": taking K random is equivalent to picking a random length-preserving permutation Π_N over \mathcal{D} for every N

Enc
$$(K, N, X) = \Pi_N(X)$$

Dec $(K, N, Y) = \Pi_N^{-1}(Y)$

 security would mean that we cannot tell the real cipher and the ideal one apart from a black-box usage



Security against Distinguisher

Definition

A symmetric encryption scheme $(\{0,1\}^k,\mathcal{D},\mathcal{N}, \mathsf{Enc}, \mathsf{Dec})$ is (q,t,ε) -secure against distinguishers under CPA resp. CPCA if for any algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε .

$$Adv = Pr[\Gamma_1 \text{ returns 1}] - Pr[\Gamma_0 \text{ returns 1}]$$

Game Γ_b

- 1: $K \stackrel{\$}{\leftarrow} \{0,1\}^k$
- 2: for every N, pick a lengthpreserving permutation Π_N over \mathcal{D}
- 3: Used $\leftarrow \emptyset$
- 4: $\mathcal{A}^{\mathsf{OEnc},\mathsf{ODec}} \to Z$
- 5: return z

Oracle OEnc(N, X):

- 1: if $N \in Used$ then return \perp
- 2: Used \leftarrow Used \cup {N}
- 3: if b = 0 then return $\Pi_N(X)$
- 4: return Enc(K, N, X)

Oracle ODec(N, Y):

- 5: if b = 0 then return $\Pi_N^{-1}(Y)$
- 6: return Dec(K, N, Y)

Security against Distinguisher (Equivalent Form)

Definition

A symmetric encryption scheme $(\{0,1\}^k,\mathcal{D},\mathcal{N}, \text{Enc}, \text{Dec})$ is (q,t,ε) -secure against distinguishers under CPA resp. CPCA if for any algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv' is bounded by ε .

Adv' =
$$Pr[\Gamma \text{ returns 1}] - \frac{1}{2}$$

Game F

1: pick
$$b \in \{0, 1\}$$

2:
$$K \leftarrow \{0, 1\}^k$$

- 3: for every N, pick a length-preserving permutation Π_N over \mathcal{D}
- 4: Used $\leftarrow \emptyset$
- 5: $A^{OEnc,ODec} \rightarrow z$
- 6: **return** 1_{z=b}

Oracle OEnc(N, X):

1: if
$$N \in \mathsf{Used}$$
 then return \bot

2: Used
$$\leftarrow$$
 Used \cup { N }

3: if
$$b = 0$$
 then return $\Pi_N(X)$

Oracle ODec(N, Y):

5: if
$$b = 0$$
 then return $\Pi_N^{-1}(Y)$

Equivalence

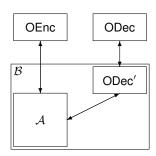
$$\begin{array}{lll} \mathsf{Adv'} &=& \mathsf{Pr}[\Gamma \to 1] - \frac{1}{2} \\ &=& \frac{1}{2} \, \mathsf{Pr}[\Gamma \to 1 | b = 1] + \frac{1}{2} \, \mathsf{Pr}[\Gamma \to 1 | b = 0] - \frac{1}{2} \\ &=& \frac{1}{2} \, \mathsf{Pr}[\Gamma_1 \to 1] + \frac{1}{2} \, \mathsf{Pr}[\Gamma_0 \to 0] - \frac{1}{2} \\ &=& \frac{1}{2} \, \mathsf{Pr}[\Gamma_1 \to 1] + \frac{1}{2} \, (1 - \mathsf{Pr}[\Gamma_0 \to 1]) - \frac{1}{2} \\ &=& \frac{1}{2} \, \mathsf{Pr}[\Gamma_1 \to 1] - \frac{1}{2} \, \mathsf{Pr}[\Gamma_0 \to 1] \\ &=& \frac{1}{2} \mathsf{Adv} \end{array}$$

Distinguisher Sec is Stronger than Decryption Sec

- assume distinguisher security
- consider a decryption adversary A
- ullet we define a distinguisher ${\cal B}$ as follows

B:
1:
$$X_0 \stackrel{\$}{\leftarrow} \mathcal{D}, N_0 \stackrel{\$}{\leftarrow} \mathcal{N}$$

2: $Y_0 \leftarrow \mathsf{OEnc}(N_0, X_0)$
3: $\mathsf{run} \ \mathcal{A}^{\mathsf{OEnc},\mathsf{ODec}'}(N_0, Y_0) \to X$
4: $\mathsf{return} \ 1_{X_0 = X}$
 $\mathsf{ODec}'(N, Y) :$
5: $\mathsf{if} \ (N, Y) = (N_0, Y_0) \ \mathsf{then}$
 $\mathsf{return} \ \bot$
6: $\mathsf{return} \ \mathsf{ODec}(N, Y)$



- $Pr[\Gamma_1^{\mathcal{B}} \to 1] = Pr[\mathcal{A}_{real} \text{ wins decryption}]$
- $Pr[\Gamma_0^{\mathcal{B}} \to 1] = Pr[\mathcal{A}_{ideal} \text{ wins decryption}]$
- $\Pr[A_{\text{ideal}} \text{ wins decryption}] \leq \frac{q+1}{\#\mathcal{D}-q} \text{ (believe me...)}$
- $Adv_{\mathcal{B}} \leq \varepsilon$ hence $Adv_{\mathcal{A}} \leq \varepsilon + \frac{q+1}{\#\mathcal{D}-q}$

Security Notions

	key recovery	decryption	distinguisher
CPA	weakest security		
CPCA			strongest security

- if we can recover the key, we can decrypt
- if we can decrypt, we can recognize from the ideal cipher
- if we can break without chosen ciphertext, we can also break with

Conclusion

- symmetric encryption: stream ciphers (RC4, A5/1), block ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CTR, XTS)
- bruteforce inversion within complexity \mathcal{O} (#domain)
- **tradeoffs** within complexity $\mathcal{O}\left((\#\text{domain})^{\frac{2}{3}}\right)$ after precomputation with complexity $\mathcal{O}\left(\#\text{domain}\right)$

Ciphers to Remember

cipher	release	block	key	design
DES	1977	64	56	Feistel scheme
3DES	1985	64	112,168	triple DES
RC4	1987	8	40-256	stream cipher
AES	2001	128	128,192,256	SPN

Several Types of Symmetric Encryption

- fixed message length vs variable message length block ciphers: use fixed message length modes of operation: adapt to variable message length stream ciphers: encrypt messages "on-the-fly"
- deterministic vs probabilistic
 most common case for symmetric encryption: deterministic
- synchronous (stateful) vs asynchronous (stateless)
- authenticating or not (not in this chapter)

Stream Ciphers vs Block Ciphers

stream cipher	block cipher		
 small granularity (encrypt bits or bytes) 	 large granularity (encrypt blocks of 64 or 128 bits), require padding techniques for messages with arbitrary length high rate, nice for software implementation, can be 		
 based on the Vernam cipher, requires a nonce (number to be used only 			
once)			
 very high speed rate, very cheap on hardware 	adapted to various platforms (8-bit, 32-bit, or 64-bit microprocessors) • well established security		
 low confidence on security 			

References

- **Schneier**. *Applied Cryptography*. Wiley & Sons. 1996. Crypto for dummies!
- Ferguson-Schneier. Practical Cryptography. Wiley & Sons. 2003.
 Crypto for dummies!
- Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In CRYPTO 2003, LNCS 2729.

557 / 1098

Must be Known

- types of symmetric encryption
- parameters of block ciphers: DES, 3DES, AES
- modes of operation: ECB, CBC, OFB, CTR
- Feistel scheme
- parameters of stream ciphers: RC4
- exhaustive search
- meet-in-the-middle

Train Yourself

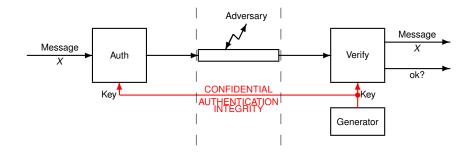
- encryption: midterm exam 2011–12 ex3 midterm exam 2012–13 ex3 final exam 2013–14 ex1
- modes of operation: midterm exam 2009–10 ex3 midterm exam 2011–12 ex1
- Moore's law: final exam 2008–09 ex1
- multitarget password recovery: final exam 2014–15 ex3
- meet-in-the-middle: midterm exam 2016–17 ex1 midterm exam 2017–18 ex2
- security: midterm exam 2016–17 ex2
- design challenge: midterm exam 2018–19 ex1

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- Symmetric Encryption
- 6 Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

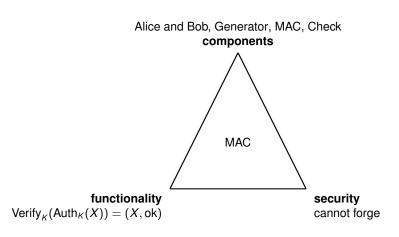
Roadmap

- hash functions: SHA-2, SHA-3
- message authentication codes: HMAC, CBCMAC, WC-MAC
- other primitives: commitment, key derivation
- birthday paradox

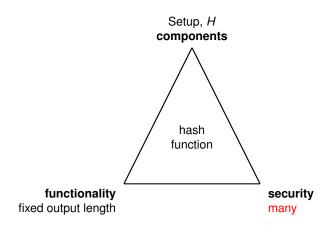
Message Authentication Code



Message Authentication Code (Informal)

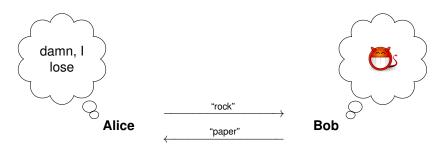


Hash Function (Informal)



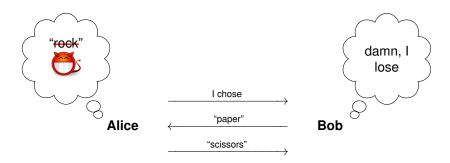
- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

Playing Rock-Paper-Scissors



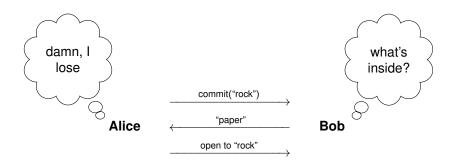
Bob should not see Alice's move before making his choice

Playing Rock-Paper-Scissors



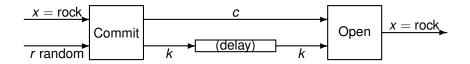
Alice should not be able to change her mind after Bob made his choice

Commitment to Play Rock-Paper-Scissors



- cheat 1: Bob guesses Alice's play and adapts his own play to win
- cheat 2: Alice changes her play after seeing Bob's play

Commitment

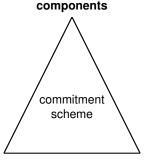


Using a Commitment Scheme

$$x = \operatorname{rock}$$
 $y = \operatorname{paper}$
 $\operatorname{pick} r \operatorname{at} \operatorname{random}$
 $(c, k) \leftarrow \operatorname{Commit}(x; r)$
 $\operatorname{commit}: \xrightarrow{c} \operatorname{store} c$
 $\operatorname{open}: \xrightarrow{k} \operatorname{open}(c, k) = x$

Commitment Scheme (Informal)

Alice and Bob, Setup, Commit, Open



functionality

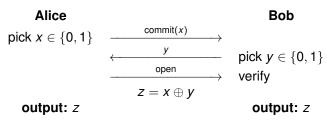
if Commit(X; r) = (c, k)then Open(c, k) = X security

hiding, binding

- hiding: Bob does not get a clue on X from c
- binding: Alice cannot produce c, k, k' such that $Open(c, k) \neq Open(c, k')$

Application Example: Tossing a Coin

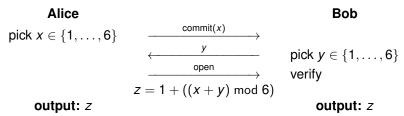
how to toss a coin:



z is the outcome of the tossed coin

Application Example: Playing Dice

how to throw a 6-face die:



z is the outcome of the thrown die

Examples

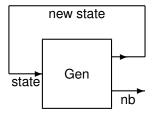
- a BAD one: Commit(x; r) = (Enc $_r(x)$, r) (not binding)
- a BAD one: Commit(x; r) = (H(x), x) (not hiding)
- a not-too-bad one: Commit(x; r) = (H(r||x), (x, r)) (problem: most likely, H was not designed for that)

Pedersen Commitment (Based on DL)

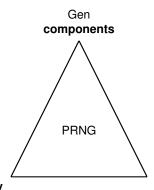
```
setup generates two large primes p and q s.t. q(p-1), an
                 element g \in \mathbf{Z}_{p}^{*} of order q, a \in \mathbf{Z}_{q}^{*}, and h = g^{a} \mod p
                 Domain parameters: \langle p, q, q, h \rangle
     commit Commit(X; r) = g^X h^r \mod p for r \in \mathcal{U} \mathbf{Z}_q
unconditionally hiding Commit(X; r) = q^{X+ar} is uniformly
                 distributed in \langle g \rangle and independent of X
computationally binding committing to X and opening to X' \neq X
                 leads to solving a^X h^r \equiv a^{X'} h^{r'} \pmod{p} hence
                 a = \frac{X' - X}{r} \mod q
                 This is equivalent to solving the discrete logarithm
                 problem with the domain parameters
```

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

Pseudorandom Number Generator (PRNG)



PRNG (Informal)



functionality Gen(state) = (nb, new state)

security indistinguishable from truly random

PRNG Examples

- stream ciphers: RC4, A5/1...
- block ciphers with OFB or CTR mode of operation

Famous Failure Cases

 early version of SSL (Goldberg-Wagner 1996): initial seed computed from the time in microseconds and the pid and ppid numbers (not enough entropy)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

 Debian OpenSSL implementation until 2008: initial seed computed from the pid (15 bits) (other randomness removed due to complains by the compiler purify tool)

http://metasploit.com/users/hdm/tools/debian-openssl/

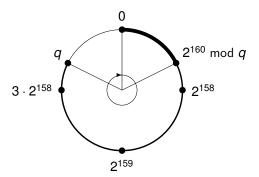
```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Possible Threats

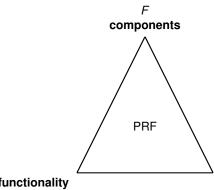
- bad coins during key generation makes the secret key guessable
- bad coins during signing may expose the secret key example: DSA, ECDSA stealing an ECDSA key may mean stealing all bitcoins...

Other Famous Failure Case

 DSA (Bleichenbacher 2001): the 160-bit random number was reduced modulo a 160-bit prime number q so that the final distribution was biased



Pseudorandom Function (PRF)



functionality

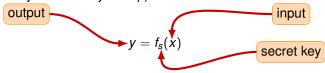
 $F_{\kappa}(\cdot)$

security

indistinguishable from truly random function (as a black-box)

PRF: PseudoRandom Function

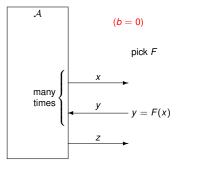
PRF: a deterministic function with a secret looking like random (when the key is randomly set up)

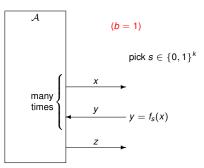


Application:

- **pseudorandom generator**: generation = f_s (counter)
- **key generation**: $key = f_s(nonces, params)$
- encryption: $ct = pt \oplus f_s(nonce)$
- message authentication: $tag = f_s(message)$
- **peer authentication**: response = f_s (challenge)
- ...

PRF Security Definition





$$Adv(A) = Pr[z = 1|b = 1] - Pr[z = 1|b = 0]$$

advantage

q queries, complexity t

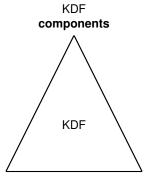
Definition

The PRF is (q, t, ε) -secure if for all bounded A, Adv(A) is negligible.

(game-based definition: see slide 672)

less than ε

Key Derivation Function (KDF)



functionality

KDF(stuff) = random key

security

min-entropy

Generate some random key from some secret (password, output from key agreement protocols) and non-secret objects (salt, domain parameters, exchange messages)

KDF Examples

- typically: a hash function
- PKCS#5/RFC 2898 example:

PBKDF1(password, salt, c, ℓ) = trunc $_{\ell}(H^{c}(password||salt))$

where H^c is H iterated c times

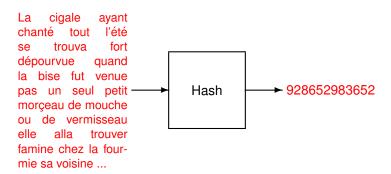
NB: ℓ shall not be larger than the H length

• HKDF (RFC 5869)

$$\begin{array}{lcl} \mathsf{HKDF}(\mathsf{salt},\mathsf{input},\mathsf{extra},L) & = & \mathsf{trunc}_L\left(K_1\|K_2\|\cdots\|K_{\left\lceil\frac{L}{\mathsf{HMAC},\mathsf{length}}\right\rceil}\right) \\ \mathsf{PRK} & = & \mathsf{HMAC}_{\mathsf{salt}}(\mathsf{input}) \\ K_1 & = & \mathsf{HMAC}_{\mathsf{PRK}}(\mathsf{extra}\|0) \\ K_{i+1} & = & \mathsf{HMAC}_{\mathsf{PRK}}(K_i\|\mathsf{extra}\|i) \end{array}$$

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

Cryptographic Hashing



- can hash a string of arbitrary length
- produce digests (hashes) of standard length (e.g. 256 bits)

A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings of fixed length.

Application: instead of specifying digital signature algorithms on set of bitstring with arbitrary length, we specify them with bitstrings of fixed length and use the hash-and-sign paradigm.

Unique indexing: "uniquely" characterizes a bitstring without revealing information on it.

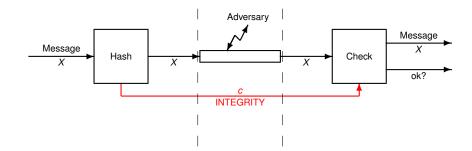
Application:

- commitment which is binding and hiding.
- integrity check

Pseudorandom generator: generate bitstrings from seeds which are unpredictable.

Application: generation of cryptographic keys from a seed.

Integrity Preservation



Constructing Other Primitives with Hash Functions

commitment:

$$\begin{array}{lcl} \mathsf{Commit}(X;\mathsf{random}) & = & (H(\mathsf{Key}),\mathsf{Key} = X \| \mathsf{random}) \\ \mathsf{Open}(c,X \| \mathsf{random}) & = & \left\{ \begin{array}{ll} X & \mathsf{if} \ H(X \| \mathsf{random}) = c \\ \bot & \mathsf{otherwise} \end{array} \right. \end{array}$$

PRNG:

$$(seed | counter) \longrightarrow (seed | counter + 1)$$
, $H(seed | counter)$

KDF:

seed
$$\longrightarrow$$
 trunc $(H(\text{seed}||1)||H(\text{seed}||2)||H(\text{seed}||3)||\cdots)$

domain expander for authentication (MAC or signature):

Authenticate(H(X))

Security for Hash Functions: Wishlist

- **Collision resistance:** hash function h for which it is hard to find x and x' such that h(x) = h(x') and $x \neq x'$.
 - → digital fingerprint of the bitstring
- One-wayness: hash function h for which given y it is hard to find even one x such that y = h(x).
 - → witness for a password
- Pseudo-randomness: output "looks like random" (how to formalize?)
 - ightarrow pseudo-random generation

Popular Threat Models for Hash Functions

```
Collision attack: find x and x' s.t. x \neq x' and h(x) = h(x'). example: substitution in commitment/signature
```

1st preimage attack: given y find x s.t. y = h(x).

example: password search based on hash

2nd preimage attack: given x find x' s.t. $x \neq x'$ and h(x) = h(x').

example: substitution in the integrity check process

Bruteforce First Preimage Attack

```
Input: access to a hash function h, an image y
Output: x such that h(x) = y

1: pick a random ordering of all inputs x_1, x_2, ...

2: for all i do

3: compute h(x_i)

4: if h(x_i) = y then

5: yield x = x_i and stop

6: end if

7: end for

8: search failed

complexity: \mathcal{O}(|\text{output domain}|)
```

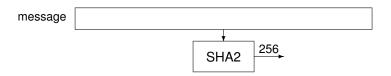
Bruteforce Second Preimage Attack

```
Input: access to a hash function h onto a do-
               main of size N, an input x
           Output: x' such that x \neq x' and h(x) = h(x')
             1: compute h(x)
             2: pick a random ordering of all inputs x_1, x_2, \dots
            3: for all i such that x_i \neq x do
                   compute h(x_i)
             5: if h(x_i) = h(x) then
                       vield x' = x_i and stop
             7: end if
            8: end for
            9: search failed
complexity: \mathcal{O}(|\text{output domain}|)
```

Cryptographic Hashing

- "Message Digest" (MD) devised by Ronald Rivest
- "Secure Hash Algorithm" (SHA) standardized by NIST
- MD4 in 1990 (128-bit digest)
- MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
- SHA in 1993 (160-bit digest) (obsolete, sometimes called SHA0)
- SHA-1 in 1995 (160-bit digest)
- theoretical attack on SHA0 (Chabaud-Joux 1998)
- collision found on MD4 (Dobbertin 1996)
- preimage attack on MD4 (Dobbertin 1997)
- SHA-2 in 2002: SHA256, SHA384, SHA512 (size of digest)
- collision found on SHA0 (Joux+ 2004)
- collision found on MD5 (Wang+ 2004)
- theoretical attack on SHA1 (Wang+ 2005)
- SHA-3 in 2015
- collision found on SHA1 (Stevens+ 2017)

Cryptographic Hashing

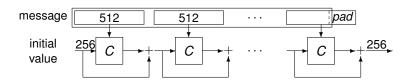


Encryption to Hashing

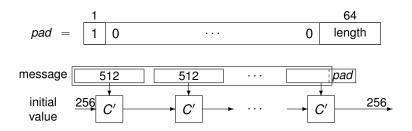
On-line hashing:

- the message is padded following the Merkle-Damgård scheme;
- each block is processed using an encryption function C in a feedback mode according to the Davies

 Meyer.



Merkle-Damgård's Extension



Note: maximal length is $2^{64} - 1$ bits

SHA1:
$$\bigcup_{\ell=0}^{2^{64}-1} \{0,1\}^{\ell} \longrightarrow \{0,1\}^{256}$$

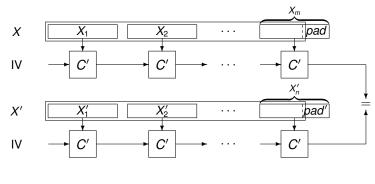
Merkle-Damgård Theorem

Theorem (Merkle-Damgård 1989)

We construct a cryptographic hash function h from a compression function C' by using the Merkle-Damgård scheme. If the compression function C' is collision-resistant, then the hash function h is collision-resistant as well.

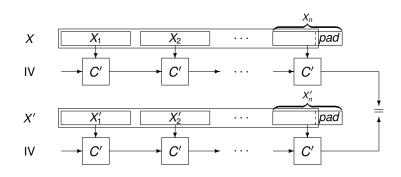
Proof. Assume a colision h(X) = h(X') Case 1: messages of different length Case 2: messages of same length

Proof of Merkle-Damgård Theorem - Case 1



$$C'(H_m,X_m)=C'(H_n',X_n')$$

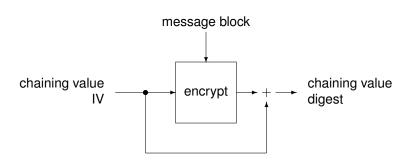
Proof of Merkle-Damgård Theorem - Case 2



$$C'(H_i, X_i) = C'(H'_i, X'_i)$$

where *i* is the last index such that $H_i \neq H'_i$ or $X_i \neq X'_i$

Davies-Meyer Scheme



+ is a group law

Bitwise Boolean Functions in SHA1

```
f_1(b, c, d) = \text{if } b \text{ then } c \text{ else } d
= (b \text{ AND } c) \text{ OR } (\text{NOT}(b) \text{ AND } d)
f_2(b, c, d) = b \text{ XOR } c \text{ XOR } d
f_3(b, c, d) = \text{majority}(b, c, d)
= (b \text{ AND } c) \text{ OR } (c \text{ AND } d) \text{ OR } (d \text{ AND } b)
f_4(b, c, d) = b \text{ XOR } c \text{ XOR } d
```

Implementation of SHA-1 Compression

```
Input: an initial hash a, b, c, d, e,
                                                       7:
                                                                     e \leftarrow d
     a message block x_0, \ldots, x_{15}
                                                       8:
                                                                d \leftarrow c
                                                       9: c \leftarrow \mathsf{ROTL}^{30}(b)
Output: a hash a, b, c, d, e
  1: for i = 16 to 79 do
                                                                     b \leftarrow a
                                                      10:
                                                                      a \leftarrow t
 2:
                                                      11:
                                                      12: end for
     x_i \leftarrow \mathsf{ROTL}^1 (x_{i-3} \mathsf{XOR} \ x_{i-8} \mathsf{XOR} \ x_{i-14})
                                                      13: end for
      XOR x_{i-16}
 3: end for
                                                      14: a \leftarrow a + a_{\text{initial}}
 4: for i = 1 to 4 do
                                                      15: b \leftarrow b + b_{\text{initial}}
 5: for i = 0 to 19 do
                                                16: \mathbf{c} \leftarrow \mathbf{c} + \mathbf{c}_{\text{initial}}
 6: t \leftarrow \mathsf{ROTL}^5(a) +  17: d \leftarrow d + d_{\mathsf{initial}}
     f_i(b, c, d) + e + x_{20(i-1)+i} + k_i 18: e \leftarrow e + e_{\text{initial}}
```

SHA-3 based on Keccak

- (Keccak has many possible instances, SHA-3 only kept four)
- designed by Bertoni, Daemen, Peeters, and Van Assche (STMicroelectronics and NXP Semiconductors, Belgium)
- based on a **sponge** construction
- uses a permutation Keccak-f[b] (or just f) with $b=1\,600=25\times 2^6$ (could use $b=25\times 2^\ell$ with $0\leq\ell\leq 6$)
- operates on states bitstrings s represented as 3-dimensional $5 \times 5 \times 2^{\ell}$ arrays a of bits

$$a_{x,y,z} = s[2^{\ell}(5y + x) + z]$$

in what follows, x, y, z are taken modulo their dimension

• f is a sequence of $n_r = 12 + 2\ell$ rounds

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

One Round of f — i

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

 \bullet θ is a linear diffusion layer using the parity of columns

$$\theta(a)_{x,y,z} = a_{x,y,z} \oplus \bigoplus_{j=0}^4 a_{x-1,j,z} \oplus \bigoplus_{j=0}^4 a_{x+1,j,z-1}$$

ullet ρ permutes some lanes

$$\rho(a)_{x,y,z} = a_{x,y,z-\frac{(t+1)(t+2)}{2}} \quad \text{with} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

for
$$t = 0, ..., 23$$
 (+ use $\rho(a)_{0,0,z} = a_{0,0,z}$)

One Round of f — ii

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

 \bullet π permutes the slices

$$\pi(a)_{X,Y,z} = a_{x,y,z}$$
 with $\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

χ has degree two

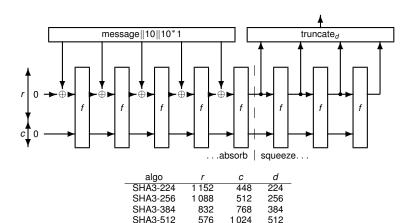
$$\chi(a)_{x,y,z}=a_{x,y,z}\oplus(a_{x+1,y,z}\oplus 1)a_{x+2,y,z}$$

• ι adds a constant for x = y = 0

$$\iota(a)_{x,y,z} = \left\{ egin{array}{ll} a_{0,0,z} \oplus \mathrm{RC}[\mathit{i}_r]_z & ext{if } x = y = 0 \\ a_{x,y,z} & ext{otherwise} \end{array}
ight.$$

where i_r is the round index

The Sponge



r + c = b: state s is split into two values of r and c bits

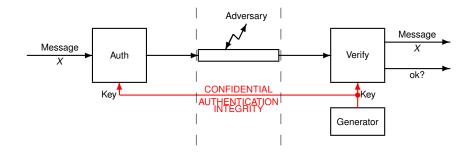
Hash Functions to Remember

algorithm	release	digest	comment
MD5	1991	128	broken
SHA1	1995	160	broken
SHA2	2001	224, 256, 384, 512	
SHA3	2015	224, 256, 384, 512	

Case Study: Block Chains

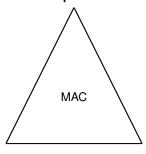
- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

MAC



MAC Primitive

Alice and Bob, Gen, Auth, Verify components



functionality

 $Verify_K(Auth_K(X)) = (X, ok)$

security unforgeability

Typically:

Auth: compute $c = MAC_K(X)$ and send (X, c)

Verify: parse (X, c) and check $c = MAC_K(X)$

Security

- adversary objective: forge new messages
- typically: key recovery
- known message attack (previous picture): using authenticated messages in transit only
- chosen message attack: force the sender to authenticate some messages selected by the adversary

Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of t bytes for a message X with a key K using a Merkle-Damgård hash function with block size B bytes, digest size L bytes. (t = L by default.) E.g. H = SHA256, B = 64, L = 32.

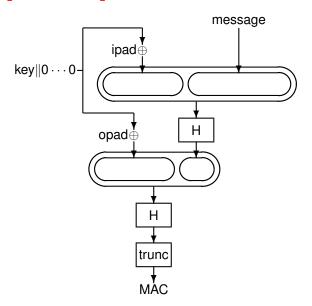
- If K has more than B bytes, we first replace K by H(K). (Having a key of such a long size does not increase the security.)
- We append zero bytes to the right of K until it has exactly B bytes.
- We compute

$$H((K \oplus \text{opad}) || H((K \oplus \text{ipad}) || X))$$

where ipad and opad are two fixed bitstrings of B bytes. The ipad consists of B bytes equal to 0x36 in hexadecimal. The opad consists of B bytes equal to 0x5c in hexadecimal.

③ We truncate the result to its t leftmost bytes. We obtain $HMAC_K(X)$.

HMAC [RFC 2104]



Examples

algo	hash	В	L	t

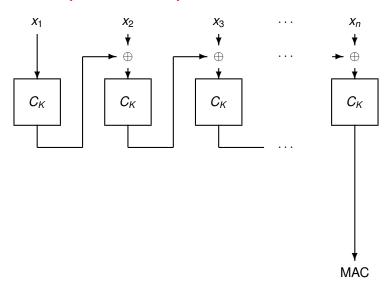
TLS				
MD5	MD5	64	16	16
SHA	SHA1	64	20	20
SHA256	SHA256	64	32	32
SHA384	SHA384	128	48	48

SSH				
hmac_md5	MD5	64	16	16
hmac_md5_96	MD5	64	16	12
hmac_sha1	SHA1	64	20	20
hmac_sha_96	SHA1	64	20	12

HMAC Security

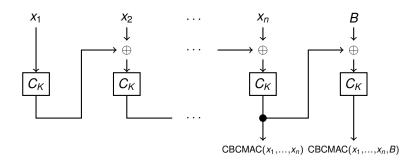
- (Bellare 2006) If the compression function is a PRF, then HMAC is a PRF
- (Kim et al. 2006) Distinguishing attack between a random function and HMAC with HAVAL, MD4, SHA-0, or a reduced version of MD5 or SHA-1
- (Wang et al. 2009) Distinguishing attack between a random function and HMAC with MD5 (needs 2⁹⁷ queries)

CBCMAC - (A Bad MAC)



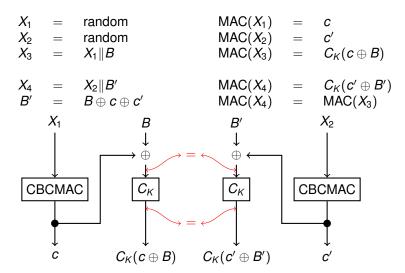
= last ciphertext block of CBC encryption (IV = 0)

Property of CBCMAC



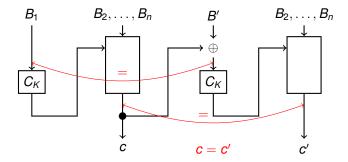
$$\mathsf{CBCMAC}(X||B) = C_{\mathcal{K}}(\mathsf{CBCMAC}(X) \oplus B)$$

A MAC Forgery



Other Attack with 1 Known Message

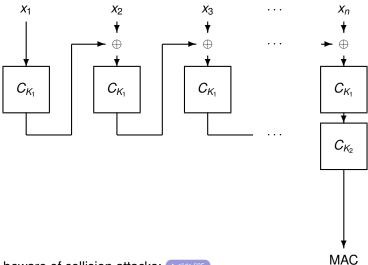
- $X_1 = B_1 \| \cdots \| B_n$ arbitrary
- $c = MAC(X_1)$
- $X_2 = X_1 ||B'||B_2|| \cdots ||B_n|$ with $B' = c \oplus B_1$
- forgery: $c = MAC(X_2)$



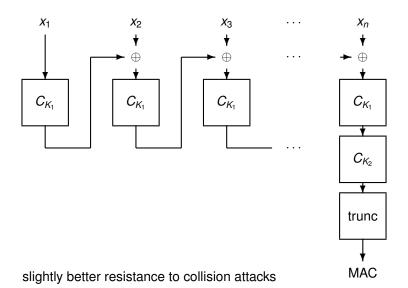
Result on CBCMAC

- insecure when used alone as a MAC
- secure when restricted to messages of same fixed length
- might be secure if encrypted (next constructions)

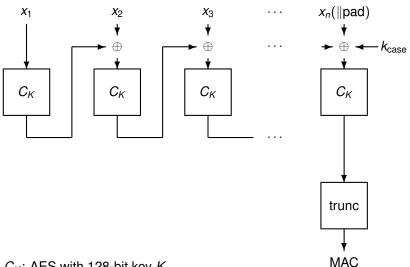
EMAC (Encrypted MAC) - (CBCMAC Variant)



ISO/IEC 9797 - (Another CBCMAC Variant)



CMAC [RFC4493] - (Best CBCMAC Variant)



 C_K : AES with 128-bit key K

CMAC

(previously called OMAC1)

- case 1: x_n was not padded
- case 2: the message length is not multiple of the block length pad it with a bit 1 and as many bits 0 as required to reach this length
- $L = C_K(0)$ (encryption of the zero block)
- k₁ is L shifted to the left by one bit XOR a constant if any carry k₂ is k₁ shifted to the left by one bit XOR a constant if any carry constant:
- actually, this is the GF multiplication by the variable x
- (Iwata-Kurosawa 2003)
 if C is a pseudorandom permutation then CMAC is unforgeable (existential forgeries under chosen message attack)

PMAC

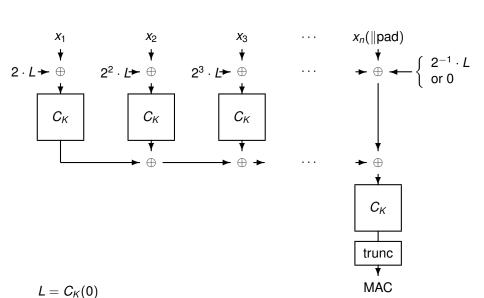
parameter: t, the MAC length **input**: K and the message split into blocks x_1, \ldots, x_n (last block can be incomplete)

1:

$$\Sigma = \bigoplus_{i=1}^{n-1} C_K \left(x_i \oplus 2^i \cdot C_K(0) \right) \oplus x_n \oplus 2^n \cdot C_K(0)$$

- 2: if last block complete: $\Sigma \leftarrow \Sigma \oplus 2^{-1} \cdot C_K(0)$ return the first t bits of $C_K(\Sigma)$
 - 2ⁱ · x: multiplication of x by 2ⁱ in GF (like for OMAC)
 (i.e. i times a shift with XOR if carry)
 - (Black-Rogaway 2002)
 if C is a pseudorandom permutation then PMAC is unforgeable (existential forgeries under chosen message attack)

PMAC

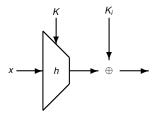


WC-MAC

High-level idea: MAC(x) = Enc(h(x)) for $x \in \mathcal{D}$ with Vernam cipher

- K: uniformly at random in K
- K_1, K_2, \ldots independent and uniformly distributed over $\{0, 1\}^m$
- $(h_K)_{K \in U} \mathcal{K}$: ε -XOR-universal family of hash functions from \mathcal{D} to $\{0,1\}^m$
- i: index (used only once: kind of nonce)

$$\mathsf{MAC}_{K,K_1,K_2,...}(i,x) = h_K(x) \oplus K_i$$



Theorem (Wegman-Carter 1981)

No chosen message attack can forge a new authenticated message with a probability of success greater than ε .

Universal Hash Function

High-level idea:

for x and y fixed, the distribution of $h_K(x) \oplus h_K(y)$ is almost flat

Definition (Krawczyk 1994)

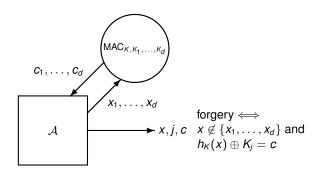
Let $(h_K)_{K \in UK}$ be a family of hash functions from \mathcal{D} to $\{0,1\}^m$ defined by a random key K which is chosen uniformly at random in a key space K.

This family is ε -XOR-universal if for any a and $x \neq y$ in \mathcal{D} , we have

$$\Pr[h_K(x) \oplus h_K(y) = a] \leq \varepsilon.$$

Note:
$$1 = \sum_{a} \Pr[h_{K}(x) \oplus h_{K}(y) = a] \leq 2^{m} \varepsilon$$
 so $\varepsilon \geq 2^{-m}$

WC-MAC - Proof — i



Proof.

At the end, the attacker collects d triplets (x_i, i, c_i) for $i = 1, \ldots, d$ and forges (x, j, c). Let $p_j = \Pr[\text{success}|j]$. If $\forall j \quad p_j \leq \varepsilon$ then $\Pr[\text{success}] \leq \varepsilon$.

For any $j \notin [1, d]$, K_j is uniformly distributed and independent from c_1, \ldots, c_d , so the probability that c is a valid MAC of (x, j) is $p_j = 2^{-m}$. (Note that $2^{-m} \le \varepsilon$.)

WC-MAC - Proof — ii

We have View = $\bigwedge_{i=1}^d h_K(x_i) \oplus K_i = c_i$. For any $j \in [1, d]$, let View' = $\bigwedge_{i \in [1, d] \setminus \{j\}} h_K(x_i) \oplus K_i = c_i$ The success probability is

$$p_j = \Pr[h_K(x) \oplus K_j = c | h_K(x_j) \oplus K_j = c_j, \mathsf{View}', j]$$

Due to the distribution of $K_1, \ldots, K_{j-1}, K_{j+1}, \ldots, K_d$, we can see that View' is useless in the probability.

$$\begin{array}{lll} p_{j} & = & \Pr[h_{K}(x) \oplus K_{j} = c | h_{K}(x_{j}) \oplus K_{j} = c_{j}, j] \\ & = & \Pr[h_{K}(x) \oplus h_{K}(x_{j}) = c \oplus c_{j} | h_{K}(x_{j}) \oplus K_{j} = c_{j}, j] \\ (\text{Bayes}) & = & \frac{\Pr[K_{j} = h_{K}(x_{j}) \oplus c_{j} | h_{K}(x_{j}) \oplus c_{j}, j]}{\Pr[K_{j} = h_{K}(x_{j}) \oplus c_{j} | j]} \times \Pr[h_{K}(x) \oplus h_{K}(x_{j}) = c \oplus c_{j}] \\ & = & \Pr[h_{K}(x) \oplus h_{K}(x_{j}) = c \oplus c_{j}] \leq \varepsilon \end{array}$$

since K_i is independent from K.

Example of Universal Hashing (Krawczyk 1994)

(LFSR-based Toeplitz hash function)

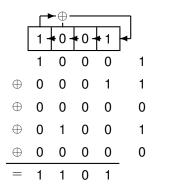
- Given m and n, we define a family of hash functions h_K from $\mathcal{D} = \{0,1\}^n$ to $\{0,1\}^m$
- \mathcal{K} is the set of all K = (p, s) where $p(x) = \sum_{j=0}^{m} p_j x^j$ is an irreducible polynomial of degree m over GF(2) and an $s = (s_0, \dots, s_{m-1})$ is an m-bit string.
- K defines an LFSR with connection polynomial p(x) and initial state s

$$egin{aligned} s_{t+m} &= igoplus_{j=0}^{m-1} p_j s_{t+j} & h_{\mathcal{K}}(x_0,\ldots,x_{n-1}) &= igoplus_{0 \leq t < n} (s_t,\ldots,s_{t+m-1}) \ &= igoplus_{0 \leq t < n} x_t imes (s_t,\ldots,s_{t+m-1}) \end{aligned}$$

• For any m and n, the family of all h_K defined from $\{0,1\}^{\leq n}$ to $\{0,1\}^m$ is $\underbrace{n2^{1-m}}$ -XOR-universal

Example

$$p(x) = 1 + x + x^4$$
, $s = (1, 0, 0, 0)$
compute
 $h_K(1, 1, 0, 1, 0)$



$$h_K(1,1,0,1,0) = (1,1,0,1)$$

WC-MAC using a Stream Cipher

$$N \leftarrow \text{nonce}$$

 $MAC_{K,K'}(N,x) = h_K(x) \oplus \text{Keystream}_{K',N}$

idea: "encrypt $h_K(x)$ using a stream cipher"

CAUTION: using the same *N* twice could be a disaster! (e.g. reveal information about *K* then allow easy forgery attacks)

Example (Taken From GCM Mode)

- (mac) $GMAC_K(IV, A)$
 - 1: set $H = C_K(0^{128})$
 - 2: set $S = GHASH_H(A||0^v||length(A)||0^{128})$
 - 3: set $T = \text{trunc}(GCTR_K((IV||0^{31}1), S))$ (encrypt S)
 - 4: return T
- (hash) GHASH_H $(X_1, ..., X_m) = X_1 H^m + ... + X_m H$ in GF (2^{128})
- (CTR encryption) $GCTR_{K}(ct, X) = trunc_{length(X)} (C_{K}(ct) || C_{K}(ct + 1) || C_{K}(ct + 2) \cdots) \oplus X$

(problem with nonce reuse: this leaks $GHASH_H(X) \oplus GHASH_H(X')$ which leaks H then allow forgeries; see final exam 2016–17...)

 $GHASH_H(X) \oplus GHASH_H(Y) = a \iff P(H) = a$ for a polynomial P defined by $X \oplus Y$

P(H) = a has up to m roots so GHASH is $m2^{-128}$ -XOR-universal over \mathcal{D} : messages of up to m blocks

Variant: Poly1305 [RFC7539]

one-time authenticator

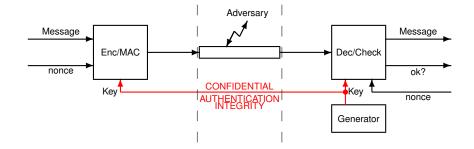
one-time authenticator
$$\text{Poly1305}_{r,s}(m_1,\ldots,m_\ell) = (m_1+2^{128})r^\ell + \cdots + (m_\ell+2^{128})r + s \bmod (2^{130}-5)$$

one-time encryption

where
$$(r, s)$$
 is a key to be used only once and $m_i \in \{0, \dots, 2^{128} - 1\}$

example:
$$(r, s) = Enc_K(nonce)$$

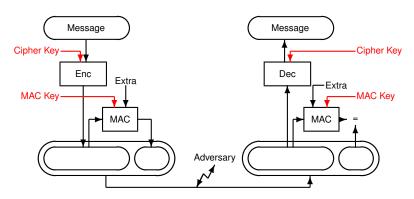
Authenticated Modes of Operation



Roadmap

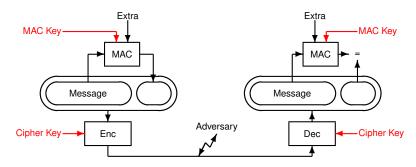
- home-made constructions
 - encrypt-then-MAC
 - MAC-then-encrypt
 - encrypt-and-MAC
- authenticated modes of operation
 - CCM
 - GCM
 - AES-GCM-SIV
 - CHACHA20-POLY1305

Encrypt-then-MAC



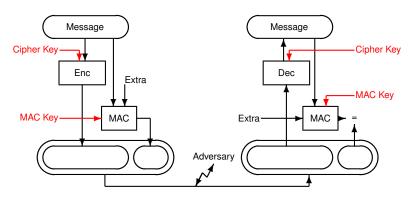
example: IPSEC

MAC-then-Encrypt



example: TLS (< 1.3)

Encrypt-and-MAC

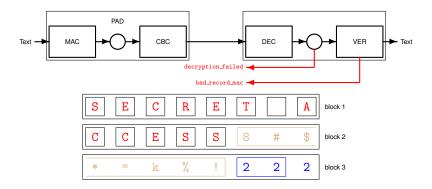


example: SSH

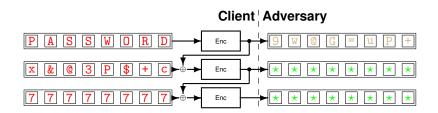
Some Tricky Additional Things

- as soon as padding occurs, some combination may be weak
- some problems when adversary can get advantage of a return channel
- many standards weak, fixed by implementations
- example (2003): MAC-then-Pad-then-Encrypt in TLS using block ciphers is weak

TLS using Block Ciphers

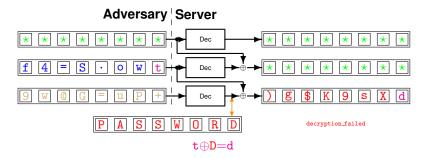


Padding Oracle Attack: Encryption



We would like to decrypt 9w@G=uP+

Padding Oracle Attack: Decryption



CCM (Counter with CBC-MAC)

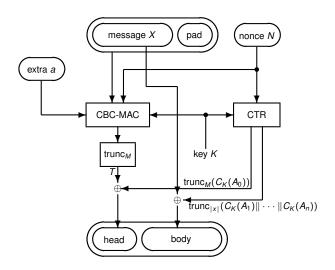
Roughly speaking:

- 1: select a nonce *N* (way to select and synchronize are free)
- 2: let T = CBCMAC(message) using N
- 3: encrypt $T \parallel$ message in CTR mode using N

More precisely, the CCM mode is defined by

- a block cipher which accepts 16-Byte blocks
- an even parameter M between 4 and 16 (size of the CBCMAC in bytes)
- a parameter L between 2 and 8 (size of the length field in bytes)

CCM



CCM Processing

- pad X with enough zero bytes to reach the block boundary
- split $X \parallel$ pad as $B_1 \parallel \cdots \parallel B_n$
- make $B_0 = \text{byte}_1 ||N|| \text{length}(X)$ where byte_1 encodes M and L
- compute the CBCMAC of $B_0 || B_1 || \cdots || B_n$, truncate it to M bytes, and get T
- make A_i = byte₂ || N || i where byte₂ encodes L
- encrypt T||X| by

$$Y = \left(\textit{T} \oplus \mathsf{trunc}_{\textit{M}}(\textit{C}_{\textit{K}}(\textit{A}_{0})) \right) \| \left(\textit{X} \oplus \mathsf{trunc}_{|\textit{X}|}(\textit{C}_{\textit{K}}(\textit{A}_{1}) \| \cdots \| \textit{C}_{\textit{K}}(\textit{A}_{n})) \right)$$

Processing with an Extra Data

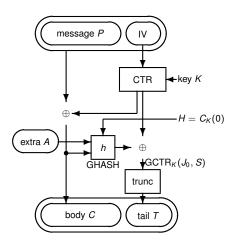
If we wish to send *X* together with a protocol data *a* which also needs to be authenticated (e.g. a sequence number, and IP address...)

- add a special bit in byte₁ which tells that a is used
- if a has a length between 1 and 65279 bytes, encode this length on two bytes, make length(a)||a||pad' where pad' consists of enough zero bytes to reach the block boundary
- insert it between B₀ and B₁ before the CBCMAC computation

GCM Mode

- (authenticated encryption) GCMAE_K(IV, P, A) with plaintext P and extra data A
 - 1: set $H = C_K(0^{128})$
 - 2: set $J_0 = |V||0^{31}$ 1 (IV concatenated with a 32-bit counter)
 - 3: set $C = GCTR_K(J_0 + 1, P)$
 - 4: concatenate A and C with 0 bits to reach a length multiple of 128 and get $A||0^v|$ and $C||0^u|$
 - 5: set $S = GHASH_H(A||0^v||C||0^u||length(A)||length(C))$
 - 6: set $T = \text{trunc}(GCTR_K(J_0, S))$
 - 7: return (C, T)
- (MAC) $GMAC_{\kappa}(IV, A) = GCMAE_{\kappa}(IV, \emptyset, A)$
- (hash) GHASH_H $(X_1, ..., X_m) = X_1 H^m + ... + X_m H$ in GF (2^{128})
- (CTR encryption) $GCTR_K(ct, X) = trunc_{lenath(X)} (C_K(ct) || C_K(ct+1) || C_K(ct+2) \cdots) \oplus X$

GCM



+ encryption on-the-fly (in stream mode)

Misuse Attack on GCM

nonce misuse is dramatic for GCM:

- get GCMAE_K(IV', P_i , \emptyset) = (C_i , T_i) for i = 1, 2 with P_i of one block
- deduce $GHASH_H(C_1||x) \oplus GHASH_H(C_2||x) = T_1 \oplus T_2$ with x = (length 0) || (length 128)
- so $H^2(C_1 \oplus C_2) + H(x \oplus x) = T_1 \oplus T_2$
- deduce that H is the root of $H^2(C_1 \oplus C_2) = T_1 \oplus T_2$ (it is the only root as squaring is bijective)

after that, we can make a forgery for (IV, P, A):

- get $GCMAE_K(IV, P', A') = (C', T')$ for arbitrary A' and P' of same length as A and P
- deduce $GCMAE_K(IV, P, A) = (C' \oplus P \oplus P', T' \oplus GHASH_H([A, C]) \oplus GHASH_H([A', C']))$

GCM

Advantage:

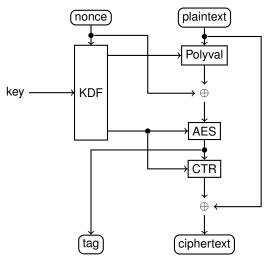
- secure
- fast
- ubiquitous (part of TLS 1.3)
- NIST standard

Disadvantage

- nonce IV is short (96 bits)
- after 2^{32} messages, Pr[collision] $\sim 2^{-32}$
- limited to 2³⁶ bytes in CTR mode (64GB)

$$J_0 = IV || 0^{31} 1$$

Variant: AES-GCM-SIV (RFC 8452)



- Polyval ≈ GHASH
- misuse-resistant
- not on-the-fly encryption (needs 2 passes)

The CHACHA20-POLY1305 AEAD

input: key K (256-bit), nonce N (96-bit), a plaintext P, associated data AD

- 1: generate otkey using K and N (ad-hoc Chaha20-based PRNG)
- 2: run ChaCha20 with K and N, and counter set to 1
- 3: ciphertext $\leftarrow P \oplus$ keystream
- 4: run Poly1305 with otkey and the message resulting from

AD||padding1||ciphertext||padding2||length(AD)||length(ciphertext)

output: ciphertext, tag

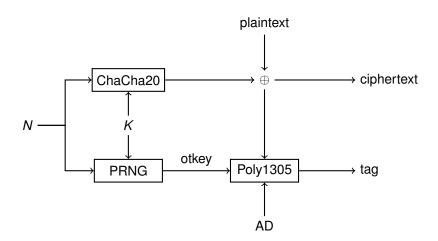
• ChaCha20: stream cipher

key, nonce, counter \mapsto keystream

• Poly1305: authenticator

one-time key, message \mapsto tag

The CHACHA20-POLY1305 AEAD



Authenticated Modes to Remember

mode	comment	
CCM	CTR + CBCMAC	
GCM	CTR + WC-MAC	
GCM-SIV	CTR + WC-MAC	
ChaCha20-Poly1305	stream cipher + WC-MAC	

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

Hash Function

Definition

A **hash function** is a tuple $(\mathcal{D}, \{0,1\}^{\tau}, h)$ with a message domain $\mathcal{D} \subseteq \{0,1\}^*$, an output domain $\{0,1\}^{\tau}$, and one <u>efficient deterministic</u> algorithm h implementing a function

$$\begin{array}{ccc} h: & \mathcal{D} & \longrightarrow & \{0,1\}^{\tau} \\ X & \longmapsto & h(X) \end{array}$$

One-Wayness

Definition

A hash function $(\mathcal{D}, \{0,1\}^{\tau}, h)$ is (t, ε) -one-way if for any probabilistic algorithm \mathcal{A} limited to a time complexity* t, the advantage Adv is bounded by ε , where

$$Adv = Pr[game returns 1]$$

Game

1:
$$X \stackrel{\$}{\leftarrow} \mathcal{D}$$

 \triangleright assume $\mathcal D$ is finite or specify a distribution

2:
$$y \leftarrow h(x)$$

3:
$$\mathcal{A}(y) o x'$$

4: **return**
$$1_{h(x')=y}$$

^{*} including the size of the code (as for all security definitions, actually)

Large-Code Inversion Attack

```
1: if y_0 = 0 then
      if y_1 = 0 then
 3:
           return 2948
                                                     ▷ preimage of 00 · · ·
 4:
    else
 5:
 6:
           . . .
 7:
           return 8374
                                                     ⊳ preimage of 01 · · ·
       end if
 8.
 9: else
       if y_1 = 0 then
10:
11.
                                                    ⊳ preimage of 10 · · ·
12:
           return 8635
13:
    else
14:
          return 2533
                                                     ▷ preimage of 11 · · · ·
15:
       end if
16:
```

17: end if

Security Against Collision Attack (Bad Definition)

Definition

A hash function $(\mathcal{D}, \{0,1\}^{\tau}, h)$ is (t, ε) -secure against collision attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t, the advantage Adv is bounded by ε , where

Game

1: $A \rightarrow X, X'$

2: **return** $1_{h(x)=h(x'), x \neq x'}$

Following this definition, no hash function with $\#\mathcal{D} > 2^{\tau}$ is secure: collision exist, so \mathcal{A} can just print one!

Making a correct definition is beyond the scope of this course

Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple $(\{0,1\}^k,\mathcal{D},\{0,1\}^{\tau},\mathsf{MAC})$ with a key domain $\{0,1\}^k$, a message domain $\mathcal{D}\subseteq\{0,1\}^*$, an output domain $\{0,1\}^{\tau}$, and one <u>efficient deterministic</u> algorithm MAC implementing a function

$$\begin{array}{cccc} \mathsf{MAC} : & \{0,1\}^k \times \mathcal{D} & \longrightarrow & \{0,1\}^\tau \\ & (\mathcal{K}, X) & \longmapsto & \mathsf{MAC}_\mathcal{K}(X) \end{array}$$

(we could define a variant with nonces)

Security against Key Recovery

Definition

A message authentication code $(\{0,1\}^k,\mathcal{D},\{0,1\}^\tau,\mathsf{MAC})$ is (q,t,ε) -secure against key recovery under chosen message attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε , where

Game

1: $K \xleftarrow{\$} \{0,1\}^k$

2: $\mathcal{A}^{\mathsf{OMac}} \to K'$

3: **return** $1_{K=K'}$

Oracle OMac(X):

4: return MAC(K, X)

(+ similar notion with known message attacks)

Security against Forgery

Definition

A message authentication code $(\{0,1\}^k, \mathcal{D}, \{0,1\}^\tau, \mathsf{MAC})$ is (q,t,ε) -secure against forgery under chosen message attacks if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε , where

$$Adv = Pr[game\ returns\ 1]$$

Oracle OMac(X):

7: return MAC(K, X)

6: Queried ← Queried \cup {X}

Game

1: $K \stackrel{\$}{\leftarrow} \{0,1\}^k$

2: Queried $\leftarrow \emptyset$

3: $\mathcal{A}^{\mathsf{OMac}} \to (X, t)$

4: if $X \in \text{Queried then return } 0$

5: **return** $1_{MAC(K,X)=t}$

(+ similar notion with known message attacks)

Forgery Security is Stronger than Key Recovery Security

 $(q, t + t_0, \varepsilon)$ -secure against forgeries $\Longrightarrow (q, t, \varepsilon)$ -secure against key recoveries, where t_0 is constant

Proof: let \mathcal{A} be a (q, t) key recovery adversary We want to prove $\Pr[\mathcal{A} \text{ succeeds}] \leq \varepsilon$

- we define \mathcal{B} :
 - 1: run $\mathcal{A}^{\mathcal{O}} \to K'$
 - 2: pick a fesh X arbitrarily
 - 3: compute t = MAC(K', X)
 - 4: return (*X*, *t*)
- if Steps 2–3 take time t_0 , \mathcal{B} is a $(q, t + t_0, \varepsilon)$ forgery attack
- $Pr[A \text{ succeeds}] \leq Pr[B \text{ succeeds}]$
- due to unforgeability, $Pr[\mathcal{B} \text{ succeeds}] \leq \varepsilon$
- so, $\Pr[A \text{ succeeds}] \leq \varepsilon$

 $\begin{array}{ccc} \text{key recovery-breaking} & \Longrightarrow & \text{forge} \\ & & \text{forgery-secure} & \Longrightarrow & \text{key recovery-secure} \end{array}$

Security against Distinguisher (PRF)

Definition

A message authentication code $(\{0,1\}^k,\mathcal{D},\{0,1\}^{\tau},\mathsf{MAC})$ is a (q,t,ε) -pseudorandom function (PRF) if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε , where

$$Adv = Pr[\Gamma_1 \text{ returns 1}] - Pr[\Gamma_0 \text{ returns 1}]$$

Game Γ_b

1: $K \stackrel{\$}{\leftarrow} \{0,1\}^k$

2: pick $F:\mathcal{D} \rightarrow \{0,1\}^{\tau}$

3: $\mathcal{A}^{\mathsf{O}}
ightarrow \mathbf{z}$

4: return z

Oracle O(X):

5: if b = 0 then return F(X)

6: **return** MAC(K, X)

(see slide 586)

PRF-Security is Stronger than Unforgeability

 $(q+1,t+t_0,\varepsilon)$ -PRF \Longrightarrow $(q,t,\varepsilon+2^{-\tau})$ -secure against forgeries, where t_0 is constant

Proof: let \mathcal{A} be a (q, t)-forger. We want to prove $\Pr[\mathcal{A} \text{ succeeds}] \leq \varepsilon + 2^{-\tau}$

- we construct a distinguisher \mathcal{D} :
 - 1: run $\mathcal{A}^{\mathcal{O}} \to (X, t)$
 - 2: if X was queried by A, output 0 and stop
 - 3: query X to \mathcal{O} and get t'
 - 4: output $1_{t=t'}$
- with $\mathcal{O} = MAC(K,.)$, we have $Pr[\mathcal{D}^{MAC(K,.)} \to 1] = Pr[\mathcal{A} \text{ wins}]$
- with $\mathcal{O} = F(\cdot)$, we have $\Pr[\mathcal{D}^{F(\cdot)} \to 1] \leq 2^{-\tau}$
- so,

$$\Pr[\mathcal{A} \text{ wins}] \leq \Pr[\mathcal{D}^{\mathsf{MAC}(K,.)} \to 1] - \Pr[\mathcal{D}^{F(.)} \to 1] + 2^{-\tau} \leq \varepsilon + 2^{-\tau}$$

therefore, PRF-security implies unforgeability

PRF vs MAC

- PRF aims at being indistinguishable
- MAC aims at being unforgeable (unguessable)
- secure PRF ⇒ secure MAC

Security Notions

	key recovery	forgery	PRF
CMA			stronger security

Case Study: Mobile Telephony

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

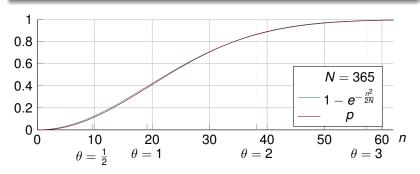
Birthday Paradox

Theorem

If we pick independent random numbers in $\{1,2,\ldots,N\}$ with uniform distribution, n times, we get at least one number twice with probability $p=1-\frac{N!}{N^n(N-n)!}$.

If $N \to +\infty$ and n = o(N), we have $p = 1 - e^{-\frac{\sigma^2}{2N} + o(1)}$. If $n \sim \theta \sqrt{N}$, then

$$\rho \mathop{\longrightarrow}_{N \to +\infty} 1 - e^{-\frac{\theta^2}{2}}.$$



Birthday Paradox - Informal Proof

$$\rho \approx 1 - \left(1 - \frac{1}{N}\right)^{\binom{n}{2}}$$

$$\approx 1 - \left(1 - \frac{1}{N}\right)^{\frac{n^2}{2}}$$

$$= 1 - e^{\frac{n^2}{2}\ln(1 - \frac{1}{N})}$$

$$\approx 1 - e^{-\frac{n^2}{2N}}$$

$$= 1 - e^{-\frac{\theta^2}{2}}$$

Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

$$n! \sim \sqrt{2\pi n} e^{-n} n^n$$

We have

$$1 - p = \frac{N!}{N^n(N-n)!}$$

$$\sim \left(1 - \frac{n}{N}\right)^{-N+n} e^{-n}$$

$$= \exp\left[-n + (-N+n)\log\left(1 - \frac{n}{N}\right)\right]$$

Birthday Paradox - Proof — ii

We now use
$$\log(1-\varepsilon) = -\varepsilon - \frac{\varepsilon^2}{2} + o(\varepsilon^2)$$
 as $\varepsilon \to 0$
$$1-p \sim \exp\left[-n + (-N+n)\log\left(1-\frac{n}{N}\right)\right]$$
$$\sim \exp\left[-\frac{n^2}{2N} + o(1)\right]$$

Finally,
$$1 - p \rightarrow e^{-\frac{\theta^2}{2}}$$
 when $n \sim \theta \sqrt{N}$

Collision Search I

```
Input: a cryptographic hash function h onto a
   domain of size N
Output: a pair (x, x') such that x \neq x' and
   h(x) = h(x')
 1: for \theta \sqrt{N} many different x do
      compute y = h(x)
 3: if T\{y\} defined then
          yield (x, T\{y\}) and stop
 5: end if
   set T\{y\} = x
 7: end for
 8: search failed
```

Collision Search II

```
Input: a cryptographic hash function h onto a
   domain of size N
Output: a pair (x, x') such that x \neq x' and
   h(x) = h(x')
1: loop
      pick a (new) random x
3: compute y = h(x)
4: if T\{y\} defined then
         yield (x, T\{y\}) and stop
6: end if
7: set T\{v\} = x
8: end loop
```

we can show that the expected number of iterations is $\sqrt{\frac{\pi}{2}} \times \sqrt{N}$ (Buffon's needles...)

Collision Search Complexity

strategy	memory	time	success proba.
collision search I	$\theta\sqrt{N}$	$ heta\sqrt{ extsf{N}}$	$1-e^{-\frac{\theta^2}{2}}$
collision search II	$\sqrt{\frac{\pi}{2}} \times \sqrt{N}$	$\sqrt{rac{\pi}{2}} imes \sqrt{N}$	1

example for SHA-2: $N=2^{256}$, complexity $\sim 2^{128}$

Note: for collision search I, this is a worst-case complexity

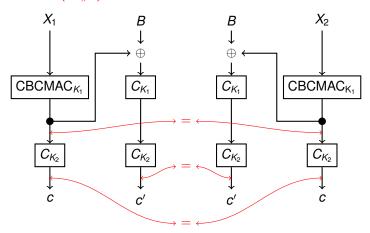
Example: Birthday Attack on EMAC

First get $\sqrt{2^{\text{MAC length}}}$ many messages until we get two messages X_1 and X_2 such that $\text{MAC}(X_1) = \text{MAC}(X_2)$ by using the birthday paradox.

Deduce CBCMAC(X_1) = $C_{K_2}^{-1}(c)$ = CBCMAC(X_2)

Pick B arbitrarily. Query $MAC(X_1 || B) = c'$

Deduce $MAC(X_2||B) = c'$



Variant: Collision between Two Lists

Theorem

If x_1, \ldots, x_m and y_1, \ldots, y_n are independent and uniformly distributed in $\{1, \ldots, N\}$, the probability there exist i and j such that $x_i = y_j$ is

$$p=1-e^{-\frac{mn}{N}+o(\frac{mn}{N})}$$

Proof.

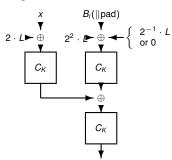
$$1 - \rho \approx \left(1 - \frac{1}{N}\right)^{mn}$$

$$= e^{mn \log\left(1 - \frac{1}{N}\right)}$$

$$= e^{-\frac{mn}{N} + o\left(\frac{mn}{N}\right)}$$

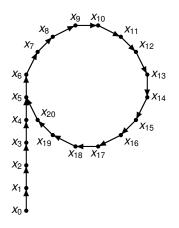
Example: Birthday Attack on PMAC

- 1: select a block sequence x arbitrarily
- 2: for $2^{\frac{\text{blocklength}}{2}}$ pairwise different incomplete blocks B_i , get $t_i = \text{MAC}(x||B_i)$
- 3: for $2^{\frac{\text{blocklength}}{2}}$ pairwise different complete blocks B_i' , get $t_i' = \text{MAC}(x \| B_i')$
- 4: look for a collision $t_i = t'_i$
- 5: deduce $(B_i \parallel \text{pad}) \oplus B_i' = 2^{-1} \cdot L$
- 6: (when truncation is used) check if the obtained L is correct
- 7: make forgeries using L \triangleright exercise: how?



(Almost) Memoryless Collision Search

The Rho (ρ) Effect



- $x_{i+1} = F(x_i)$
- ρ shape (due to finite set)
- tail $\lambda = 5$
- loop $\tau = 16$
- collision $F(x_{\lambda-1}) = F(x_{\lambda+\tau-1})$

Lemma

If F is a random function over a set of cardinality N, we have $E(\lambda) = E(\tau) = \sqrt{\pi N/8}$.

Floyd Cycle Finding Algorithm (1967)

Tortoise and the Hare

Output: a collision for *F*

Complexity: $\mathcal{O}(\sqrt{N})$ *F* mappings

- 1: set x₀ at random
- 2: $a \leftarrow x_0$ (tortoise)
- 3: $b \leftarrow x_0$ (hare)
- 4: repeat
- 5: $a \leftarrow F(a)$
- 6: $b \leftarrow F(F(b))$
- 7: until a = b
- 8: *a* ← *x*₀
- 9: **if** a = b **then** fail
- 10: while $a \neq b$ do
- 11: $a_{\text{old}} \leftarrow a$
- 12: $b_{\text{old}} \leftarrow b$
- 13: $a \leftarrow F(a)$
- 14: $b \leftarrow F(b)$
- 15: end while
- 16: output a_{old} , b_{old}

- whenever $x_{2i} = x_i$ we must have $\tau | i$
- we find $i = \tau \times \lceil \frac{\max(\lambda, 1)}{\tau} \rceil$
- exact complexity is 3i + 2λ computations F
- which is on average

$$5E(\lambda) + \frac{3}{2}E(\tau)$$

$$= 6.5\sqrt{\pi/8} \times \sqrt{N}$$

as
$$E(i) = E(\lambda) + \frac{1}{2}E(\tau)$$

(fail if $\lambda = 0$)

Why it Works

let
$$x_i = F(x_{i-1})$$

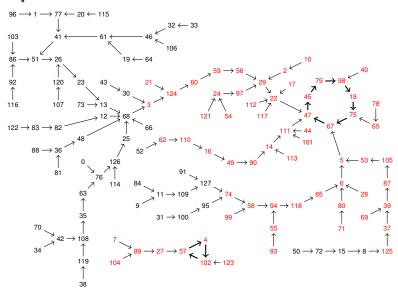
- after iteration i of the **repeat-until** loop, we have $a=x_i$ and $b=x_{2i}$ a=b is equivalent to $(i \ge \lambda \text{ and } \tau|i)$ there exists a minimum $i=i_0=\tau\times\lceil\frac{\lambda}{\tau}\rceil$ satisfying this condition
- after iteration i of the **while-endwhile** loop, we have $a=x_i$ and $b=x_{i_0+i}$ a=b is equivalent to $i \geq \lambda$

Example

A Random Function

```
x \mapsto uv \mapsto \text{first byte of SHA256}("3.1415927-uv") mod 128
where uv is x in hexadecimal
#! /bin/bash
string="3.1415927"
for i in \{0...127\}
dο
  j='printf "$string-%02x" $i | sha256sum'
  j='echo $i | tr "abcdef" "ABCDEF"'
  j='echo j \mid sed "s/^\(...\).*$/ibase=16;obase=2;\1/g" | bc'
  j='echo $i | sed "s/.$//g"'
  j='echo $j | sed "s/^/ibase=2;obase=A;/g" | bc'
  echo "$i -> $j"
done
```

Example



red: points at distance ≤ 7 to a loop

Cycle Detection Algorithms

- Floyd (1967)
- Gosper (1972)
- Brent (1980)
- Sedgewick-Szymanski-Yao (1982)
- Quisquater-Delescaille (1989)
- van Oorschot-Wiener (1999)
- Nivasch (2004)

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

Breaking Symmetric Cryptography

- we know generic attacks are unavoidable
- we do not know how to prove security
- empirical security: assume (hope) there is no better attack then known ones
- security ⇒ generic attacks are untractable
- security parameter for encryption/authentication: key length
- Caveat: hash length must be twice the security parameter due to the birthday paradox

Summary of Generic Attacks against Symmetric Encryption

if we have a *n*-bit key, $(N = 2^n)$

strategy	preprocessing	memory	time	success proba.
exhaustive search	0	1	2 ⁿ	1
dictionary attack	2 ⁿ	2 ⁿ	1	1
tradeoffs	2 ⁿ	$2^{\frac{2}{3}n}$	$2^{\frac{2}{3}n}$	cte

Want a security of 2s?

• select $n \ge s$

Summary of Generic Attacks against MAC

if we have a *n*-bit key $(N = 2^n)$ and a τ -bit tag,

strategy	preprocessing	memory	time	success proba.
exhaustive search	0	1	2 ⁿ	1
random guess	0	1	1	$2^{- au}$
dictionary attack	2 ⁿ	2 ⁿ	1	1
tradeoffs	2 ⁿ	$2^{\frac{2}{3}n}$	$2^{\frac{2}{3}n}$	cte

Want a security of 2^s ?

- select *n* > *s*
- select $\tau \geq s$

Summary of Generic Attacks against Hash Functions

if we hash onto n bits, $(N = 2^n)$

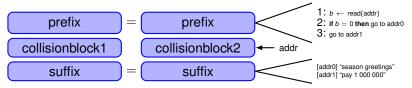
attack	complexity
preimage attack	2 ⁿ
collision attack	2 ^{n/2}

Want a security of 2s?

- want security against inversion only: select n > s
- want security against collisions: select n ≥ 2s

Risks When Underestimating Collision Attacks

- some people think that "academic" collisions are of no threat as they are no real documents
- they are random-looking but we can cast them in real-life format
- postscript, jpg, pdf, ...: media format looks like programming
- we can cast a collision



- demonstrated to forge a rogue certificate authority
 [Stevens-Lenstra-Benne de Weger: Chosen-Prefix Collisions for MD5 and Colliding X.509
 Certificates for Different Identities; EUROCRYPT 2007]
- demonstrated with two arbitrary images with SHA-1 [Albertini: Exploiting Hash Collisions:BlackAlps 2017]

- Integrity and Authentication
 - Commitment Scheme
 - Key Derivation Function and Pseudorandom Generator
 - Cryptographic Hash Function
 - Message Authentication Codes
 - Formalism
 - Bruteforce Collision Search Algorithms
 - How to Select Security Parameters?
 - Other Reasons why Security Collapses

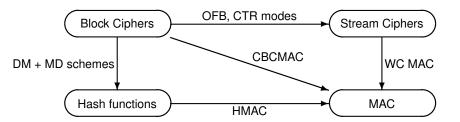
Cryptanalytic Advances

- security is often empirical
 - → dedicated attacks
- heuristic security against attack methods
 - \rightarrow arguments may be wrong, other attack methods can be discovered
- all eggs in the same basket (lack of crypto-diversity)
 - → more exposure, attacks more devastating
- the quantum threat
 - \rightarrow quantum computers to factor, compute discrete logarithms, or even half security parameters [Grover 1996]
- side channel attacks
- wrong proofs, wrong models
- security interference: secure + secure may be insecure

Conclusion

- MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
- hash functions: SHA-2, SHA-3
- commitment
- ullet bruteforce collision within complexity $\mathcal{O}\left(\sqrt{\#\mathrm{range}}\right)$

Dedicated Primitives and Reductions



References

- **Schneier**. *Applied Cryptography*. Wiley & Sons. 1996. Crypto for dummies!
- Ferguson-Schneier. Practical Cryptography. Wiley & Sons. 2003.
 Crypto for dummies!
- Barkan-Biham-Shamir. Rigorous Bounds on Cryptanalytic Time/Memory Tradeoffs. In CRYPTO 2006, LNCS 4117.
- **Nivasch**. Cycle Detection Using a Stack. *Information Processing Letters* vol. 90 pp. 135–140, 2004.

Must be Known

- Merkle-Damgård and Davies-Meyer schemes
- parameters of hash functions: SHA-2, SHA-3
- MAC: (principles of) HMAC, CBCMAC
- existence of authenticated encryption modes: CCM, GCM
- collision search based on the birthday paradox
- security from key length

Train Yourself

- hash functions: final exam 2008–09 ex3
- collisions:
 final exam 2013–14 ex2
 final exam 2012–13 ex2
 final exam 2010–11 ex1
 final exam 2016–17 ex4
 final exam 2017–18 ex1
 final exam 2018–19 ex2 (CBC mode)
- GCM issue: final exam 2016–17 ex3

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- Diffie-Hellman: new directions in cryptography
- RSA standards for encryption and signature
- the ElGamal signature dynasty
- post-quantum crypto

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

Diffie-Hellman

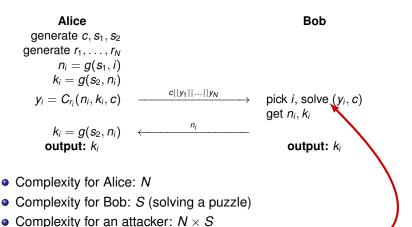
"New Directions in Cryptography" (1976)

[Merkle, Hellman, Diffie]

- notion of "trapdoor permutation" (no instance)
- building a public-key cryptosystem from it
- building a digital signature scheme from it
- key agreement protocol

Merkle

"Secure Communications over Insecure Channels" (1978)



exhaustive search on r_i s.t. $C_{r_i}^{-1}(y_i)$ has c inside

Trapdoor Permutation

- we use an encryption Perm that is easy to compute in one way
- ...but hard in the other (to compute InvPerm)
- ...except using a trapdoor K

Trapdoor Permutation

Alice and Bob, Generator, Perm, InvPerm

components

trapdoor

permutation

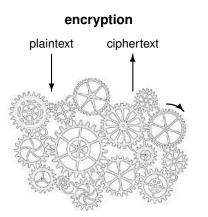
functionality

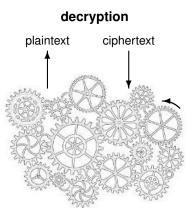
 $\mathsf{Gen} \to (\mathsf{param}, K)$

 $InvPerm_K(Perm_{param}(X)) = X$

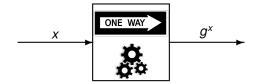
security confidentiality is preserved

Reversibility in Symmetric Encryption





Hard-To-Invert Computation

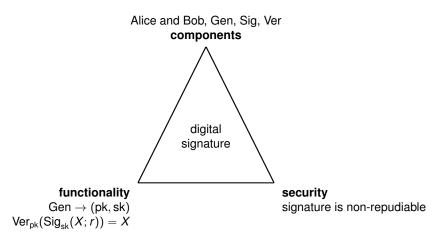


Big Picture

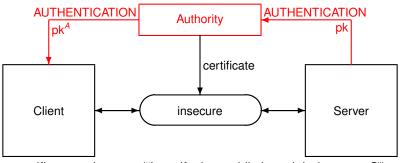
confidential transmission

authenticated transmission

Digital Signature Primitive



Application: Certificates



certificate = signature("I certify that public key pk belongs to S")

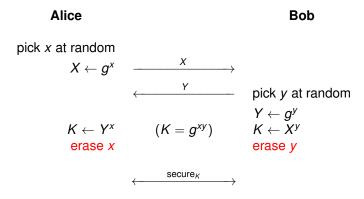
- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

Static versus Ephemeral Diffie-Hellman

- Ephemeral DH: X and Y are fresh (and destroyed after protocol completes)
- Static DH: X and Y are used like public keys
- Semi-static DH: one key is fixed (public key), the other is fresh

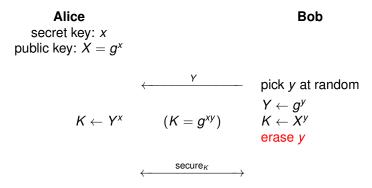
Ephemeral Diffie-Hellman Key Agreement

Assume a group generated by some g



Semi-Static Diffie-Hellman Key Agreement

Assume a group generated by some *g*



Static Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice

secret key: x public key: $X = g^x$

$$K \leftarrow Y^{x}$$

 $K \leftarrow Y^{x}$ $(K = g^{xy})$ $K \leftarrow X^{y}$

secure_K

Bob

secret key: y public key: $Y = g^y$

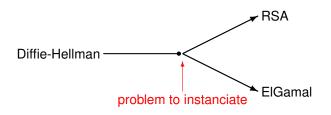
$$K \leftarrow X^y$$

Forward Secrecy

- forward secrecy: communication is still private if long term secret keys are disclosed example: ephemeral Diffie-Hellman (no long term secret)
- no forward secrecy: communication might be decrypted if long term secret keys leak in the future example: static or semi-static Diffie-Hellman

Case Study: Signal

Diffie-Hellman Cryptography



- trapdoor permutation: operation in Z_n which can be inverted with the factorization of n
- probabilistic encryption: encryption returns g^x along with symEnc_{KDF(Y^x)} (message) for $Y^x = DH(g, g^x, Y)$

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

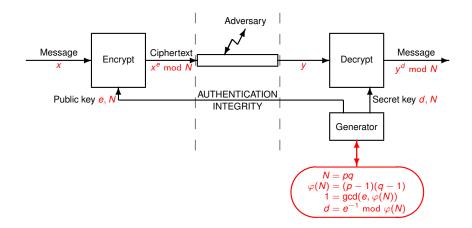
Rivest-Shamir-Adleman (RSA)

(1978)

[Shamir, Rivest, Adleman]

- concrete trapdoor permutation
- public-key cryptosystem

Plain RSA



Why "Plain" RSA

- plain RSA
- = textbook RSA
- = vanilla RSA
- = raw RSA
- RSA for mathematicians

in practice, things are a little more complicated because

- messages are not elements of Z_N
- RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b))
 which are quite dangerous
- RSA engineering leads us to security concerns

PKCS#1v1.5

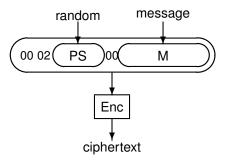
(Modulus of k bytes, message M of at most k-11 bytes.) Encryption:

- generate a pseudorandom string PS of non-zero bytes so that $M\parallel PS$ is of k-3 bytes
- construct string 00||02||PS||00||M of k bytes
- convert it into an integer
- perform the plain RSA encryption
- convert the result into a string of k bytes

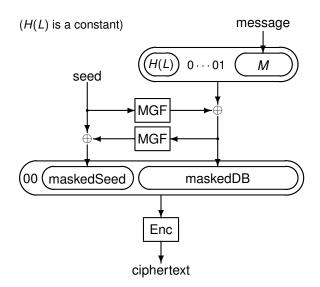
Decryption:

- convert the ciphertext into an integer, reject it if it is greater than the modulus
- perform the plain RSA decryption and obtain another integer
- convert back the integer into a byte string
- check that the string has the 00||02||PS||00||*M* format for some byte strings PS and M where PS has no zero bytes
- output M

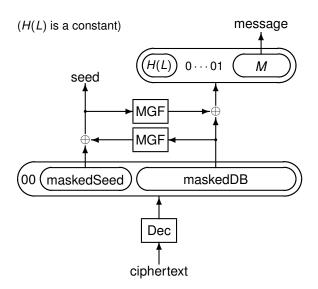
PKCS#1v1.5 Encryption



RSA-OAEP Encryption



RSA-OAEP Decryption



Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation function MGF1 which is based on a hash function. The MGF1 $_{\ell}(x)$ string simply consists of the ℓ leading bytes of

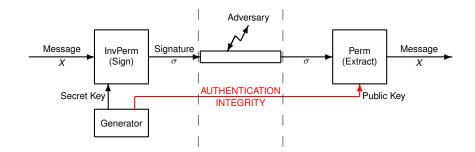
$$H(x||00000000)||H(x||00000001)||H(x||00000002)|| \cdots$$

in which x is concatenated to a four-byte counter.

Signature with Message Recovery



Trapdoor Permutation to Signature with Message Recovery



Plain RSA Signature

```
Set up: find two random different prime numbers p and q of size \frac{\ell}{2} bits. Set N=pq. Pick a random e until \gcd(e,(p-1)(q-1))=1. (Sometimes we pick special constant e like e=17 or e=2^{16}+1.) Set d=e^{-1} \mod ((p-1)(q-1)).
```

Secret key: sk = (d, N). Public key: pk = (e, N).

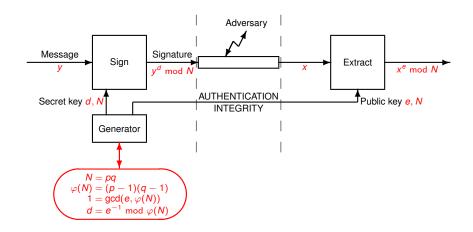
Message: an element $y \in \mathbf{Z}_N$.

Signature generation: $x = y^d \mod N$.

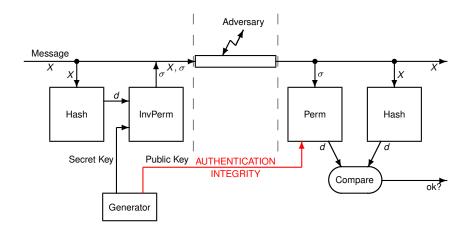
Extraction: $y = x^e \mod N$.

(Signature with message recovery)

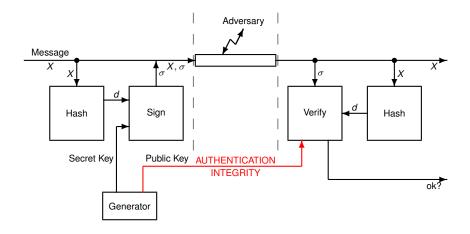
Plain RSA Signature



Trapdoor Permutation to Signature



More Generally: Hash-and-Sign Paradigm



PKCS#1v1.5

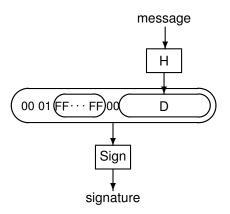
We are given a modulus N of k bytes.

- hash the message (for instance with SHA-1) and get a message digest.
- encode the message digest and the identifier of the hash algorithm into a string D.
- ② pad it with a zero byte to the left, then with many FF bytes in order to reach a length of k-2 bytes, then with a 01 byte. We obtain k-1 bytes.
- This byte string 00||01||FF···FF||00||D is converted into an integer.
- compute the plain RSA signature.
- o convert the result into a string of k bytes.

Signature Verification

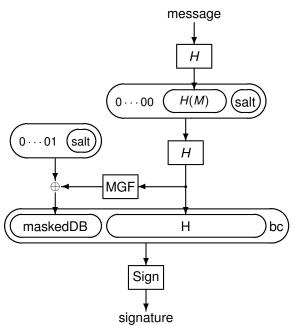
- convert the signature into an integer. Reject it if it is greater than the modulus.
- perform the plain RSA extraction and obtain another integer.
- convert back the integer into a byte string.
- check that the string has the 00||01||FF...FF||00||D format for a byte string D.
- decode the data D and obtain the message digest and the hash algorithm. Check that the hash algorithm is acceptable.
- hash the message and check the message digest.

PKCS#1v1.5 Signature

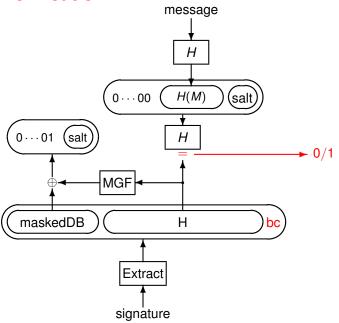


RSA signature without message recovery

RSA-PSS



RSA-PSS Verification



Case Study: TLS

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

ElGamal Cryptosystem Generalized (Reminder)

Alice input: $m \in \langle g \rangle$

Bob secret key: x public key: $y = g^x$

pick r at random $u = g^r \xrightarrow{u} K = y^r \qquad K = u^x$

$$v = mK$$
 \longrightarrow $m = vK^{-1}$

output: m

ElGamal Cryptosystem More Generalized

Alice input: $m \in \langle g \rangle$

Bob secret key: x public key: $y = g^x$

pick r at random $\begin{array}{ccc}
u = g^r & \xrightarrow{u} \\
K = y^r & K = u^x
\end{array}$

$$v = \operatorname{Enc}_{\mathcal{K}}(m) \longrightarrow m = \operatorname{Dec}_{\mathcal{K}}(v)$$

output: m

From ElGamal to ECIES

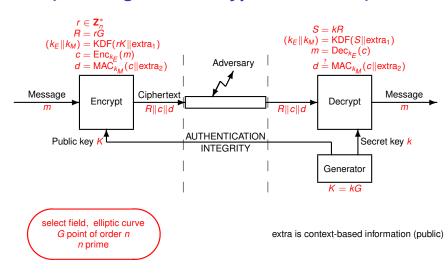
Alice input: $m \in \langle g \rangle$

Bob secret key: x public key: K = kG

$$egin{aligned} c &= \mathsf{Enc}_{\mathit{k}_{E}}(m) & \longrightarrow & m &= \mathsf{Dec}_{\mathit{k}_{E}}(c) \ d &= \mathsf{MAC}_{\mathit{k}_{M}}(c) & \longrightarrow & d & \stackrel{?}{=} \mathsf{MAC}_{\mathit{k}_{M}}(c) \end{aligned}$$

output: m

ECIES (EC Integrated Encryption Scheme)



ElGamal Signature

Public parameters: a large prime number p, a generator g of \mathbf{Z}_p^* .

Set up: generate a random $x \in \mathbf{Z}_{p-1}$ and compute

 $y = g^x \mod p$.

Secret key: sk = x. Public key: pk = y.

Message digest: $h = H(M) \in \mathbf{Z}_{p-1}$.

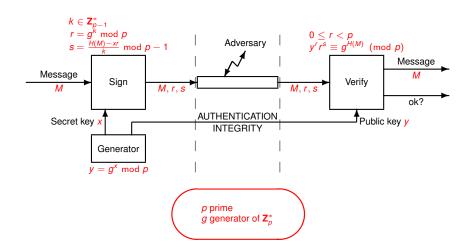
Signature generation: pick a random $k \in \mathbf{Z}_{p-1}^*$, compute

 $r = g^k \mod p$ and $s = \frac{h - xr}{k} \mod p - 1$, the signature is

 $\sigma = (r, s).$

Verification: check that $y^r r^s \equiv g^h \pmod{p}$ and $0 \le r < p$.

ElGamal Signature



Drawbacks of ElGamal Signatures

- signatures are pretty long
- security issues related to subgroups
- lack of security proof for arbitrary public parameter

Major Drawbacks of ElGamal-Like Signatures

leaking or reusing the ephemeral *k* reveals the long-term secret *x*

leaking k: as p, M, r, and s are known, get x from

$$s = \frac{H(M) - xr}{k} \bmod (p-1)$$

• reusing k: as p, (M_1, r_1, s_1) , (M_2, r_2, s_2) are known, get x from

$$\frac{s_1}{s_2} = \frac{H(M_1) - xr_1}{H(M_2) - xr_2}$$

this happened in the software install protection of Sony PS2 this does not happen with RSA

The ElGamal Dynasty

- 1984 ElGamal signatures
- 1989 Schnorr signatures: introduced p and q
- 1995 DSA: US signatures
- 1995 Nyberg-Rueppel signatures
- 1997 Pointcheval-Vaudenay signatures
- 1998 KCDSA: Korean signatures
- 1998 ECDSA
- ...

Generating the Public Parameters

- pick a prime number q
- take a random p = aq + 1 until it is prime
- take a random number in Z_p*, raise it to the power a modulo p, and get g
- if g = 1, try again (otherwise, it must be of order q in \mathbf{Z}_p^*)

DSA Signature (DSS)

```
Public parameters (p, q, g): pick a 160-bit prime number q, a large prime number p = aq + 1, h of \mathbf{Z}_p^* raised to the power a, g = h^a \mod p such that g \neq 1 (an element of order q).
```

Set up: pick $x \in \mathbf{Z}_q$ and compute $y = g^x \mod p$.

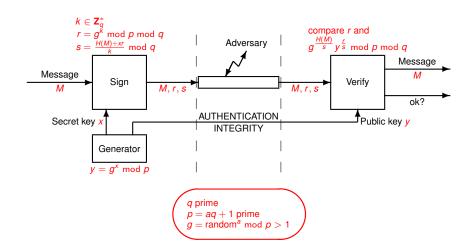
Secret key: sk = x. Public key: pk = y.

Signature generation: pick a random $k \in \mathbf{Z}_q^*$, compute

 $r = (g^k \mod p) \mod q$, and $s = \frac{H(M) + xr}{k} \mod q$, the signature is $\sigma = (r, s)$.

Verification: check that $r = \left(g^{\frac{H(M)}{s} \mod q} y^{\frac{r}{s} \mod q} \mod p\right) \mod q$.

DSA Signature



Benefits

- signatures are shorter
- no proper subgroup (only {1} and the group itself)
- some form of provable security

ECDSA

Public parameters: we use a field of cardinality q (either a power of 2, or a large prime), an elliptic curve C defined by two field elements a and b, a prime number n larger than 2^{160} , and an element G of C of order n. (The elliptic curve equation over GF(q) is $y^2 + xy = x^3 + ax^2 + b$ in the characteristic two case and $y^2 = x^3 + ax + b$ in the prime field case.) Public parameters are subject to many security criteria.

Set up: pick an integer d in [1, n-1], compute Q = dG. Output (pk, sk) = (Q, d).

ECDSA

Signature generation: pick k in [1, n-1] at random and compute

$$(x_1, y_1) = kG$$

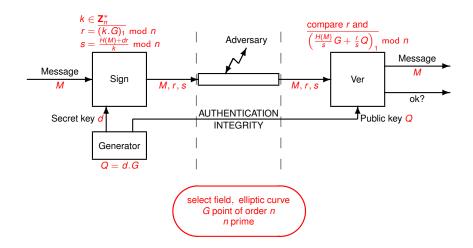
$$r = \overline{x_1} \mod n$$

$$s = \frac{H(M) + dr}{k} \mod n$$

 $(\overline{x_1}$ is a standard way to convert a field element x_1 into an integer.) If r=0 or s=0, try again. Output the signature $\sigma=(r,s)$

Verification: check that $Q \neq \mathcal{O}$, $Q \in C$, and $nQ = \mathcal{O}$. Check that r and s are in [1, n-1] and that $r = \overline{x_1} \mod n$ for $(x_1, y_1) = u_1G + u_2Q$, $u_1 = \frac{H(M)}{s} \mod n$, and $u_2 = \frac{r}{s} \mod n$.

ECDSA Signature



Example of Parameters and Key

secp192r1:

```
q = 6277101735386680763835789423207666416083908700390324961279
```

```
a = ffffffff ffffffff ffffffff ffffffff
```

 $b = 64210519 \text{ e}59c80e7 \text{ 0}fa7e9ab 72243049 feb8deec c}146b9b1$

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188 da80 e b03090 f6 7 cbf 20 eb 43 a 18800 f4 ff0 a fd 82 ff 1012

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(the leading "03" is for point compression)

```
d = 651056770906015076056810763456358567190100156695615665659
```

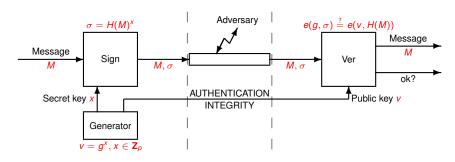
Q = 0262b12d60690cdcf330babab6e69763b471f994dd702d16a5

(the leading "02" is for point compression)

Benefits of ECDSA (Compared to DSA)

- public key is shorter
- computation is lighter

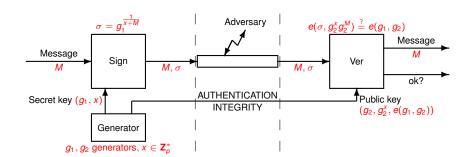
Boneh-Lynn-Shacham (BLS) Signature



▶ slide 398

 $g \in G$ generator G, G_T groups of prime order p $e: G \times G \to G_T$ pairing H hashes into G

(Simple) Boneh-Boyen Signature (no H)



Nalido 209

 $egin{pmatrix} p ext{ prime} \ G_1,\,G_2,\,G_T ext{ groups of order } p \ e:G_1 imes G_2 o G_T ext{ pairing} \end{pmatrix}$

Case Study: NFC Creditcard Payment

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

Popular Algorithms

- symmetric encryption: AES (→ key length)
- hash function: SHA3 (→ hash length)
- MAC/PRF: HMAC-SHA2 (→ key length, tag length)
- authentication encryption: AES-CCM, AES-GCM
 - be careful with the nonce
- key agreement: DH, ECDH (→ public parameters)
- cryptosystem: RSA (→ modulus length), EC crypto (→ pp)
- signature: RSA (\rightarrow modulus length), ECDSA (\rightarrow pp)

be careful with the randomness

be careful with the key length

Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact

If we can factor N = pq then from an RSA public key, we can compute the secret key.

- To have RSA cryptography secure, the factoring problem must be hard
- Parameter for the factoring problem: modulus length
- $\bullet \rightarrow \mathsf{NFS}$

Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact

If we can compute the discrete logarithm x of g^x then from g, g^x, g^y we can compute g^{xy} .

To have DH cryptography secure then the discrete logarithm problem must be hard for the proposed parameters:

- prime order of the generated subgroup
- overall structure type:
 - multiplicative group of a finite field → GNFS
 - elliptic curve
 - random over prime field → generic algorithms
 - random over binary field
 - special

Meta-comparison of Cryptographic Strengths

- symmetric encryption/MAC: bit-security
- RSA: check tables
- hash with collision resistance: digest of twice bit-security
- hash without collision resistance: digest of bit-security
- discrete logarithm/DH in a group: **twice** bit-security caveat: if subgroup of \mathbf{Z}_p^* , p must be of ike for RSA

			-		•	•
method	sym.	RSA	DL		EC	hash
Lenstra-Verheul	82	1613	145	1613	154	163
Lenstra updated	78	1245	156	1245	156	156
ECRYPT II	80	1248	160	1248	160	160
NIST	112	2048	224	2048	224	224
FNISA	100	2048	200	2048	200	200
BSI	-	1976	224	2048	224	224

(http://www.keylength.com.by Quisquater)

Impact of Quantum Computers

cryptosystem	key size	security	algorithm	#qbits	time
AES-GCM	128	128	Grover	2953	$2.6 \times 10^{12} Y$
AES-GCM	192	192	Grover	4449	$2.0 \times 10^{22} Y$
AES-GCM	256	256	Grover	6681	$2.3\times10^{32} Y$
RSA	1024	80	Shor	2050	3.6H
RSA	2048	112	Shor	4098	28.6H
RSA	4096	128	Shor	8194	229H
ECC	256	128	Shor	2330	10.5H
ECC	384	192	Shor	3484	37.7H
ECC	521	256	Shor	4719	55H

https://nas.nationalacademis.org/read/25196/chapter/6#98

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

PKC

Definition

A **public-key cryptosystem** is a tuple (Gen, \mathcal{M} , Enc, Dec) with a plaintext domain $\mathcal{M} \subseteq \{0,1\}^*$ and three <u>efficient</u> algorithms Gen, Enc, and Dec. The algorithm Dec is deterministic and outputs either something in \mathcal{M} or an error \bot . It is such that

$$\forall pt \in \mathcal{M} \quad \Pr[\mathsf{Dec}(\mathsf{sk},\mathsf{Enc}(pk,pt)) = pt] = 1$$

where (pk, sk) is generated from running Gen. The probability is over the randomness used in Gen and Enc.

How to Define Security?

- the adversary holds the public key so he can encrypt whatever he wants without using any external oracle
- so, for predictible plaintext, if encryption is deterministic, it is easy to recognize from the ciphertext example: the encryption of a salary, the encryption of "yes" or "no"
- we should add randomness in the encryption and make the encryption of arbitrary messages hard to distinguish

IND-CPA Security

Definition

A PKC (Gen, \mathcal{M} , Enc, Dec) is (t, ε) -secure under chosen plaintext attacks (IND-CPA-secure) if for any interactive process $(\mathcal{A}_1, \mathcal{A}_2)$ limited to a time complexity t, the advantage Adv is bounded by ε , where

$$Adv = Pr[\Gamma_1 \text{ returns 1}] - Pr[\Gamma_0 \text{ returns 1}]$$

Game Γ_b

- 1: Gen $\stackrel{\$}{\rightarrow}$ (pk, sk)
- 2: $\mathcal{A}_1(pk) \rightarrow (pt_0, pt_1, st)$
- 3: if $|pt_0| \neq |pt_1|$ then return 0
- 4: $\operatorname{Enc}(\operatorname{pt}_b) \stackrel{\$}{\to} \operatorname{ct}$
- 5: $A_2(st, ct) \rightarrow z$
- 6: return z

Problem with Deterministic Cryptosystems

- problem: if Enc is deterministic, then PKC is insecure!
 plain RSA is not IND-CPA secure
- modern PKC are probabilistic example: plain ElGamal cryptosystem is IND-CPA secure

IND-CCA Security

Definition

A PKC (Gen, \mathcal{M} , Enc, Dec) is (t, ε) -secure under chosen ciphertext attacks (IND-CCA-secure) if for any interactive process $(\mathcal{A}_1, \mathcal{A}_2)$ limited to a time complexity t, the advantage Adv is bounded by ε , where

$$Adv = \text{Pr}[\Gamma_1 \text{ returns 1}] - \text{Pr}[\Gamma_0 \text{ returns 1}]$$

Game Γ_b

1: $\operatorname{Gen} \stackrel{\$}{\to} (\operatorname{pk}, \operatorname{sk})$

2: $\mathcal{A}_1^{\mathsf{ODec}_1}(\mathsf{pk}) \to (\mathsf{pt}_0, \mathsf{pt}_1, \mathsf{st})$

3: if $|pt_0| \neq |pt_1|$ then return 0

4: $\operatorname{Enc}(\operatorname{pt}_b) \xrightarrow{\$} \operatorname{ct}^*$

5: $\mathcal{A}_2^{\mathsf{ODec}_2}(\mathsf{st},\mathsf{ct}^*) o z$

6: return z

Oracle ODec₁(ct)

7: return Dec(sk, ct)

Oracle ODec₂(ct)

8: if $ct = ct^*$ then return \bot

9: return Dec(sk, ct)

Basic Constructions

• plain ElGamal is not IND-CCA secure

```
 \begin{array}{l} \mathcal{A}_1(\text{pk}) \\ \text{1: pick pt}_0 \text{ and pt}_1 \text{ arbitrarily} \\ \text{2: st} \leftarrow \text{pt}_1 \\ \text{3: } \textbf{return } (\text{pt}_0, \text{pt}_1, \text{st}) \\ \\ \mathcal{A}_2(\text{st}, \text{ct}^*) \\ \text{4: st} \rightarrow \text{pt}_1 \\ \text{5: } \text{ct}^* \rightarrow (u, v) \\ \text{6: ct} \leftarrow (u, 2v) \\ \text{7: } \text{ODec}_2(\text{ct}) \rightarrow \text{pt} \\ \text{8: } \textbf{return } 1_{\text{pt}=2\text{pt}_1} \\ \\ \end{array}
```

 RSA-OAEP and ECIES are IND-CCA secure (under some conditions)

Fujisaki-Okamoto Transform

- γ -spread and OWCPA-secure PKC (Gen₀, Enc₀, Dec₀)
- one-time secure cipher (e.g. one-time pad)
- random oracles G and H
- → construct a PKC which is INDCCA-secure (many variants possible)

$$\begin{array}{ccc} \text{Gen} & \to & (\text{pk} = \text{pk}_0, \text{sk} = (\text{sk}_0, \text{pk}_0)) \\ \\ \text{Enc}_{\text{pk}}(\text{pt}; \text{coins}) & \to & \left(\text{Enc}_{0, \text{pk}_0}(\text{coins}; \underbrace{\textit{H}(\text{coins}, \text{ct}_2)}_{\text{new coins}}), \overbrace{\text{pt} \oplus \textit{G}(\text{coins})}^{\text{ct}_2} \right) \end{array}$$

 $Dec_{sk}(ct_1, ct_2)$:

- 1: $Dec_{0.sk_0}(ct_1) \rightarrow coins$
- 2: if $ct_1 \neq Enc_{0.pk_0}(coins; H(coins, ct_2))$ then return \bot
- 3: **return** $ct_2 \oplus G(coins)$

Fujisaki-Okamoto KEM

- random oracles G and H
- → construct a KEM which is INDCCA-secure

$$Gen \rightarrow (pk = pk_0, sk = (sk_0, pk_0))$$

```
Enc_{pk}(; coins):
```

- 1: $(K, r) \leftarrow H(\text{coins})$
- 2: ct \leftarrow Enc_{0.pk₀}(coins; r)
- 3: **return** (*K*, ct)

$Dec_{sk}(ct)$:

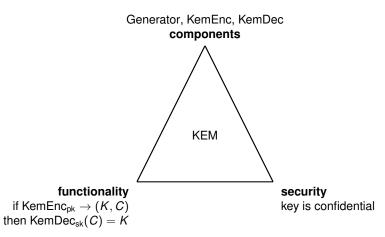
- 4: $Dec_{0,sk_0}(ct) \rightarrow coins$
- 5: $\mathsf{Enc}_{\mathsf{pk}_{\mathsf{o}}}(\mathsf{;coins}) \to (K,\mathsf{ct}')$
- 6: if ct \neq ct' then return \perp
- 7: return K

Key and Data Encapsulation Mechanisms

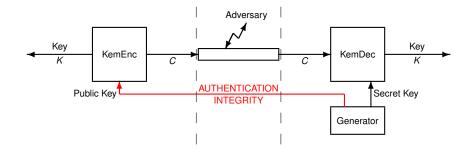
Hybrid Encryption

- DEM: same as symmetric encryption
- KEM: public-key algorithm producing an encrypted (encapsulated) key
 ≈ generate a random symmetric key and encrypt it using public-key encryption
- hybrid encryption: symmetric + asymmetric

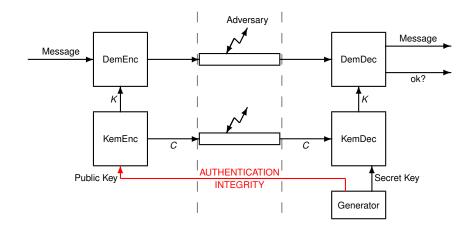
KEM Primitive



KEM



KEM + DEM Hybrid Encryption



DEM Example

Shoup: Using Hash Functions as a Hedge against Chosen Ciphertext Attack (2000)

$$\mathsf{Enc}_{\mathcal{K}}(\mathsf{pt}) = (\mathsf{pt} \oplus \mathit{G}(\mathcal{K}), \mathsf{MAC}_{\mathit{G'}(\mathcal{K})}(\mathsf{pt}))$$

- encrypt and MAC
- one-time encryption (Vernam-based) + one-time authenticator (WC-based)
- example: Poly1305
- could use an AE too (one-time: constant nonce ok)
 - CHACHA20-POLY1305 (encrypt-then-MAC)
 - AES-GCM
 - AES-CCM (MAC-then-encrypt)

HPKE (Hybrib Public Key Encryption)

RFC9180

common interface for many algorithms (KDF, AEAD, KEM)

DHKEM (DH-Based KEM)

Gen:	Enc(pk):	Dec(sk, ct):			
1: pick sk	4: pick <i>x</i>	9: $pk \leftarrow sk \cdot G$			
2: $pk \leftarrow sk \cdot G$	5: $ct \leftarrow x \cdot G$	10: $Z \leftarrow DH(sk, ct)$			
3: return (pk, sk)	6: $Z \leftarrow DH(x, pk)$	11: <i>K</i> ←			
	7: K ←	H(Z, ct, pk)			
DH(<i>a</i> , <i>B</i>):	H(Z, ct, pk)	12: return <i>K</i>			
[next slide]	8: return (<i>K</i> , ct)				

- an authenticated version of DHKEM (next slide)
- KDF: HKDF-SHA256, HKDF-SHA384 HKDF-SHA512
- KEM: DHKEM on P256, P384, P521, X25519, X448 with KDF
- AEAD: AES-128-GCM, AES-256-GCM, ChaCha20Poly1305
- HPKE is a KEM + AEAD

Authenticated DHKEM

include a static-DH key T for implicit authentication

Gen:

- 1: pick sk
- 2: $pk \leftarrow sk \cdot G$
- 3: return (pk, sk)

$Enc(pk_R, sk_S)$:

- 4: pick *x*
- 5: $ct \leftarrow x \cdot G$
- 6: $\mathsf{pk}_S \leftarrow \mathsf{sk}_S \cdot G$
- 7: $Z \leftarrow \mathsf{DH}(x, \mathsf{pk}_R)$
- 8: $T \leftarrow \mathsf{DH}(\mathsf{sk}_{\mathcal{S}}, \mathsf{pk}_{R})$
- 9: $K \leftarrow H(Z, T, \text{ct}, \text{pk}_R, \text{pk}_S)$
- 10: **return** (*K*, ct)

DH(a, B):

- 11: if $B \notin \text{group then return} \perp$
- 12: if B=0 then return \perp
- 13: **return** rep($a \cdot B$)

$Dec(sk_B, pk_S, ct)$:

- 14: $pk_R \leftarrow sk_R \cdot G$
- 15: $Z \leftarrow \mathsf{DH}(\mathsf{sk}_R,\mathsf{ct})$
- 16: $T \leftarrow \mathsf{DH}(\mathsf{sk}_R, \mathsf{pk}_S)$
- 17: $K \leftarrow H(Z, T, \text{ct}, \text{pk}_R, \text{pk}_S)$
- 18: **return** *K*

Signature Scheme

Definition

A **digital signature scheme** is a tuple (Gen, \mathcal{D} , Sig, Ver) with a message domain $\mathcal{D} \subseteq \{0,1\}^*$ and three <u>efficient</u> algorithms Gen, Sig, and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1 (accept). It is such that

$$\forall X \in \mathcal{D} \quad \Pr[\text{Ver}(pk, X, \text{Sig}(sk, X)) = 1] = 1$$

where (pk, sk) is generated from running Gen. The probability is over the randomness used in Gen and Sig.

EF-CMA Security

Definition

A digital signature scheme (Gen, \mathcal{D} , Sig, Ver) is (q, t, ε) -secure against existential forgery under chosen message attacks (EF-CMA) if for any probabilistic algorithm \mathcal{A} limited to a time complexity t and to q queries, the advantage Adv is bounded by ε .

$$Adv = Pr[game returns 1]$$

Game

1: Gen $\stackrel{\$}{\rightarrow}$ (pk, sk)

2: Queries $\leftarrow \emptyset$

3: $\mathcal{A}^{\mathsf{OSig}}(\mathsf{pk}) o (X, \sigma)$

4: if $X \in \text{Queries then return } 0$

5: **return** $1_{Ver(pk,X,\sigma)}$

Oracle OSig(X):

6: $\sigma \leftarrow \operatorname{Sig}(\operatorname{sk}, X)$

7: Queries \leftarrow Queries $\cup \{X\}$

8: return σ

Examples

- ElGamal signature is EF-CMA secure (under some conditions)
- RSA-PSS is EF-CMA secure (under some conditions)

Other Public-Key Cryptosystems

RSA Rabin Paillier ElGamal ECC HECC NTRU lattice-based McEliece TCHo ...

based on factoring

based on discrete logarithm

"post-quantum"

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

On Real Quantum Computers

- 1998: 2 qbits
- 2000: 4, 5, 7 qbits
- 2006: 12 qbits
- 2011: 14 qbits
- 2017: 17, 49 qbits
- 2019: 54 qbits (quantum supremacy reached)
- 2020: 65 qbits
- ??

The Impact on Crypto

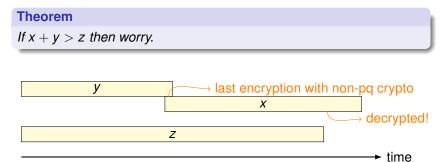
The Sky is Falling

- symmetric crypto: block ciphers, hash functions, MAC
 - → may need to double sizes (we have time)
- public-key crypto: cryptosystems, signatures
 - → discrete log and factoring become easy
 - encryption: "harvest now, decrypt later" attack
 - signature: forge a binding signature with a date in past

When to Worry?

Cybersecurity in an Era with Quantum Computers: Will we be Ready? [Mosca 2013]

- x: how long information must remain secure
- y: how long until pq-crypto is available
- z: how long until quantum computers really exist



for signatures: replace x by the time a signature should remain binding (could be mitigated with a reliable timestamp)

NIST PQC Agenda

- ~2012: NIST begins PQC project
- 2015: NIST workshop on cybersecurity in a pq world
- 2016: NIST plan: requirements and evaluation criteria
- 2017: submission deadline to NIST PQC Round #1
- 2018: 1st NIST PQC workshop
- 2019: NIST selects algorithms to go to Round #2
- 2019: 2nd NIST PQC workshop
- 2020: NIST selects algorithms to go to Round #3
- 2021: 3rd NIST PQC workshop
- 2022: NIST selects algorithms + Round #4
- 2023: draft standard

NIST PQC Round #1 Submission



SOURCE: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/PQCrypto-April2018_Moody.pdf

NIST PQC 2022 Selected Algorithms

	Signature		KEM/Encryption			
Selected	CRYSTALS-DILITHIUM FALCON SPHINCS+	lattice lattice hash	CRYSTALS-KYBER	lattice		

Next:

- KYBER becomes ML-KEM in FIPS 203 (Module-Lattice)
- DILITHIUM becomes ML-DSA in FIPS 204 (Module-Lattice)
- SPINCS+ becomes SLH-DSA in FIPS 205 (Stateless Hash)
- FALCON becomes FN-DSE (later)

Next Steps

- 4th round for KEM/Encryption
 - Classic McEliece
 - BIKE
 - HQC
 - SIKE
- new cancidates for signature (other than lattice-based)
- hybrids (postquantum+classical)

Hybrid KEM

$KEM = KEM_1 \& KEM_2$

Gen: 1: $Gen_1 \rightarrow (pk_1, sk_1)$ 2: $\operatorname{Gen}_2 \to (\operatorname{pk}_2, \operatorname{sk}_2)$ 7: $\operatorname{Enc}_1(\operatorname{pk}_1) \to$ 3: $pk \leftarrow (pk_1, pk_2)$

5: **return** (pk, sk)

```
Enc(pk):
                                                  6: pk \rightarrow (pk_1, pk_2)
                                                 (K_1, \operatorname{ct}_1)
4: \mathsf{sk} \leftarrow (\mathsf{sk}_1, \mathsf{sk}_2) 8: \mathsf{Enc}_2(\mathsf{pk}_2) \rightarrow 15: \mathsf{Dec}_2(\mathsf{pk}_2, \mathsf{ct}_2) \rightarrow \mathsf{K}_2
                                                    (K_2, \operatorname{ct}_2)
                                                  9: K \leftarrow f(pk, K_1, K_2) 17: return K
```

10: $ct \leftarrow (ct_1, ct_2)$ 11: **return** (K, ct)

```
Dec(sk, ct):
```

12: $sk \rightarrow (sk_1, sk_2)$ 13: $ct \rightarrow (ct_1, ct_2)$

14: $Dec_1(pk_1, ct_1) \to K_1$

16: $K \leftarrow f(pk, K_1, K_2)$

- IETF draft for TLS: $K = K_1 \parallel K_2$ example: SecP256r1Kyber768Draft00 (ML-KEM-768&P256)
- X-Wing with DH: $K = SHA3-256(K_1, K_2, ct_{DH}, pk_{DH})$

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

Lattices

- lattice: discrete subgroup of R^m
- specified by a basis:

$$\mathcal{L}(\vec{a}_1,\ldots,\vec{a}_n) = \left\{ \sum_{i=1}^n s_i \vec{a}_i; s_1,\ldots,s_n \in \mathbf{Z} \right\} = \left\{ A\vec{s}; \vec{s} \in \mathbf{Z}^n \right\}$$

rank n (if the \vec{a}_i are independent), dimension m

fundamental domain ("L-tiles" of R^m)

$$F(\vec{a}_1,\ldots,\vec{a}_n) = \left\{ \sum_{i=1}^n s_i \vec{a}_i \; ; \; \forall i \quad 0 \leq s_i < 1 \right\}$$

determinent/volume (m = n)

$$det(\mathcal{L}) = vol(F) = |det(A)|$$

• "regular" number of lattice vectors of norm up to r is $\sim \frac{\text{vol}(B_r)}{\det(\mathcal{L})}$

$$\lim_{r \to +\infty} \frac{\operatorname{vol}(B_r)}{\# \{\vec{x} \in \mathcal{L}; \|\vec{x}\| \le r\}} = \det(\mathcal{L})$$

Lattice-Based Problems

- **CVP** (closest vector problem) given \vec{b} , find $\vec{x} \in \mathcal{L}(\vec{a}_1, \dots, \vec{a}_n)$ making $||\vec{b} \vec{x}||$ small
- **SVP** (smallest vector problem) find short (nonzero) vectors $\vec{x} \in \mathcal{L}(\vec{a}_1, \dots, \vec{a}_n)$
- γ -SVP: (SVP approximation with gap γ) find a nonzero lattive vector \vec{x} such that $\|\vec{x}\| \le \gamma \min_{\vec{v} \in \mathcal{L} \{0\}} \|\vec{y}\|$
 - ightarrow easy for $\gamma > 2^{n \frac{\log \log n}{\log n}}$ (LLL algorithm)
 - \rightarrow used for $\gamma \sim n$
 - ightarrow NP-hard for $\gamma < n^{rac{c}{\log\log n}}$

Learning with Error

- **LWE** (learning with error): given access to a $(\vec{a}, \langle \vec{a}, \vec{s} \rangle + \text{small mod } q)$ generator, it is hard to recover \vec{s}
- typical LWE variant: given a random \vec{A} and $\vec{y} = \vec{A}\vec{s} + \vec{e} \mod q$ with \vec{e} small, it is hard to recover \vec{s}
- typical distribution for \vec{e} : Gaussian of scale $\sigma \sim \sqrt{q}$ density probability of \vec{e} : $\frac{1}{\sigma^n}e^{-\pi\frac{\|\vec{e}\|^2}{\sigma^2}}$

$$E(\|\vec{e}\|^2) = \sum_{i=1}^{n} \frac{1}{\sigma} \int_{e_i = -\infty}^{+\infty} e_i^2 \cdot e^{-\pi \frac{e_i^2}{\sigma^2}} de_i = \frac{n\sigma^2}{2\pi} = \mathcal{O}(nq)$$

Primal Attack on LWE

reduction to SVP (then use the BKZ algorithm):

$$ec{y} = A ec{s} + ec{e} mod q \Longleftrightarrow \left(egin{array}{c} ec{e} \ ec{s} \ 1 \end{array}
ight) \in \mathrm{span}(B)$$

with

$$B = \begin{pmatrix} qI & -A & \vec{y} \\ 0 & I & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

since

$$\begin{pmatrix} qI & -A & \vec{y} \\ 0 & I & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} * \\ \vec{s} \\ 1 \end{pmatrix} = \begin{pmatrix} \vec{e} \\ \vec{s} \\ 1 \end{pmatrix}$$

the lattice has "volume" $\det(B) = q^n$ and

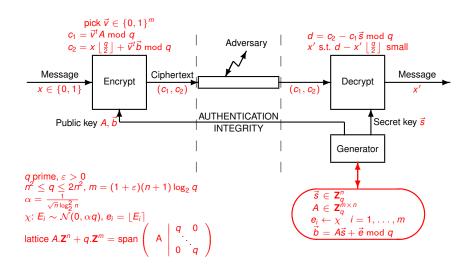
 $\sqrt{\|\vec{e}\|^2 + \|\vec{s}\|^2 + 1} = \mathcal{O}(\sqrt{nq})$ is unusually short (for $n \ll q$) so it must be *the* shortest vector

Module Lattices

"interpret vectors as polynomials and define multiplication" example:

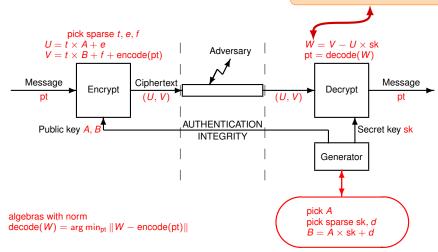
$$\mathcal{L} = \mathbf{Z}_q[z]/(z^n + 1)$$

The Regev Public-Key Cryptosystem



Meta (PQ) Cryptosystem

 $\delta = t \times d + f - e \times sk$ $W = \delta + encode(pt)$



Examples

• FrodoPKE-640: $q = 2^{15}$, $\bar{m} = \bar{n} = 8$, n = 640, $\ell = 2$

$$\mathsf{sk}, B, d \in \mathbf{Z}_q^{n \times \bar{n}} \quad A \in \mathbf{Z}_q^{n^2} \quad t, U, e \in \mathbf{Z}_q^{\bar{m} \times n} \quad V, f, W, \delta \in \mathbf{Z}_q^{\bar{m} \times \bar{n}}$$

$$||X|| = \max_{i,j} \left| \left(\left(X_{i,j} + \frac{q}{2} \right) \bmod q \right) - \frac{q}{2} \right|$$

$$(\text{encode(pt)})_{i,j} = q2^{-\ell} \sum_{k=1}^{\ell} 2^{k-1} \text{pt}_{\ell((i-1)\bar{n}+(j-1))+k}$$

• NewHope512CPA-PKE: q = 12 289, n = 512

sk,
$$A, B, d, t, e, f, U, V, W, \delta \in \mathbf{Z}_q[z]/(z^n + 1)$$

$$\left\| \sum_{i=0}^{n-1} X_i z^i \right\| = \max_i \left| \left(\left(X_i + \frac{q}{2} \right) \bmod q \right) - \frac{q}{2} \right|$$

$$encode(pt) = \frac{q}{2} \sum_{i=0}^{n} (z^{i-1} + z^{i+255}) pt_i$$

Crystals-Kyber

• q = 3329, n = 256sk, $A, B, d, t, e, f, U, V, W, \delta \in \mathbf{Z}_q[z]/(z^n + 1)$

• Fourier-like transform: there is an isomorphism

$$P(z) \in \mathbf{Z}_q[z]/(z^n+1) \leftrightarrow (P(\zeta_0),P(\zeta_1),\ldots,P(\zeta_{n-1}))$$

when $z^n + 1 = (z - \zeta_0) \cdots (z - \zeta_{n-1})$ good news: it is easier to multiply! bad news: the roots of $z^n + 1$ are in $GF(q^2)$

encoding/decoding technical

Facts about the Kyber Field

The Number Theoretic Transform (NTT)

$$n = 256, q = 3329 = 13n + 1, \zeta = 17$$

- ζ is a root of $z^{128} + 1$
- $z^n + 1 = \prod_{k=0}^{127} (z^2 \zeta^{2k+1})$
- $\mathbf{Z}_q[z]/(z^n+1)$ is isomorphic to $\prod_{k=0}^{127} \mathbf{Z}_q[z]/(z^2-\zeta^{2k+1})$ if the factorization of z^n+1
- 1-to-1 correspondence between $P(z) \in \mathbf{Z}_q[z]/(z^n+1)$ and $\hat{P} = (P(z) \bmod (z^2-\zeta^{2k+1}))_{0 \le k \le 128}$
- in the NTT domain, additions and multiplications are coordinate-wise

Kyber K-PKE

name	security	n	q	k	η_1	η_2	d _u	d_{v}
ML-KEM-512	128	256	3329	2	3	2	10	4
ML-KEM-512	192	256	3329	3	2	2	10	4
ML-KEM-1024	256	256	3329	4	2	2	11	5

Gen:

1: pick \hat{A} in NTT domain $(k \times k)$

2: $s, e \leftarrow \mathsf{Sample}_k(\eta_1)$

3: $\hat{s} \leftarrow \mathsf{NTT}(s)$

4: ê ← NTT(*e*)

5: $\hat{t} \leftarrow \hat{A} \times \hat{s} + \hat{e}$

6: $\mathsf{pk} \leftarrow (\hat{t}, \hat{A})$

7: sk ← ŝ

8: return (pk, sk)

Sample_d (η) :

9: pick $\vec{x}_1, ..., \vec{x}_n \leftarrow \{0, 1\}^d$

10: pick $\vec{y}_1, \dots, \vec{y}'_{\eta} \leftarrow \{0, 1\}^d$

11: **return** $\sum \vec{x} - \sum \vec{y}$

expected value: 0

variance: $\eta/2$

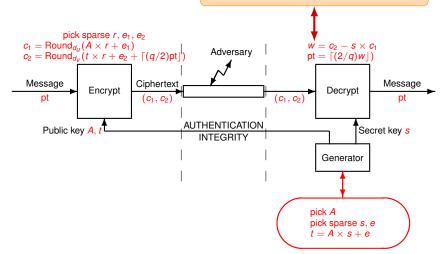
Kyber K-PKE

```
Enc(pk, pt):
                                                                       Dec(sk, c_1, c_2):
  1: pk \rightarrow (\hat{t}, \hat{A})
                                                                       12: u \leftarrow \mathsf{Decompress}_{d_n}(c_1)
                                                                       13: v \leftarrow \mathsf{Decompress}_{d_1}(c_2)
  2: r \leftarrow \text{Sample}(\eta_1)
                                                                       14: sk \rightarrow \hat{s}
  3: e_1 \leftarrow \mathsf{Sample}_{k}(\eta_2)
                                                                       15: \mathbf{w} \leftarrow \mathbf{v} - \mathsf{NTT}^{-1}(\hat{\mathbf{s}}^t \times \mathsf{NTT}(\mathbf{u}))
  4: e_2 \leftarrow \mathsf{Sample}_1(\eta_2)
                                                                       16: pt \leftarrow Compress<sub>1</sub>(w)
  5: \hat{r} \leftarrow \mathsf{NTT}(r)
  6: u \leftarrow \mathsf{NTT}^{-1}(\hat{A}^t \times \hat{r}) + e_1
                                                                       17: return pt
  7: \mu \leftarrow \mathsf{Decompress}_1(\mathsf{pt})
                                                                       Compress<sub>d</sub>(x):
  8: \mathbf{v} \leftarrow \mathsf{NTT}^{-1}(\hat{t}^t \times \hat{r}) + \mathbf{e}_2 + \mu
                                                                       18: v_i \leftarrow \lceil (2^d/q)x \rceil for all i
  9: c_1 \leftarrow \mathsf{Compress}_{d_u}(u)
                                                                       19: return v
10: c_2 \leftarrow \mathsf{Compress}_{d_v}(v)
                                                                       Decompress<sub>d</sub>(y):
11: return (c_1, c_2)
                                                                       20: x_i \leftarrow \lceil (q/2^d)y \rceil for all i
                                                                       21: return x
```

Decompress_d \circ Compress_d rounds to multiples of 2^d

K-PKE (Unoptimized)

 $\delta = er + e_2 - se_1$ $w = \delta + rnd_1 - s rnd_2 + \lceil (q/2)pt \rfloor$



FO Variant for IND-CCA KEM (in ML-KEM)

Gen:

- 1: $Gen_0 \rightarrow (pk_0, sk_0)$
- 2: $pk \leftarrow pk_0$
- 3: pick z
- 4: $h \leftarrow H(ek)$
- 5: $sk \leftarrow (sk_0, pk, h, z)$
- 6: **return** (pk, sk)

Enc(pk):

- 7: pick coins
- 8: $(\mathsf{pt}, r) \leftarrow G(\mathsf{coins} || H(\mathsf{pk}))$
- 9: ct \leftarrow Enc_{0,pk}(coins; r)
- 10: return (pt, ct)

Dec(sk, ct):

- 11: $sk \rightarrow (sk_0, pk, h, z)$
- 12: $coins \leftarrow Dec_{0,sk_0}(ct)$
- 13: $(pt, r) \leftarrow G(coins||h|)$
- 14: $\bar{\mathsf{pt}} \leftarrow J(z\|\mathsf{ct})$
- 15: $\operatorname{ct}' \leftarrow \operatorname{Enc}_{0,\operatorname{pk}}(\operatorname{coins}; r)$
- 16: **if** ct \neq ct' **then** pt \leftarrow \overrightarrow{pt}
- 17: return pt

- Public-Key Cryptography
 - Public-Key Cryptography
 - Diffie-Hellman Key Exchange
 - RSA Cryptography
 - ElGamal Cryptography
 - Selecting Key Lengths
 - Formalism
 - Towards Post-Quantum Cryptography
 - Lattice-Based Cryptography
 - Hash-Based Cryptography

Lamport (One-Time) Signature Scheme

- Parameter: n, the hash length
- Secret key: $(sk_{i,b})_{i=1,...,n,b=0,1}$
- Public key: $(OW(sk_{i,b}))_{i=1,...,n,b=0,1}$
- Signature of m: $(sk_{i,H(m)_i})_{i=1,...,n}$
- Verification: $OW(\sigma_i) = pk_{i,H(m)_i}$ for i = 1, ..., n
- possible improvement for a shorter secret key:
 sk_{i,b} = PRF_{seed}(i, b) and keep seed
- possible improvement for a shorter public key: hash the public keys
- main drawback: large signature size, one-time pk use

Lamport (One-Time) Signature Scheme - Example

- \bullet n=4
- Secret key: seed
- **Public key**: $pk = H(all k_{i,b})$ with

$$k_{i,b} = \mathsf{OW}(\mathsf{PRF}_{\mathsf{seed}}(i, b))$$
 $i = 1, \dots, n, b = 0, 1$

• Signature of m with H(m) = 0101:

$$\sigma_1 = \mathsf{PRF}_{\mathsf{seed}}(1, 0) \;, \; k_{1,1} \qquad \sigma_2 = \mathsf{PRF}_{\mathsf{seed}}(2, 1) \;, \; k_{2,0}$$
 $\sigma_3 = \mathsf{PRF}_{\mathsf{seed}}(3, 0) \;, \; k_{3,1} \qquad \sigma_4 = \mathsf{PRF}_{\mathsf{seed}}(4, 1) \;, \; k_{4,0}$

Verification:

$$k_{1,0} = OW(\sigma_1)$$
 $k_{2,1} = OW(\sigma_2)$
 $k_{3,0} = OW(\sigma_3)$ $k_{4,1} = OW(\sigma_4)$

verify $pk = H(all k_{i,b})$

Winternitz (One-Time) Signature Scheme

- Parameters: power-of-2 w, hash length $n \log_2 w$, $n' = n + \frac{\log n}{\log w} + 1$
- Secret key: $(sk_i)_{i=1,...,n'}$
- Public key: $(OW^w(sk_i))_{i=1,...,n'}$
- **Signature** of *m*:

1: parse
$$H(m) = j_1 | \cdots | j_n \text{ with } j_i \in \{0, \dots, w-1\},$$

2: parse
$$\sum_{i=1}^{n} (w-1-j_i) = [j_{n+1}|\cdots|j_{n'}],$$

 $\triangleright j_1, \ldots, j_{n'}$ satisfies a checksum:

$$\left(\sum_{i=1}^{n} j_{i}\right) + [j_{n+1}|\cdots|j_{n'}] = n(w-1)$$

3:
$$\sigma \leftarrow (\mathsf{OW}^{j_i}(\mathsf{sk}_i))_{i=1,\ldots,n'}$$

- Verification:
 - 1: compute $j_1 | \cdots | j_{n'}$ as above
 - 2: check $OW^{w-j_i}(\sigma_i) = pk_i$ for i = 1, ..., n'
- possible improvement: all pk_i in a Merkle tree or an accumulator
- possible improvement: sk_i from seed

Attack with No Checksum

- Secret key: (sk_i)_{i=1,...,n}
- Public key: $(OW^w(sk_i))_{i=1,...,n}$
- **Signature** of *m*:
 - 1: parse $m = j_1 | \cdots | j_n$ with $j_i \in \{0, \dots, w 1\}$, 2: $\sigma \leftarrow (OW^{j_i}(sk_i))_{i=1,\dots,n}$
- Verification:
 - 1: compute $j_1 | \cdots | j_n$ as above
 - 2: check $OW^{w-j_i}(\sigma_i) = pk_i$ for i = 1, ..., n
- given (m, σ) we can forge the signature σ' of any $m' = j'_1 | \cdots | j'_n$ such that $j'_i \geq j_i$ for $i = 1, \dots, n$:

$$\sigma_i' = \mathsf{OW}^{j_i' - j_i}(\sigma_i)$$

• idea: hash the message so that $\bigwedge_i j_i' \ge j_i$ occurs with negligible probability

FORS (Few-Times) Signature Scheme

- Parameters: k, t
- Secret key: $(sk_{i,j})_{i=1,...,k,j=1,...,t}$
- Public key: $(OW(sk_{i,j}))_{i,j}$
- Signature of m:

1: parse
$$H(m) = j_1 | \cdots | j_k$$
 with $j_i \in \{1, \dots, t\}$,
2: $\sigma \leftarrow (\mathsf{sk}_{i,i_i})_{i=1,\dots,k}$

Verification:

```
1: compute j_1|\cdots|j_k as above
2: check OW(\sigma_i) = pk_{i,i} for i = 1, ..., k
```

- tricky selection of parameters to make it secure
- same possible improvements

Trying to Attack FORS

- Secret key: $(sk_{i,j})_{i=1,...,k,j=1,...,t}$
- Public key: (OW(sk_{i,j}))_{i,j}
- Signature of m:

1: parse
$$H(m) = j_1 | \cdots | j_k$$
 with $j_i \in \{1, \dots, t\}$,
2: $\sigma \leftarrow (\mathsf{sk}_{i,j_i})_{i=1,\dots,k}$

collect q signatures

$$\begin{array}{lcl} \operatorname{Sign}(j_1^1\|\cdots\|j_k^1) & = & \operatorname{sk}_{1,j_1^1},\dots,\operatorname{sk}_{k,j_k^1} \\ & & \vdots \\ \operatorname{Sign}(j_1^q\|\cdots\|j_k^q) & = & \operatorname{sk}_{1,j_1^q},\dots,\operatorname{sk}_{k,j_k^q} \end{array}$$

- hash a new message until $\bigwedge_i j_i \in \{j_i^1, \dots, j_i^q\}$
- complexity is $\left(\frac{t}{q}\right)^k$
- idea: make sure that q remains small ("few-times signature")

Sphincs+: a Hash-Based Signature Scheme

- Secret key: seed
- Public key: key + root of a Merkle tree, with leaves being roots of FORS trees (generated from secret seed)
- Signature of m:
 - 1: pick a random R
 - 2: parse H(R, key, m) as a digest and the address of a FORS tree
 - 3: sign the digest using this FORS tree
 - 4: $\sigma \leftarrow (R, FORS.signature, Merkle)$
- Verification:
 - 1: parse H(R, key, m) as a digest and the address of a FORS tree
 - 2: verify FORS signature of digest with this FORS tree

Conclusion (on Chapters 2,3,4,7)

- two families: RSA (factoring-based) and DH (discrete log-based)
- does not replace symmetric cryptography: used for key exchange only
- more compact data using elliptic curves
- new: digital signatures
- PQ-crypto

References

- Merkle. Secure Communications over Insecure Channels.
 Communications of the ACM vol. 21. 1978.
- Lenstra-Verheul. Selecting Cryptographic Key Sizes. *Journal of Cryptology* vol. 14, 2001.
- Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. Journal of the ACM vol. 56(6), 2009.

Must be Known

- the big picture with the 4 primitives
- Diffie-Hellman key agreement protocol
- ElGamal cryptosystem
- RSA
- PKCS#1

Train Yourself

- RSA encryption: midterm exam 2008–09 ex2
- RSA signature: final exam 2010–11 ex2
- PKC construction: final exam 2009–10 ex3
- signature construction: final exam 2008–09 ex2
- trapdoor in DSA: final exam 2014–15 ex1
- DSA with related randomness: final exam 2014–15 ex2
- bad DL-based signature: final exam 2015–16 ex1
- Pedersen commitment: final exam 2012–13 ex5
- Learning Parity with Noise: final exam 2017–18 ex2
- Mersenne cryptosystem: final exam 2018–19 ex1
- PKC vs KEM vs KA: final exam 2018–19 ex3
- hash-based signature: final exam 2022–23 ex2

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- 5 Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- access control: challenge-response, strong authentication
- password-based cryptography
- secure communication channels
- setup by narrowband channel
- setup by a trusted third party: Kerberos, PKI

- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

SV 2024–25 Trust Establishment CryptoSec 843 / 1098

Application: Access Control

many scenarios:

- access to a computer
- access to a door: "Sésame"
- access to a mailbox
- access to a service through the Internet

access control = peer authentication

Password Authentication Protocol (Step 1)

- PROBLEM: authenticate a client to a server
- HYPOTHESIS 1: channel to server keeps confidentiality
- example:
 - physical access
 - secure channel from semi-authenticated setup (client authenticates the server e.g. using TLS)

Password Authentication Protocol — i

- server keeps a database of (ID, password) entries
- channel to server keeps confidentiality

Client Server $\frac{\mathsf{ID},\mathsf{password}}{\mathsf{password}} \longrightarrow \mathsf{get}\;\mathsf{entry}\;(\mathsf{ID},w) \\ \mathsf{check}\;w = \mathsf{password}$

Problem: if adversary has access to database he can get the password

SV 2024–25 Trust Establishment CryptoSec 84

Password Authentication Protocol — ii

- server keeps a database of (ID, OW(password)) entries
- channel to server keeps confidentiality

Client Server

 $\frac{\text{ID,password}}{\text{get entry (ID}, w)}$ get entry (ID, w) check $w = \frac{\text{OW}}{\text{(password)}}$

Problem: multi-target invertion attacks (specially when password have low entropy)

Password Authentication Protocol — iii

- server keeps a database of (ID, salt, OW(password, salt)) entries
- channel to server keeps confidentiality

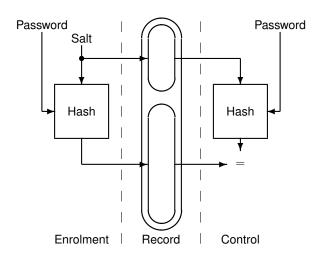
Client Server $\xrightarrow{ID,password} get entry (ID, salt, w) \\
check w = OW(password, salt)$

advantages:

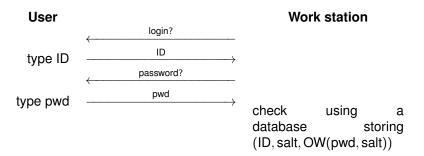
• avoid <u>multi-target</u> bruteforce attacks from database (does not avoid single-target exhaustive search from database)

SV 2024–25 Trust Establishment CryptoSec 84

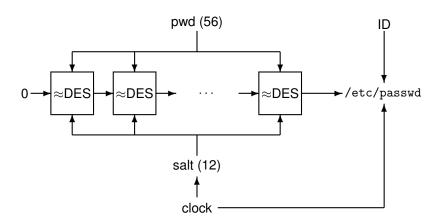
Password Access Control Using Salt



Example: UNIX Password Access Protocol



UNIX Passwords

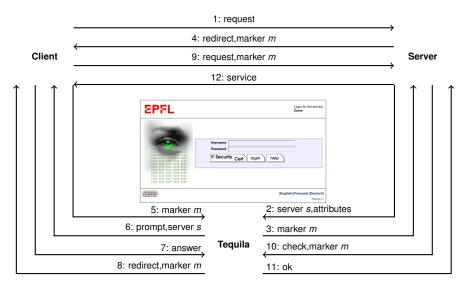


SV 2024–25 Trust Establishment CryptoSec 851 / 1098

Examples

- UNIX password authentication
- Basic Access Control in HTTP [RFC2617]
- IMAP4rev1 [RFC2060]
- tequila authentication at EPFL

tequila@epfl



problem: not sure the prompt comes from tequila privacy: Tequila warns if a sensitive attribute is requested by Server

853 / 1098

Pros and Cons

Pros

- the server does not keep the password (only a digest)
- the client need not run any calculation (nice for human clients!)

Cons

 does not work through a channel without confidentiality protection: the password can be compromised

Password Authentication Protocol (Step 2)

- PROBLEM: authenticate a client to a server
- HYPOTHESIS 2: adversary is passive
- example: unencrypted semi-authenticated channel (client authenticates the server e.g. using TLS but they are not allowed to use encryption)

Passive vs Active Adversary

- passive adversary: only listen to communications and tries to get credential to later pass access control
- active adversary: can interfere with client or server communications e.g. man-in-the-middle

Challenge/Response Protocol

- server keeps a database of (ID, secret) entries
- adversary is passive

Client Server

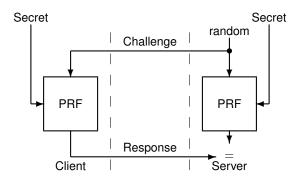
$$r = \mathsf{PRF}_{\mathsf{secret}}(c) \xrightarrow{\mathsf{challenge}\ c} \mathsf{get}\ \mathsf{entry}\ (\mathsf{ID},\mathsf{secret})$$

$$\mathsf{pick}\ c\ \mathsf{at}\ \mathsf{random}$$

$$\mathsf{check}\ r = \mathsf{PRF}_{\mathsf{secret}}(c)$$

SV 2024–25 Trust Establishment CryptoSec 857 / 1098

Challenge/Response Protocol



Pros and Cons

Pros

• resistance to passive adversary (if secret has large entropy)

Cons

- the server must keep the secret and strongly protect the database
- vulnerable to relay attacks
- vulnerable to passive offline attacks (if secret has low entropy)

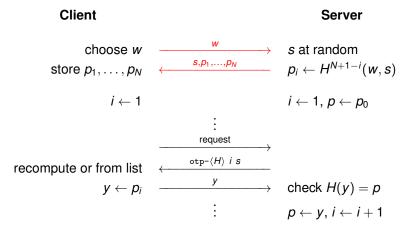
Examples

- GSM
- Digest Access Control in HTTP [RFC2617]
- Bluetooth peer authentication
- access control to UBS account (later in this chapter)

Case Study: Bluetooth

S/Key - OTP [RFC2289]

possible hash function H: md4, md5, sha1



w must have a large entropy challenges must be authenticated responses shall be protected against delays in delivery

HMAC-Based One-Time Password (HOTP) [RFC4226]

HOTP generator (client) and HOTP validator (server)

$$HOTP(K, C) = DT(HMAC(K, C)) \mod 10^d$$

- uses HMAC-SHA1 (output of 20 bytes)
- C (8 bytes) counter synchronized between client and server
- K shared secret
- DT: read 4 consecutive bytes of the input starting from the one of index equal to the last four bits of the input
- T number of unsuccessful attempts before the server blocks
- s: size of a look-ahead window (to resynchronize the counter)
- d: digit length of HOTP values in decimal

Time-Based One-Time Password (TOTP) [RFC6238]

- set C to a function of the cuttent time
- $C = \frac{\mathsf{time} t_0}{X}$ (typically: $X = 30\mathsf{sec}$)
- can use SHA2
- application: Google Authenticator, Microsoft Authenticator
- used for 2-factor authentication

Human Factor against Password Access Control

- weak passwords: short, trivial (in dictionaries, first name)
- long passwords are hard to remember
- people are lazy (or don't want to be bothered)
 write passwords on post'it, bypass security protocols, ...

SV 2024–25 Trust Establishment CryptoSec 865 / 1098

Alternate Authentication Means

- from what you know: password
 - © always available (unless forgotten)
 - must address the human factor
- from what you possess: secure token (smart card, dongle, secureID, key lock)
 - ©tamper proof, can perform cryptographic operations
 - ©can be stolen, lost, forgotten
- from what you are: biometrics
 - ©always available
 - ©fuzzy, not very secure, threat to humankind, impossible to change

strong authentication = authentication using at least two methods (2-way authentication)

example: smart card + PIN code

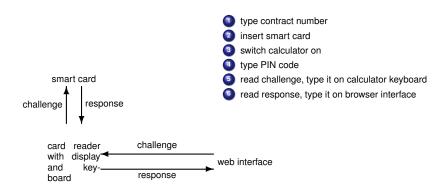
Example of Critical Application: UBS E-Banking

[E-banking from a browser]

Requirements for e-Banking

- strong bidirectional authentication
- confidentiality of communication
- integrity of communication
- non-repudiation of transaction
- resilience to clients in hostile environment

Example: (Old) UBS E-Banking



- smart card + external reader (calculator)
- challenge-response protocol

Example: (New) UBS E-Banking

- UBS app installed on smartphone (tedious setup)
- biometric access to app
- scan QR code and report to UBS

CryptoSec

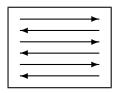
870 / 1098

- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

Password-based Access Control Protocol

Alice password: w random tape: r_A

Bob password: w random tape: r_B



output: ok (or abort)

Password vs Secret Keys

- secret keys are stored by computers (can be pretty long)
- passwords are also kept in human memories
- typically: password have less than 48 bits of entropy

Online Dictionary Attack: a Generic Attack

generic

- 1: repeat
- 2: make a new guess \hat{w} following a dictionary
- 3: simulate Alice with password input \hat{w} to interact with Bob
- 4: until Bob accepts
- 5: print ŵ

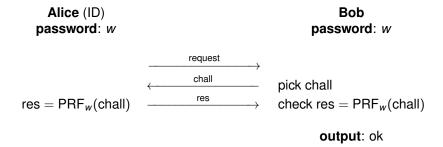
a protocol is secure if this attack is the best one

SV 2024–25 Trust Establishment CryptoSec 874 / 1098

Online and Offline Passwords Recovery

	online	offline
method	try to connect us- ing a guess for the password until it works	get a witness look for a guess which is consistent with the witness
countermeasure	 increasing delay before new attempt blocked after xx trials 	 password with large entropy use salt (mitigate multi-target) leak no witness

(Bad) Example: Challenge/Response Protocol

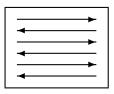


subject to offline exhaustive search

Password-Based Authenticated Key Agreement

Alice password: w random tape: r_A

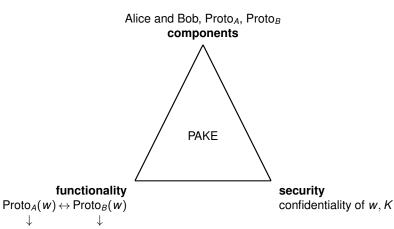
Bob password: w random tape: r_B



output: K_A output: K_B

- functionality: $K_A = K_B = K$
- security
 - active adversary learns (almost) nothing about w
 - if party ends on K the active adversary has no clue about K

A New Primitive



Key Agreement: a (Bad) Idea

Alice Bob password: w password: w

output: z_A output: z_B

subject to offline exhaustive search

Key Agreement: Another (Bad) Idea

Alice password:
$$w$$
 password: w poick K $\hat{K} \leftarrow \mathsf{Dec}_w(\hat{c})^d \bmod N \overset{N,e}{\longleftarrow} c \leftarrow \mathsf{Enc}_w(K^e \bmod N)$ output: \hat{K} output: K

- if K is later revealed, offline exhaustive search possible
- partition attack: eliminate all \hat{w} such that $\mathrm{Dec}_{\hat{w}}(c) \geq N$

Abdalla, Pointcheval [CT-RSA 2005]

Alice password: w

Bob password: w

$$\begin{array}{cccc} \operatorname{pick} x \in \mathbf{Z}_q^*, \ X \leftarrow g^x & \operatorname{pick} y \in \mathbf{Z}_q^*, \ Y \leftarrow g^y \\ X^* \leftarrow Xg_2^w & \xrightarrow{X^*} & Y^* \leftarrow Yg_3^w \\ K_A \leftarrow (Y^*/g_3^w)^x & \xleftarrow{Y^*} & K_B \leftarrow (X^*/g_2^w)^y \\ K_A' \leftarrow \operatorname{KDF}(A, B, X^*, Y^*, w, K_A) & K_B' \leftarrow \operatorname{KDF}(A, B, X^*, Y^*, w, K_B) \end{array}$$

output: K_A'

output: $K'_{B_{.}}$

(public parameters: q prime, g, g_2, g_3 generators of the same order-q group

References on Password-Based Cryptography

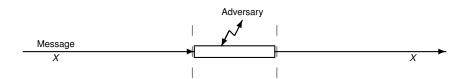
- C. Boyd, A. Mathuria.
 Protocols for Authentication and Key Establishment.
 Information Security and Cryptography, Springer Verlag, 2003.
- S. M. Bellovin, M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. In *IEEE symposium on Research in Security and Privacy*, IEEE Computer Society Press, pp. 72–84, 1992.

Case Study: The Biometric Passport

- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

SV 2024–25 Trust Establishment CryptoSec 884 / 1098

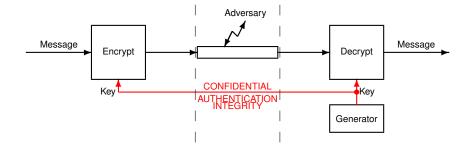
The Cryptographic Trilogy



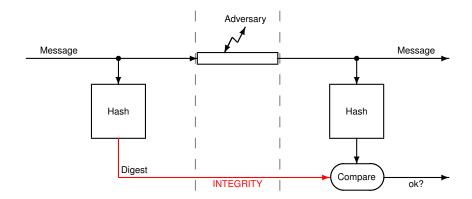
- Confidentiality (C): only the legitimate receiver can get X
- Authentication + Integrity (A+I): only the legitimate sender can insert X and the received message must be equal to X

SV 2024–25 Trust Establishment CryptoSec 885 / 1098

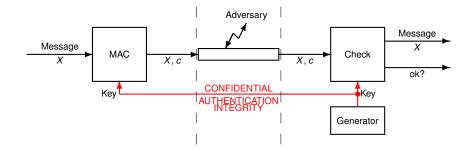
Enforcing Confidentiality by Encryption



Enforcing Integrity by Hash Function



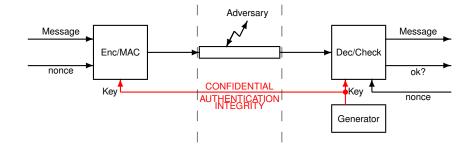
Enforcing Authenticity + Integrity by MAC



Authentication and Integrity

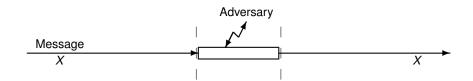
- Message integrity: we make sure that the received message is equal to the sent one
- Message authentication: we make sure about who sent the message
- good authentication means often enforce integrity at the same time symmetric encryption is sometimes used for message authentication but this is a BAD practice e.g. Enc(message||redundancy)
- but there are some not enforcing integrity example: problem in GSM/WEP/Bluetooth/... (see slide 966)

A+I+C by Symmetric Cryptography



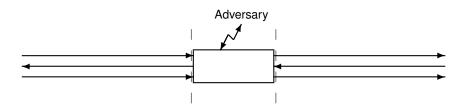
SV 2024–25 Trust Establishment CryptoSec 890 / 1098

Security Property of Communication Channels



- Confidentiality, Authentication, Integrity
- **Freshness**: the received *X* was not received before (no replay)
- **Liveliness**: a sent message *X* is eventually delivered (no loss)
- Timeliness: (> liveliness) time of delivery is upper bounded
- Deniability: no evidence of sending a message leaks
- Non-repudiation: sender cannot deny his sent messages
- Forward secrecy: secrecy even when states leak in the future
- Postcompromise security: healed secrecy even after leakage

From Packet Security to Session Security



- Key establishment: set up A/I/C key material for message security
- Session integrity: the sequence of protocol messages is eventually the same at both ends (messages in transit cannot be swapped)
- Privacy: many different notions at this time!
 (anonymity: cannot identify sender or receiver)
 (unlinkability: cannot link that two messages by same sender)

Enforcing Session Integrity

Assuming that channels enforce A+I+C and that key establishment is secure, session integrity splits in two problems

- Sequentiality: whenever a participant has seen a message sequence starting with X₁,..., X_t, X_t coming in, then the other participant has seen a message sequence whose first t messages are X₁,..., X_t
 - : easy to protect: just number the messages and apply A+I protection on message numbers
- Termination fairness: making sure that the last message on both ends is the same one
 - : no cheap way to enforce it if liveliness is not guaranteed

Sequentiality using A + I Message Security

common method:

- common method: authenticate a sequence number in packets and check that received packets have consecutive sequence numbers
- old TLS example: Y = Enc(X||MAC(seq||X))
 where seq is implicit
- modern TLS example: $Y = AE.Enc(\underbrace{seq}_{x,x})$

where seq is implicit (authenticated encryption with associated data)

SV 2024–25 Trust Establishment CryptoSec 894 / 1098

Fair Termination Problems

- example: contract signing
 Alice and Bob have signed a contract and want to be sure that they both consider the contract as valid
- there must be one critical message in the protocol such that one participant thinks his counterpart has a valid contract the other does not think the transaction is valid
- this reduces to synchronizing on an exit status bit

Summary for Secure Channel (so far)

level	property	toolkit
packet	A+I	MAC
	confidentiality	symmetric encryption
	A+I+C	integrated modes
	freshness	(comes with sequentiality)
	liveliness	(must live without)
session	key establishment	setup protocols (next)
	sequentiality	various protocol options
	termination	?
all	privacy	?

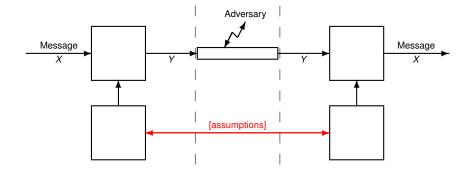
- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

Problem

Q: How to setup a secure channel over an insecure channel?

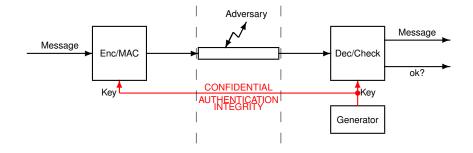
A:hfr n frpher punaary

Virtual Channels by Combination of Channels



SV 2024–25 Trust Establishment CryptoSec 899 / 1098

Secure Channel from A+I+C Channel: PSK



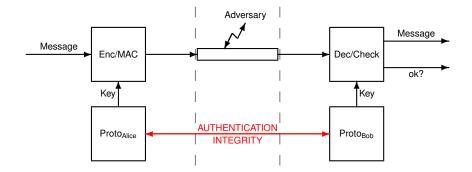
PSK: PreShared Key

SV 2024–25 Trust Establishment CryptoSec 900 / 1098

Next Step: Strongly Secure Channel From Weakly Secure Channel

Q: How to relax security properties at setup?
A: hfr choyvp-xrl pelcgbtencul

... with A+I Channel: Key Agreement Protocol



The Diffie-Hellman Key Agreement Protocol

Assume a group $\langle g \rangle$ generated by some g of prime order q

Alice Bob

$$\begin{array}{cccc} \operatorname{pick} \ x \in \mathbf{Z}_q^*, \ X \leftarrow g^x & \xrightarrow{\qquad \qquad & } & \operatorname{if} \ X \not \in \langle g \rangle - \{1\}, \ \operatorname{abort} \\ \operatorname{if} \ Y \not \in \langle g \rangle - \{1\}, \ \operatorname{abort} & \leftarrow & & \operatorname{pick} \ y \in \mathbf{Z}_q^*, \ Y \leftarrow g^y \\ K \leftarrow \operatorname{KDF}(Y^x) & K \leftarrow \operatorname{KDF}(X^y) \\ & (K = \operatorname{KDF}(g^{xy})) \end{array}$$

SV 2024–25 Trust Establishment CryptoSec 903

Key Transfer by Public-Key Encryption

SV 2024–25 Trust Establishment CryptoSec 904 / 1098

Passive vs Active Adversaries

- passive adversary: just listen to communications and tries to decrypt communications (e.g. by recovering the key)
 The Diffie-Hellman protocol resists to passive adversaries
- active adversary: can interfere with communication (modify messages, insert messages, replay messages)
 e.g. man-in-the-middle attack
 The Diffie-Hellman protocol requires A+I channel to protect against it

Approaches to Build an Initial Authenticated Channel

- using really secure initial channel setup cable, Near Field Comm. (see Bluetooth simple pairing)
- by user monitoring
 caution: humans are not so reliable for security (e.g. Bluetooth)
 → password-based, SAS-based
- using a trusted third party examples: secure token, key server, certificate authority

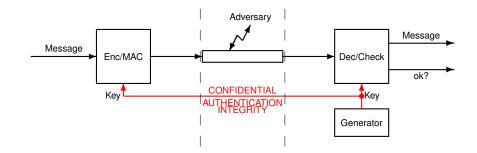
Summary

- we need specific means to A+I-securely transmit a public key
- we agree on a master key using public key cryptography
- we use conventional cryptography to set up secure channels
 - we derive several symmetric keys using key derivation functions
 - we use symmetric encryption and MAC
- we must live with the fear that termination may be unfair

- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

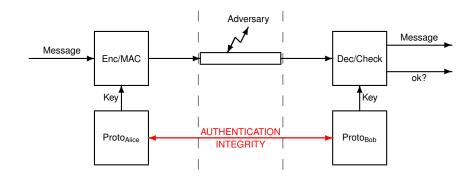
SV 2024–25 Trust Establishment CryptoSec 908 / 1098

Conventional Cryptography



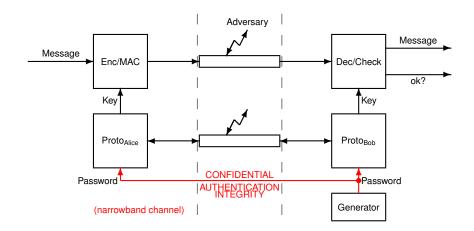
SV 2024–25 Trust Establishment CryptoSec 909 / 1098

Public-Key Cryptography



SV 2024–25 Trust Establishment CryptoSec 910 / 1098

Password-Based Cryptography

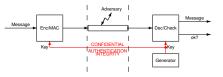


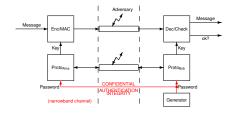
SV 2024–25 Trust Establishment CryptoSec 911 / 1098

Secure Communication

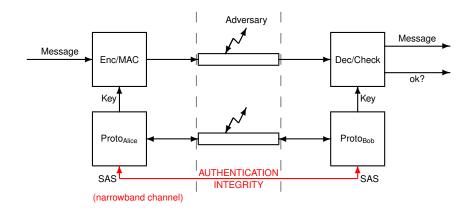
with confidential channel

without confidential channel

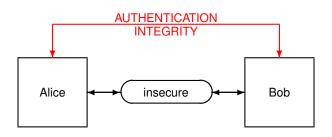




Cryptography Based on Short Authenticated Strings



Security from Human-Monitored Short String Authentication

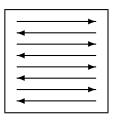


- communication over a cheap/efficient but insecure channel
- security set up with the help of a short authenticated string (SAS)
- authentication based on human monitoring

Message Authentication Protocols

Alice input: m

Bob



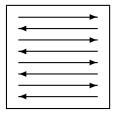
output: \hat{m}

- functionality: $\hat{m} = m$
- security: if $\hat{m} \neq \bot$, then Alice has run the protocol with $m = \hat{m}$
- application: semi-A key agreement
 (m is a symmetric key for secure channel so that Bob knows he
 is talking to Alice)

Message Cross-Authentication Protocols

Alice input: m_A

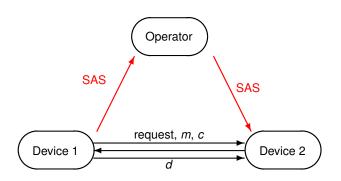
Bob input: m_B



output: m_B output: m_A

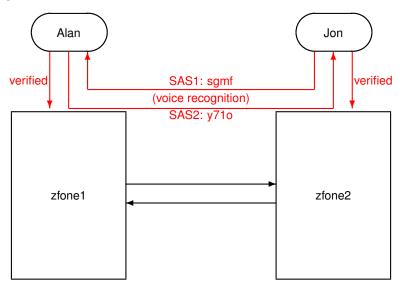
- two message authentication protocols at the same time
- application: authenticated key agreement (m_A and m_B are Diffie-Hellman public keys)

Application I: Personal Area Network Setup



Application II: Voice over IP

Existing Standard: ZRTP



Application III: Peer-to-Peer PGP Channel Setup

Application IV: Disaster Recovery

- on the road, after a key loss (computer crash, stolen laptop)
 → set up of a security association
- PKI collapse (company bankrupt, main key sold, act of God)

 → set up of a security association

Semi-Authenticated Non-Interactive: Application

Faculté informatique et communications Institut d'informatique et de communications Laboratoire de sécurité et de cryptographie

Serge VAUDENAY

Professeur

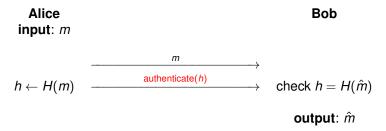
EPFL IC LASEC INF 241 (Bâtiment INF) Station 14 CH - 1015 Lausanne

Tél.: +41 21 6937696 serge.vaudenay@epfl.ch http://lasec.epfl.ch

12E7 CAE2 2119 086C DC3D

Folklore

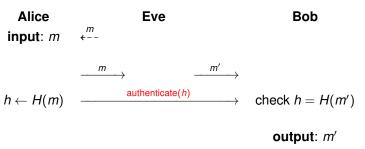
Protocol Balfanz-Smetters-Stewart-Chi Wong 2002



- efficient, provably security assuming collision resistance
- ithis requires SAS of at least 256 bits

A Collision Attack

if SAS is so short that we can find collisions $H(m) = H(m'), m \neq m'$, make Alice run the protocol with m (chosen input attack) but change the message to Bob to m'



SV 2024-25 Trust Establishment CryptoSec 923 / 1098

Pasini-Vaudenay 2006: SAS-Based NIMAP

Alice input:
$$m$$

$$c \leftarrow \operatorname{commit}(m;r) \xrightarrow{\|m\|r\|} \hat{c} \leftarrow \operatorname{commit}(\hat{m},\hat{r})$$

$$\operatorname{SAS} \leftarrow H(c) \xrightarrow{\operatorname{authenticate}(\operatorname{SAS})} \hat{c} \leftarrow \operatorname{commit}(\hat{m},\hat{r})$$

$$\operatorname{check} \operatorname{SAS} = H(\hat{c})$$

$$\operatorname{output:} \hat{m}$$

- provable security, efficient
- can work with SAS of 128 bits (the least possible for NIMAP)

924 / 1098

Semi-Authenticated Interactive

Vaudenay 2005

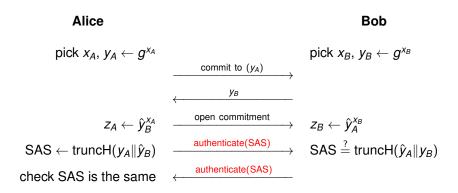
Alice input: mpick $R_A \in_U \{0,1\}^k$ pick $R_B \in_U \{0,1\}^k$ $c \leftarrow \operatorname{commit}(m,R_A;r) \xrightarrow{m\parallel c} \hat{c} \stackrel{?}{=} \operatorname{commit}(\hat{m},\hat{R}_A;\hat{r})$ $SAS \leftarrow R_A \oplus \hat{R}_B \xrightarrow{\text{authenticate(SAS)}} \hat{c} \stackrel{?}{=} \operatorname{commit}(\hat{m},\hat{R}_A;\hat{r})$ $\operatorname{check SAS} = \hat{R}_A \oplus R_B$

output: m

- provable security, efficient
- can work with SAS of 20 bits

Authenticated Interactive

Zimmermann 1995: PGPfone



output: z_A output: z_B

Attack on a Variant Without Commitment

SV 2024–25 Trust Establishment CryptoSec 927 / 1098

References on SAS-Based Cryptography

- D. Balfanz, D. K. Smetters, P. Stewart, H. Chi Wong. Talking to Strangers: Authentication in Ad-Hoc Wireless Networks. In Network and Distributed System Security Symposium Conference (NDSS 02), 2002.
- C. Gehrmann, C. Mitchell, K. Nyberg. Manual Authentication for Wireless Devices. In RSA Cryptobytes, vol. 7, pp. 29–37, 2004.
- S. Vaudenay.
 Secure Communications over Insecure Channels Based on Short Authenticated Strings.

In Advances in Cryptology (CRYPTO'05), LNCS vol. 3621, pp. 309-326, 2005.

- S. Pasini, S. Vaudenay. Secure Communications over Insecure Channels Using an Authenticated Channel.
 - In Topics in Cryptology (CT-RSA'06), LNCS vol. 3860, pp. 280-294, 2006.
- S. Pasini, S. Vaudenay.
 SAS-Based Authenticated Key Agreement.
 In Public Key Cryptography (PKC'06), LNCS vol. 3958, pp. 385–409, 2006.

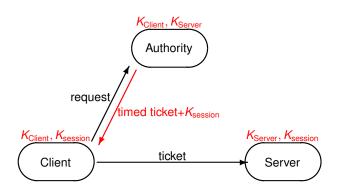
- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

SV 2024–25 Trust Establishment CryptoSec 929 / 1098

Several Trusted 3rd Party Approach

- soft 3rd party: user monitoring password-based, SAS-based
- pervasive 3rd party: secure token smart cards, secureID, trusted computing platform
- key server: Kerberos symmetric cryptography only, for corporate network
- certificate authority: PKI for global network

Example: Kerberos



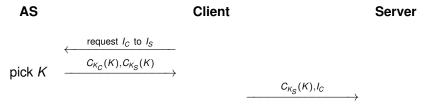
- timed ticket+K_{session} encrypted with K_{Client}
- ticket encrypted with K_{Server}

Kerberos

Hypotheses:

- there is an online (trusted) authentication server (AS)
- AS shares K_C with client I_C
- AS shared K_S with server I_S
- Goal: to help I_C and I_S to share a session key K (and to help careless users to get privacy)

Server-Aided Authentication (Bad Protocol)



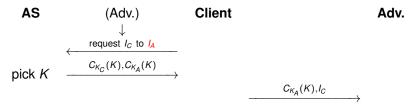
Problem: there is no authentication: an attacker can replace I_C or I_S

SV 2024–25 Trust Establishment CryptoSec 933 / 1098

Attack

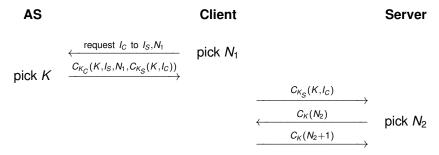
Server thinks he is talking to I_C !

Attack



Client thinks he is talking to $I_S!$

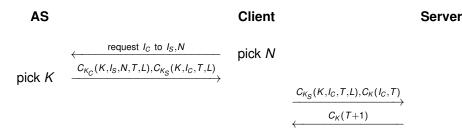
Needham-Schroeder Authentication (Still Bad)



Problem: replay attack by impersonating C after K gets compromised

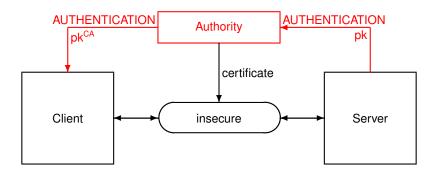
SV 2024–25 Trust Establishment CryptoSec 936 / 10

Basic Kerberos Protocol

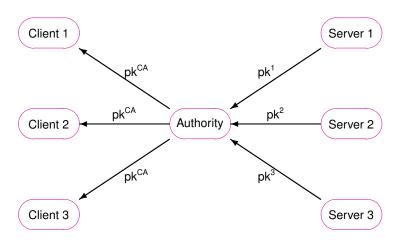


T: clock value; L: validity period

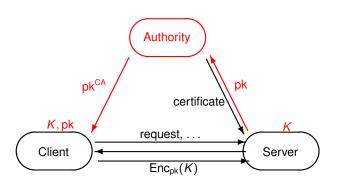
The Certificate Authority Model



Critical Secure Channels



Semi-A Key Exchange Using Certificates

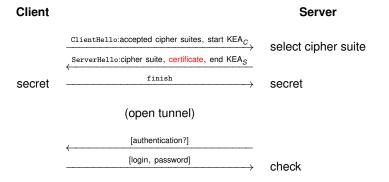


Semi-Authenticated Channel

one participant authenticates the other (typical for client-server communication)

- client receives the authenticated (static) key of the server
- client and server run a key establishment protocol
- secure A+I+C channel is set up
 - client knows he is talking to the correct server
 - server has no clue to which client he is talking to

A Typical TLS 1.3 Session



An X.509 Certificate Example: Overall Structure

```
Certificate:
Data:
  Version: 3 (0x2)
  Serial Number: 674866 (0xa4c32)
  Signature Algorithm: md5WithRSAEncryption
  Issuer: C=ZA, ST=Western Cape, L=Cape Town,
      O=Thawte Consulting cc, OU=Certification Services Division,
      CN=Thawte Server CA/Email=server-certs@thawte.com
  Validity
      Not Before: Jun 2 13:10:11 2003 GMT
      Not After : Jun 11 10:21:15 2005 GMT
  X509v3 extensions:
      X509v3 Extended Key Usage: TLS Web Server Authentication
      X509v3 Basic Constraints: critical CA:FALSE
Signature Algorithm: md5WithRSAEncryption
  8d:7b:78:60:88:c4:13:4e:94:0d:bc:3b:1b:1c:b6:c9:bc:b1:
  0b:ed:7d:eb:6f:08:3a:ba:6d:21:36:93:38:36:66:7b:a7:bc:
  c0.3f.c4.e0.cf.h4.02.58.he.a6.h9.1d.45.a2.c4.58.38.07.
  e4:63:1a:d9:b9:8d:27:7c:93:67:31:82:6f:a3:3c:86:0c:e0:
  10.71.de.f2.e9.74.af.ac.76.b4.5b.8e.48.57.9d.8f.12.f6.
  72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:
  73 · ed · e8 · 64 · b0 · ae · 9e · e2 · 36 · d7 · 0c · 77 · 92 · cc · c7 · c0 · e0 · 8a ·
  54.24
```

An X.509 Certificate Example: Subject

```
Subject: C=CH, ST=Bern, L=Bern,
    O=Switch - Teleinformatikdienste fuer Lehre und Forschung,
    CN=nic.switch.ch
Subject Public Key Info:
    Public Kev Algorithm: rsaEncryption
    RSA Public Key: (1024 bit)
        Modulus (1024 bit):
            00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90:
            65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f:
            3c:d9:12:6b:8c:57:95:e1:57:e8:48:a6:7f:dd:15:
            8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f:
            a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f:
            58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2:
            0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5:
            4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:
            47:18:9e:47:37:bb:18:f6:87
        Exponent: 65537 (0x10001)
```

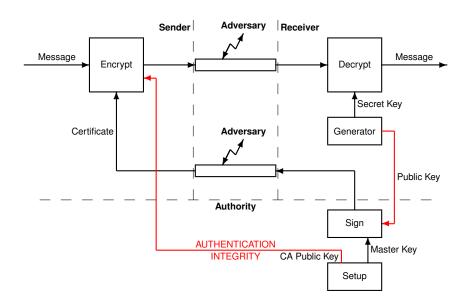
Two Approaches to Revocations

- certificate revocation lists (CRL):
 regularly, or under emergency cases, revocation lists are
 released by CA
 clients should always check for new CRLs (at the nearest
 repository) and go through the list before treating any certificate
 drawback: high bandwidth
- online certificate status protocol (OCSP): clients should send certificates to the CA for approval drawback: subject to DoS attacks

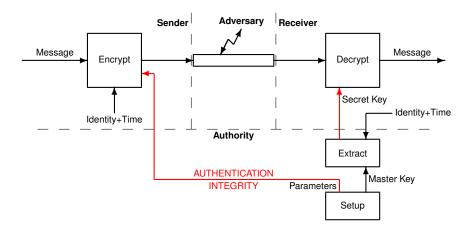
Several 3rd-Party Based Trust Infrastructure

- Kerberos symmetric-crypto with key escrow
- PKI advantage: widely available
- identity-based cryptography: have public keys implicit from identities and time advantage: time-based revocation with small period
- certificateless encryption: combine the two models advantage: requires no key escrow
- certificate-based encryption: certificate is private, required for decryption
 - \approx equivalent to certificaless encryption (name is confusing)

Public-Key Infrastructure

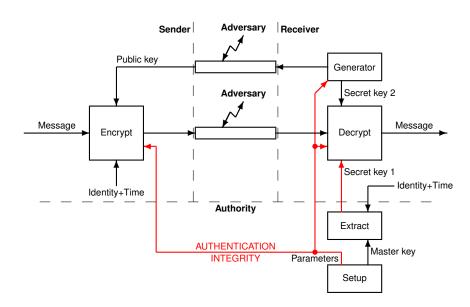


Identity-Based Encryption

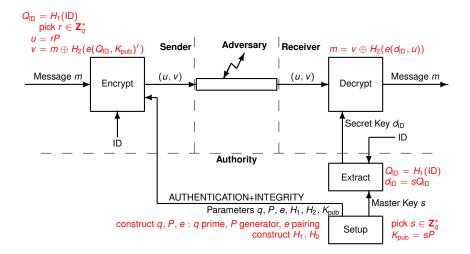


SV 2024–25 Trust Establishment CryptoSec 948 / 1098

Certificateless Encryption



Boneh-Franklin Identity-Based Encryption

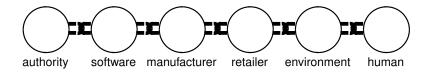


SV 2024–25 Trust Establishment CryptoSec 950 / 1098

- Trust Establishment
 - Access Control
 - Password-Based Cryptography
 - From Secure Channel to Secure Communications
 - Setup of Secure Channels
 - Setup by Narrowband Secure Channel
 - Setup by a Trusted Third Party
 - Trust Management and Cryptography

SV 2024–25 Trust Establishment CryptoSec 951 / 1098

Chain of Trust in the PKI Model



- CA must issue correct certificate
- sofware must include correct CA public keys
- harware must execute what it is supposed to
- retailer must not add malicious software
- environment must not bypass secure software
- human user must care invalid certificates.

Chain of Trust in Real Life

- software companies add CA's on commercial basis
- some CA's are corruptable
- worms may corrupt CA lists
- users pay no attention to browser warnings

consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue → education, psychology, ergonomy, technology

Several Approaches to Certificate Verification

- TLS: trust model based on a PKI verify a certificate every time the public key is used clients hold a list of CA public keys and retrieve server certificates
- SSH: trust model based on cache verify that a public key has not changed since the last time clients keep in cache the public key of servers (first connection may be insecure)
- PGP: trust model monitored by users
 use a public key ring set up by the user
 users set up their confidence level in obtained public keys
 a "web of trust" can be used to check a public key
 (to check who has put a higher confidence level to this key)

More References

 Gentry. Certificate-Based Encryption and the Certificate Revocation Problem. EUROCRYPT 2003, LNCS 2656.

Metacryptography

Can we Trust Crypto?

- 2nd law of thermodynamics: no matter the real strength of crypto designs, security decreases with time (Moore's law or cryptanalysis)
- wrong hypotheses:
 - e.g. we might figure out that factoring is easy
 - --- need for crypto-diversity
- academic system failure: crypto results are done under pressure: too many conferences, too many papers, too many beans to get
 - --- many results are wrong
 - --- need for automatic proof verification
- threat model definition issues: some models are complicated and later happen to be irrelevant
- security does not add: secure + secure may be insecure
 - --- need for good composability models
- quantum threat
 - --- need for post-quantum cryptography

Conclusion

- secure communication is essentially solved as long as birth and death are secure
 - birth: need for means to authenticate public keys
 - death: no solution, just behave as if we would never die
- crypto offers many different models

PKI, password-based, ID-based, certificateless, SAS-based

- correct solution must be determined on a case-by-case basis
- trust establishment is not a pure-crypto issue
 - need to address the human factor
 - need to deal with trust management:

logistic, software engineering network security

Must be Known

- techniques for access control
- password-based cryptography
- secure channels
- SAS-based cryptography
- Kerberos
- public-key cryptography and man-in-the-middle attacks
- PKI, certificate validation model

Train Yourself

- secure channel: final exam 2012–13 ex3 final exam 2009–10 ex2
- mass surveillance: final exam 2016–17 ex2
- bad EKE variant: final exam 2014–15 ex4
- SAS-based crypto: final exam 2017–18 ex3

- **1** Ancient Cryptography
- 2 Diffie-Hellman Cryptography
- **3** RSA Cryptography
- 4 Elliptic Curve Cryptography
- Symmetric Encryption
- **6** Integrity and Authentication
- Public-Key Cryptography
- Trust Establishment
- Case Studies

Roadmap

- WiFi
- blockchains
- mobile telephony
- Signal
- NFC creditcard payment
- Bluetooth
- Biometric passport
- TLS

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

IEEE 802.11 in a Nutshell

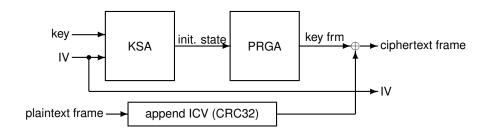
- wireless local area network (WLAN)
- since 1997
- secure communication by wired equivalent privacy (WEP)
- station authentication by Shared Key Authentication (SKA)
- since 2003: <u>interim</u> Wi-Fi Protected Access (WPA) due to security issues
- since 2004: added WPA2 (complete change)

WEP Security Goals

- privacy as if communication was through a wired connection
- protect against unauthorized access

- use up to 4 (common) pre-shared key to be manually set
 - → key not frequently changed
 - \rightarrow key not too long (40 or 104 bits)
 - → key stored at many places
- entirely based on RC4 stream cipher

WEP Encryption



→ self-synchronizing stream cipher (24-bit IV sent in clear)

(Terrible) Integrity Protection using CRC32

$$\label{eq:enckey} Enc_{key}(IV,pt) = [pt \| CRC32(pt)] \oplus keyframe(key,IV)$$
 packets are easily malleable (Borisov-Goldberg-Wagner 2001):

- $\mathsf{Enc}_{\mathsf{key}}(\mathsf{IV},\mathsf{pt}) \oplus [\Delta \| \mathsf{CRC32}(\Delta)]$
- $= [pt||CRC32(pt)] \oplus [\Delta||CRC32(\Delta)] \oplus keyframe(key, IV)$
- $= [pt \oplus \Delta || CRC32(pt) \oplus CRC32(\Delta)] \oplus keyframe(key, IV)$
- $= [pt \oplus \Delta || CRC32(pt \oplus \Delta)] \oplus keyframe(key, IV)$
- = Enc_{key}(IV, pt $\oplus \Delta$)

WEP Issues

- collision on IV's

 a 24-bit IV repeats itself, sooner or later
- use linearity of CRC32
 if modification injected, make it coherent with CRC32 encoding
- dedicated attack on WEP/RC4 encryption Fluhrer-Mantin-Shamir 2001 and follow up's
- passive ciphertext only attack
 (with some bytes of each frame known)
 after sniffing 20 000 packets, probability to recover the key is ½
 Sepehrdad-Vaudenay-Vuagnoux 2012

WEP (In)security

security is snake oil:

- confidentiality
- message authentication
- message integrity
- message freshness
- key establishment
- message sequentiality
- privacy

- (3)
- (<u>:</u>)
- no protection
- (pre-shared)
- no protection
- (3)

an example not to follow

WPA: a Dirty Quick Fix

- WPA-TKIP (Temporal Key Integrity Protocol): make the RC4 key change for every packet (based on a master key)
- message integrity (with MICHAEL, a broken MAC...)
- check IV increases to protect against nonce repetition
- set up master key using EAP (Extensible Authentication Protocol)
 - PSK (Pre-Shared Key)
 - one of the possible authentication protocols from 802.1x using an authentication server (e.g. RADIUS)
 TLS (+ two certificates), TTLS (one certificate, one password), PEAP, SIM (using GSM), AKA (using UMTS), FAST (Cisco)

SV 2024–25 Case Studies CryptoSec 970 / 109

WPA2

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode) 128 or 256 bit key

severe mistake:

- there is an option in the handshake to reset the key to a previously used one (to save computation, to ask to resend a lost packet, ...)
- but this resets the nonce counter as well...
- exploit by Vanhoef and Piessens in 2016: KRACK (Key Reinstallation Attack)
- patched implementations disabled this but have a less reliable connectivity...

back to chapter

- Oase Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

Bitcoins

- virtual currency
- launched in 2009 by an anonymous guy (pseudo Satoshi Nakamoto)
- completely decentralized, there is no authority
- anyone creates its own account
- broadcast transactions on a public ledger

A Bitcoin Transaction

"I, pk, holder of UTXO link₁,..., link_n pay x_1 to pk₁, ..., x_m to pk_m" [signature]

- UTXO = unspent transaction output
- requirement: $x_1 + \cdots + x_m$ equals sum of given UTXO
- then, amounts from [link₁], ..., [link_n] to pk become spent and amounts from transaction become new UTXO with a link
- problem: how to make sure that UTXO is really unspent
- equivalent problem: how to make everybody "see" the same list of transactions

Block Chain

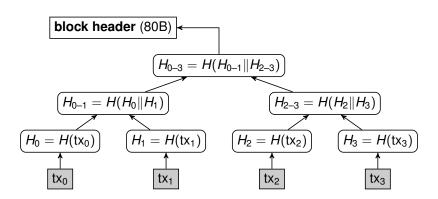
a block from the block chain:

- hash of the previous block (except for the genesis block)
- list of transactions from the last period
- proof-of-work (PoW) based on the above

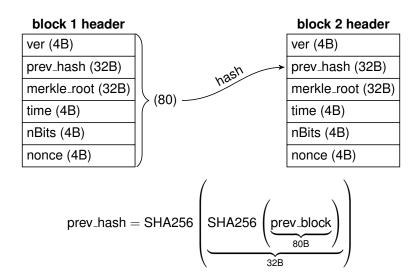
scheme for miners (every 10 minutes):

- take the longest valid block chain
- collect all broadcast valid transactions with respect to this chain
- make a new block and PoW
- broadcast it
- the first transaction (the coinbase transaction) rewards the miner

Bitcoin Block



Bitcoin Blockchain



Proof-of-Work

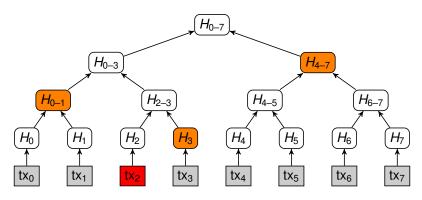
block shall contains for PoW value such that

SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016 it is constantly calibrated nonce is only 32-bit long but more data is used in PoW:

- another nonce in the coinbase tx
- timestamp (in msec)
- new transactions
- their order

Merkle Authentication Tree (Hash Tree)



Assuming H_{0-7} is authenticated, to authenticate tx_2 , just give H_3 , H_{0-1} , H_{4-7} .

 ▶ back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

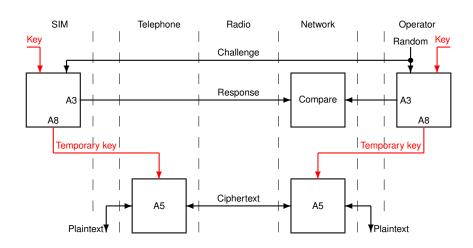
GSM Architecture

- principle 1: authentication of mobile system
- principle 2: privacy protection in the wireless link
- challenge-response protocol based on Ki
- encryption key for a limited period of time (derived from Ki)
- identity IMSI replaced by a pseudonym TMSI as soon as possible
- Ki never leaves the security module (SIM card) or home security database (HLR)

GSM Slang

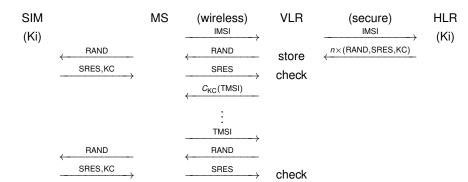
- GSM: Global System for Mobile telecommunications
- MS: Mobile Station
- SIM: Subscriber Identity Module (part of MS)
- HLR: Home Location Register
- VLR: Visitor Location Register
- IMSI: International Mobile Subscriber Identity (stored in SIM)
- Ki: subscriber Integrity Key (securely stored in SIM)

GSM Protocol



GSM Peer Authentication

$$A3/8(Ki, RAND) = (SRES, KC)$$



Security of Peer Authentication

- Ki never leaves the SIM card or the secure database of the operator (assuming SIM card is tamper proof and HLR is secure)
- assuming that A3/8 are secure PRF then authentication to network is secure
- A3/8 not standard: chosen by operator
- problem with weak A3/8 (e.g. COMP128)

security: ©

GSM Encryption

- several standard algorithms: A5/0, A5/1, A5/2, A5/3
- cipher imposed by network
- new KC for each session
- synchronized frame counter (see A5/1 on slide 479)

Security of Privacy protections

- blinding the identity: telephone identifies itself in clear at the first time then using a pseudonym given by the local network not effective at all:
 - challenges can be replayed to trace mobile telephones
 - fake network can force identification in clear (re-synchronization protocol)
- security of A5/0 (no encryption) void
- security of A5/2 weak
- security of A5/1 not high
- security of A5/3 high
- fake network can force to weak encryption (they all use the same kev)
- replaying a challenge will force reusing a key in one-time pad
- message integrity protection is ineffective (covered in WEP)

security: 3

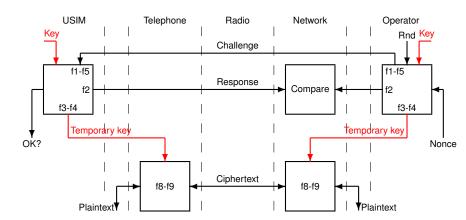
Improvements in 3G Mobile Telephony

- challenges are authenticated (fake network cannot forge them)
- integrity protection (MAC)
- protection against challenge-replay attacks
- uses a block cipher KASUMI instead of the stream cipher A5/1

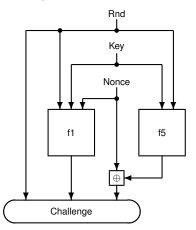
The UMTS Crypto Menagery

- communication: f8 (encryption) and f9 (MAC) based on KASUMI
- signaling communication: f6 (encryption) and f7 (MAC) based on AES
- challenge pseudorandom generator: f0
- MILENAGE (key establishment): f1, f1*, f2, f3, f4, f5, f5*
 f1 and f5: challenge computation for synchronized entities
 f1* and f5*: challenge computation for re-synchronization
 f2: response to challenge (replaces A3)
 - f3: key derivation for encryption (replaces A8)
 - f4: key derivation for MAC

MILENAGE Protocol

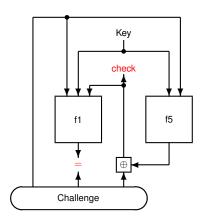


MILENAGE Challenges



- challenge authenticated based on f1
- freshness protection based on a nonce nonce may be counter-based (USIM and operator synchronized)
- privacy protection: the nonce is encrypted by f5

MILENAGE Challenge Verification



- extract Rnd
- decrypt Nonce by computing f5(Key, Rnd)
- check authentication (f1)
- check Nonce is correct

Security Misses

- network is not authenticated (network only proves he received authorization from operator)
 - \rightarrow attack by fake network rerouting through expensive networks of unencrypted network
- no encryption awareness

Mobile Telephony (In)security

- confidentiality
- message authentication
- message integrity
- challenge freshness
- mobile authentication
- network authentication
- key establishment
- frame sequentiality
- privacy

- 2G 3G
- © (

- © (

Other Standards

- DECT: wireless telephone (connected to fixed base line)
 DSAA: DECT standard Authentication Algorithm
 DSC: DECT standard Cipher
 standard is not public (but published and broken!)
- EDGE (used to be GPRS)
 GEA: GPRS Encryption Algorithm standard is not public
- cdmaOne (also called IS-95 or CDMA) no SIM card

CAVE: Cellular Authentication and Voice Encryption

ORYX: encryption algorithm (stream cipher)
CMEA: Cellular Message Encryption Algorithm

▶ back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

Signal

used in WhatsApp

- secure messaging (confidentiality, authenticity, integrity of messages)
- forward and future secrecy (confidentiality preserved even though secrets leak)
- deniability (no transferable proof of message authorship leaks)
- asynchronous (can be done offline)
- detect replay/reorder/deletion attacks
- allow decryption of out-of-order messages
- don't leak metadata
- X3DH + Double Ratchet

X3DH: Initial Key Agreement

(keys are in Curve25519)

Alice	Server	Bob
IK _A : identity key		IK_B : identity key SPK_B : signed prekey $[OPK_B]$: one-time prekey $\sigma_B \leftarrow Sign(SPK_B)$
	register	$\leftarrow \frac{IK_{B},SPK_{B},\sigma_{B},[OPK_{B}^{i}]}{i=1,\ldots}$
		$(\sigma_B \text{ signed with IK}_B)$
$ \begin{array}{c} \overset{[K_B,SPK_B,\sigma_B,[OPK_B^i]}{}\\ EK_A: ephemeral \ key \\ DH1 \leftarrow DH(IK_A,SPK_B) \\ DH2 \leftarrow DH(EK_A,IK_B) \\ DH3 \leftarrow DH(EK_A,SPK_B) \\ [DH4 \leftarrow DH(EK_A,OPK_B^i)] \\ SK \leftarrow KDF(DH1 \ DH2 \ DH3 \ [DH4]) \\ erase \ EK_A \\ AD \leftarrow IK_A \ \ K_B \end{array} $	[erase $OPH^i_\mathcal{B}$]	OPK avoids replay attacks making SK reused
state: SK, \overrightarrow{AD} send first message with \overrightarrow{AD} $- \underbrace{IK_A, EK_A, used}_{IK_A, EK_A, used}$	prekeys of Bob, first mes	sage
• • •		

Ratchet

A ratchet is a mechanical device which can only move forward.

- forward secrecy: protects past sessions against future compromises of long-term secret keys
- future secrecy: protects future sessions against compromises of ephemeral secret keys

Double Ratchet

- DH: a ratchet for every time the direction of exchange changes ratchet message indicates the new ephemeral key to use in DH good forward and future secrecy
- symmetric-key ratchet: two ratchets (one for each direction) no real future secrecy plausible deniability

Diffie-Hellman Ratchet

$$\begin{array}{c} \text{Alice} & \text{Bob} \\ \\ \text{SK} & \downarrow \\ \downarrow \\ \text{send CK}_0 \leftarrow \text{KDF}(\text{DH}_{A1}) \xrightarrow{\text{IK}_A, \text{EK}_{A1}, \dots} \\ \downarrow \\ \text{rec CK}_0 \leftarrow \text{KDF}(\text{DH}_{B1}) \leftarrow \xrightarrow{\text{DH}_{A1} = \text{DH}(\text{EK}_{A1}, \text{prev})} \text{KDF}(\text{DH}_{A1}) \rightarrow \text{CK}_0 \text{ rec} \\ \downarrow \\ \text{rec CK}_0 \leftarrow \text{KDF}(\text{DH}_{B1}) \leftarrow \xrightarrow{\text{DH}_{B1} = \text{DH}(\text{EK}_{A1}, \text{EK}_{B1})} \text{KDF}(\text{DH}_{B1}) \rightarrow \text{CK}_0 \text{ send} \\ \downarrow \\ \text{send CK}_0 \leftarrow \text{KDF}(\text{DH}_{A2}) \xrightarrow{\text{DH}_{A2} = \text{DH}(\text{EK}_{A2}, \text{EK}_{B1})} \text{KDF}(\text{DH}_{A2}) \rightarrow \text{CK}_0 \text{ rec} \\ \downarrow \\ \text{rec CK}_0 \leftarrow \text{KDF}(\text{DH}_{B2}) \leftarrow \xrightarrow{\text{DH}_{B2} = \text{DH}(\text{EK}_{A2}, \text{EK}_{B2})} \text{KDF}(\text{DH}_{B2}) \rightarrow \text{CK}_0 \text{ send} \\ \downarrow \\ \vdots \\ \vdots \\ \end{array}$$

Symmetric-Key Ratchet

given CK₀, derive chain keys CK_i, message keys MK_i

$$(MK_i, CK_{i+1}) = KDF_CK(CK_i)$$

the message i is encrypted using MK_i with AD (AEAD)

$$\begin{array}{ccc} CK_0 & \longrightarrow & CK_1 & \longrightarrow & CK_2 & \longrightarrow & \cdots \\ & & & & & & \\ MK_1 & & & & MK_2 & & \end{array}$$

Double Ratchet

given SK, derive root keys RK_i, chain keys CK_i, message keys MK_i

$$\begin{array}{rcl} RK_{initial} & = & SK & (from X3DH) \\ (RK_{new}, CK_0) & = & KDF_RK(RK_{old}, DH_{new}) \\ (MK_i, CK_{i+1}) & = & KDF_CK(CK_i) \end{array}$$

the message i is encrypted using MK $_i$ with AD (AEAD)



Involved Cryptography

- ECDH on Curve25519
- HMAC-SHA256
- AES256 CBC
- HKDF

Out-of-Band Authentication

safety number $H(|K_A||K_B||\cdots)$

- can be viewed numerically (60 decimal digits!) or with QR code
- can cross-check numbers or cross scan QR codes
- used to manually authenticate identity keys and more

Contact Discovery

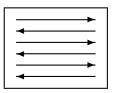
To determine if some of the contacts in the phone are Signal users, the app sends the hash of every phone number in the contact list to the central server...

Inversion attack is easy

What is needed: private set intersection:

Smartphone (small) set: contacts

Server (big) set: users



output: contacts ∩ users

back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

Typical Requirements in Secure Browsing

- unidirectional authentication
- confidentiality of communication
- integrity of communication

History

- SSLv1 by Netscape in 1994
- Microsoft version PCT in 1995
- SSLv3 by Netscape in 1995
- TLS/1.0 in 1999 [RFC2246]
- TLS/1.1 in 2006 [RFC4346]
- TLS/1.2 in 2008 [RFC5246]
- TLS/1.3 in 2018 [RFC8446]

Goal: secure any communication (e.g. HTTP) based on TCP/IP

Session State

- Session identifier
- Peer certificate (if any)
- Cipher suite choice
 - Algorithm for authentication and key exchange during handshake
 - Cipher Spec: symmetric algorithms (encryption and MAC)
- Master secret (a 48-byte symmetric key)
- nonces (from the client and the server)
- sequence numbers (one for each communication direction)
- compression algorithm (if any)

Cipher Suites (from 1.0 to 1.2)

- cipher: RC4 or DES/3DES in CBC mode (key could be limited to 40 bits for "export")
 - RC4 has biases
 - CBC mode has padding oracles

added in 1.2: AES_GCM, AES_CCM, CAMELLIA, ARIA

- hash: MD5 or SHA1
 - both have collisions
 - maybe less a problem with HMAC

added in 1.2: SHA2

key exchange: RSA or DH (in several variants)

DH_anon: ephemeral DH

DH_sig: static DH with a certificate

DHE_sig: ephemeral DH with a signed ephemeral public key

added in 1.2: ECDSA, PSK

RSA Key Exchange (Old TLS)

Client

ClientHello:accepted cipher suites, nonce_C

ServerHello:TLS_RSA_cipher_hash, certificate, nonce_S

pre_master_secret

ClientKeyExchange:ENC(pre_master_secret)

decrypt

- RSA encryption is PKCS#1v1.5
- the RSA public key must be authenticated (with a certificate)

TLS 1.3

new: better handshake protocol (less round-trips)

cipher suite in the form

TLS_KEA_AUTH_WITH_CIPHER_HASH

- key exchange (KEA) and authentication (AUTH) are separate
- KEA is ephemeral Diffie-Hellman only: DHE or ECDHE or PSK (for Diffie-Hellman: forward secrecy) keys are derived using HKDF
- AUTH is the way to authenticate peers, it can be with a certificate (RSA or ECDSA) or PSK
- CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY1305 (AEAD: Authenticated Encryption with Associated Data)
- HASH: SHA2

TLS 1.3 Cipher Suites

TLS DHE RSA WITH AES 128 GCM SHA256 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (mandatory) TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (recommended) TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (mandatory) TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (recommended) TLS DHE RSA WITH AES 128 CCM TLS_DHE_RSA_WITH_AES_256 CCM TLS DHE RSA WITH AES 128 CCM 8 TLS DHE RSA WITH AES 256 CCM 8 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (recommended) TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (recommended) TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 TLS DHE PSK WITH AES 128 GCM SHA256 TLS DHE PSK WITH AES 256 GCM SHA384 TLS_DHE_PSK_WITH_AES_128_CCM TLS DHE PSK WITH AES 256 CCM TLS PSK DHE WITH AES 128 CCM TLS PSK DHE WITH AES 256 CCM TLS ECDHE PSK WITH AES 128 GCM SHA256 TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 TLS ECDHE PSK WITH AES 128 CCM 8 SHA256 TLS ECDHE PSK WITH AES 128 CCM SHA256 TLS_ECDHE_PSK_WITH_AES_256_CCM_SHA384 TLS ECDHE PSK WITH CHACHA20 POLY1305 SHA256 TLS DHE PSK WITH CHACHA20 POLY1305 SHA256

mandatory curve: secp256r1 (NIST P-256) recommended curve: X25519 [RFC7748]

TLS 1.3 Handshake

ClientHello includes supported groups, a first KEA message for some of those groups, supported signatures (to verify certificates), a list of identifiers for PSK known keys and the PSK mode to be used

if the server selects a supported group with no first KEA message, it requests an extra round trip

TLS 1.3 Resumption

ORTT Handshake (0 round-trip time)

- a client can re-establish (resume) a previous connection
- client sends a ClientHello with PSK and a SessionTicket
- resume + send encrypted messages at the same time
- SessionTicket includes a validity
- SessionTicket includes a way to recover ResumptionSecret
- continue normal handshake + define next ResumptionSecret

session cache

session ticket

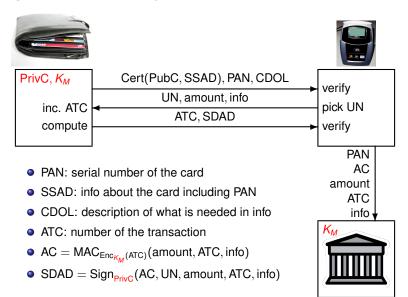
- server stores ResumptionSecret
- SessionTicket has lookup key
- delete ResumptionSecret after
- drawback: memory on server
- forward secure
- immune against replay attacks

- SessionTicket = Enc_{STEK}(ResumptionSecret)
- STEK: session ticket encryption key
- drawback: no forward secrecy
- drawback: replay attack

back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

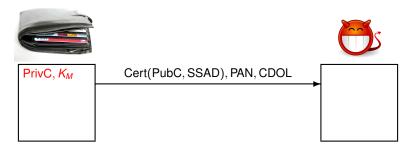
(Simplified) EMV PayPass Protocol (NFC)



From Paper to Bits...

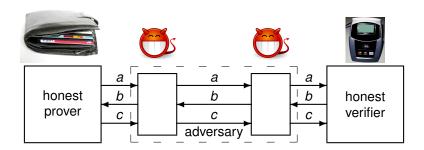
- holder is not aware a payment is happening
- holder is not aware of the payment amount
- no access control of the payment terminal (no PIN)
- payee is not authenticated (info could be anyone)
- privacy issue (SSAD leaks)

Skimming



get name on card, credit card number, expiration date, etc

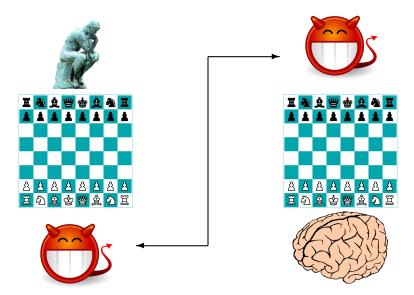
Relay Attacks



Relay Attacks in Real

- opening cars and ignition (key with no button)
- RFID access to buildings or hotel rooms
- toll payment system
- NFC credit card (for payment with no PIN)
- access to public transport
- ...

Playing against two Chess Grandmasters



back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

The Bluetooth Project

- short-range wireless technology
- designed to transmit voice and data
- for a variety of mobile devices (computing, communicating, ...)
- bring together various markets

- 1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
- robustness, low complexity, low power, low cost

Bluetooth History

- 10th Century: Viking King Harald Blåtand (Harold Bluetooth) tried to unify Denmark, Norway, and Sweden
- 1994: Ericsson initiated a study to investigate the feasibility
- May 20, 1998: Bluetooth announced, controlled by the Special Interest Group (SIG) formed by

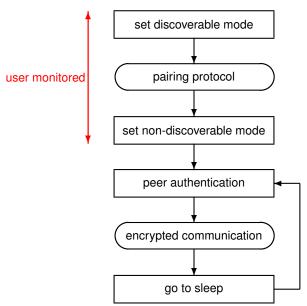
Ericsson, IBM, Intel, Nokia, and Toshiba

- 1999: Bluetooth 1.0 Specification Release
- 2004: Bluetooth 2.0 Specification Release
- 2007: Bluetooth 2.1 Specification Release (add SSP)
- 2009: Bluetooth 3.0 Specification Release (add 802.11)
- 2010: Bluetooth 4.0 Specification Release (add LE)

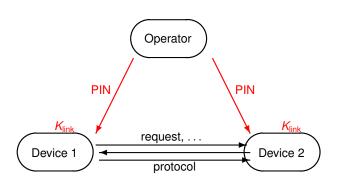
Bluetooth Security Basics (Link Level)

- can switch device to
 - non connectable (Bluetooth is off)
 - connectable but not discoverable (invisible without knowing the MAC address)
 - discoverable (introduce itself upon any broadcast request)
- pairing to set up link keys between devices
 - typically based on a random PIN
 - (dummy device) using a built-in PIN
- can manage a database of paired devices

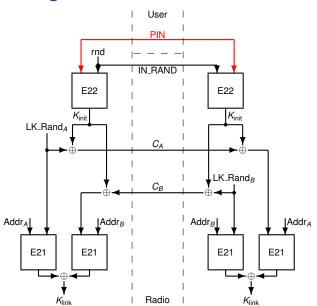
Cycles in Bluetooth



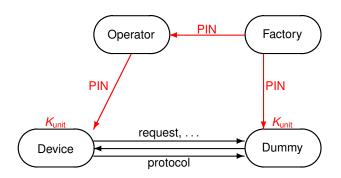
Device Pairing



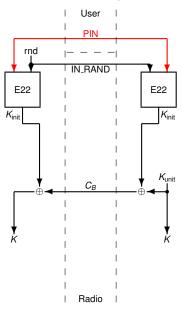
Legacy Pairing Protocol



Pairing with a Dummy Device

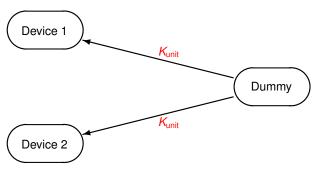


Legacy Pairing with a Dummy Device



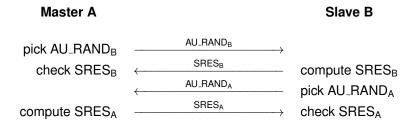
Dummy Devices: Unit Key is Shared with Many Devices

link key is forced to be the unit key



scenario: user *A* paired his headset (Dummy) with his telephone (Device 1) then user *B* took the headset for a few seconds to pair it with his computer (Device 2)...

Peer Authentication



 $SRES_d = E1(K, AU_RAND_d, BD_ADDR_d)$

Insecurity Summary

- dummy devices use the same key with many devices
- suspicious security of cryptographic primitives
- academic attacks on E0 encryption
- integrity protection is void
- messages can be maliciously erased in the radio channel
- privacy protection is weak (low entropy BD_ADDR)
- pairing protocol weak against passive attacks (next slides)

Key Establishment (In)security

Theorem

The pairing protocol is secure if either PIN has large entropy or the protocol is run through a private channel (under some "reasonable assumptions" about the cryptographic algorithms).

- © a cheap pragmatic security
- pretty weak security

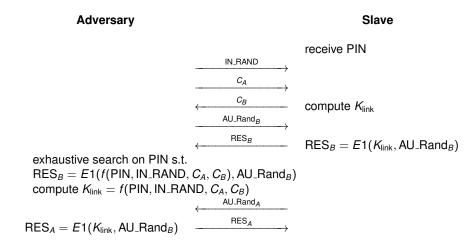
devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)

Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not confidential) and guessable PIN (lazzy operator)

- sniff the pairing protocol, get IN_RAND, C_A, C_B
- \odot sniff a peer-authentication protocol, get rand, $F(\text{rand}, K_{\text{link}})$
- ullet can check a guess on K_{link}
- run an offline exhaustive search on PIN

Online Impersonation Attack



SV 2024–25 Case Studies CryptoSec 1044 / 1098

Bluetooth v2.0 Summary

- light weight cryptography
- initial authenticated channel by human interaction with devices
- key exchanged based on a PIN and E21, E22 (pairing)
- derivation of a single 128-bit long term link key
- secure channel based on E0, E1, E3
- several missing security properties: packet authentication, detection of packet loss, privacy, ...

Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

- confidentiality
- message integrity
- message authentication
- frame freshness
- key establishment v2.0
- frame sequentiality
- privacy

- (attacks still academic so far)
- (auth. by encryption without integrity)
- (based on clock value)
- (pragmatic repairing possible)
- (message loss)
- (:)

(3)

Moral

PIN has low entropy (humans cannot generate ephemeral PINs with high entropy)

- offline passive key recovery: key agreement is based on conventional cryptography (so cannot resist to passive adversaries)
- online impersonation attack: assuming the adversary is second to authenticate itself, the password-based key agreement does not even resist impersonation
- next generation needs
 - be user friendly
 - be device friendly (no expensive crypto)
 - resist passive and active adversaries

Bluetooth v2.1: Secure Simple Pairing

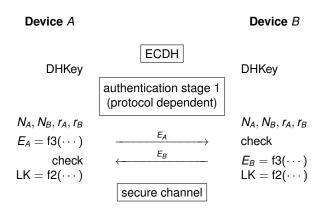
4 variants

- numeric comparison (assumes secure comparison by humans)
- passkey entry (assumes a secure PIN input by human)
- just works (assumes no active attack)
- out-of-band (assumes a secure channel, e.g. cable or near field communication)

resist active adversary

resist passive adversary only (out-of-band resists to active adversaries if no attack is possible on the secure channel)

Common Protocol



Common Protocol

- step 1: public key exchange exchange ECDH public keys using standard parameters (may be ephemeral or static) leading to a key DHKey
- steps 2–8: authentication stage 1 (protocol dependent) this stage authenticates the ECDH public keys and exchange some values N_A, N_B, r_A, r_B
- steps 9–11: authentication stage 2
 <u>mutual authentication</u> after ECDH protocol using N_A, N_B, r_A, r_B:
 A resp. B produces E_A resp. E_B and checks E_B resp. E_A

 E_A = f3(DHKey, N_A , N_B , r_B , IOcap_A, BD_ADDR_A, BD_ADDR_B) E_B = f3(DHKey, N_B , N_A , r_A , IOcap_B, BD_ADDR_B, BD_ADDR_A)

 step 12: link key calculation key derivation from DHKey, Na, Nb, and the addresses

 $LK = f2(DHKey, N_{master}, N_{slave}, btlk, BD_ADDR_{master}, BD_ADDR_{slave})$

step 13: encryption (business as usual)

ECDH Common Protocol

• domain parameters: use secp192r1 = P192, the elliptic curve of order r over the \mathbf{Z}_p field defined by $y^2 = x^3 + ax + b$ which is generated by G:

$$\begin{array}{lll} p & = & 2^{192} - 2^{64} - 1 \\ a & = & -3 \bmod p \\ b & = & 2455155546008943817740293915197451784769108058161191238065 \\ r & = & 6277101735386680763835789423176059013767194773182842284081 \\ G_X & = & 188da80e \ b03090f6 \ 7cbf20eb \ 43a18800 \ f4ff0afd \ 82ff1012 \\ & = & 602046282375688656758213480587526111916698976636884684818 \\ G_Y & = & 07192b95 \ ffc8da78 \ 631011ed \ 6b24cdd5 \ 73f977a1 \ 1e794811 \\ & = & 174050332293622031404857552280219410364023488927386650641 \end{array}$$

note that $2^{192} - 2^{95} < r < 2^{192}$ and r is prime

key agreement function: given an integer u and a point V,
 P192(u, V) is the x-coordinate of the point uV

$$DHKey = P192(SK_A, PK_B) = P192(SK_B, PK_A)$$

The New Bluetooth Menagery

$$\begin{array}{l} \text{f1}(\textit{U},\textit{V},\textit{X},\textit{Z}) = \text{trunc}_{128} \left(\text{HMAC}_{\textit{X}}(\textit{U} \| \textit{V} \| \textit{Z}) \right) \\ \text{g}(\textit{U},\textit{V},\textit{X},\textit{Y}) = \text{SHA256}(\textit{U} \| \textit{V} \| \textit{X} \| \textit{Y}) \text{ mod } 2^{32} \\ \text{f2}(\textit{W},\textit{N}_1,\textit{N}_2,\text{keyID},\textit{A}_1,\textit{A}_2) = \text{trunc}_{128} \left(\text{HMAC}_{\textit{W}}(\textit{N}_1 \| \textit{N}_2 \| \text{keyID} \| \textit{A}_1 \| \textit{A}_2) \right) \\ \text{f3}(\textit{W},\textit{N}_1,\textit{N}_2,\textit{R},\text{IOcap},\textit{A}_1,\textit{A}_2) = \text{trunc}_{128} \left(\text{HMAC}_{\textit{W}}(\textit{N}_1 \| \textit{N}_2 \| \textit{R} \| \text{IOcap} \| \textit{A}_1 \| \textit{A}_2) \right) \end{array}$$

variable	A_i	Ni	U	V	W	X	Y	Z	keyID	IOcap
# bits	48	128	192	192	192	128	128	8	32	48

- HMAC is HMAC-SHA256
- the value of keyID for "btlk" is 0x62746c6b

Bluetooth Simple Secure Pairing Variants — i

Numeric Comparison

Device A input: PK_A , \widehat{PK}_B

pick
$$N_A \in_U \{0, 1\}^{128}$$

set $r_A = r_B = 0$

$$\hat{c}_B \stackrel{?}{=} f1(\widehat{\mathsf{PK}}_B, \mathsf{PK}_A, \hat{N}_B, 0)$$
 $V_A \leftarrow g(\mathsf{PK}_A, \widehat{\mathsf{PK}}_B, N_A, \hat{N}_B)$
display V_A

input: \widehat{PK}_A , PK_B

pick
$$N_B \in_U \{0, 1\}^{128}$$

set $r_A = r_B = 0$
 $c_B \leftarrow \text{f1}(PK_B, \widehat{PK}_A, N_B, 0)$

$$V_B \leftarrow g(\widehat{\mathsf{PK}}_A, \mathsf{PK}_B, \hat{N}_A, N_B)$$
 display V_B check $V_A = V_B$

output: N_A , \hat{N}_B , r_A , r_B

 N_R

output: \hat{N}_A , N_B , r_A , r_B

Device B

Numeric Comparison Analysis

Device A input : PK_A , \widehat{PK}_B	Adversary	Device B input: \widehat{PK}_A , PK_B
pick $N_A \in_U \{0, 1\}^{128}$ set $r_A = r_B = 0$		pick $N_B \in_U \{0, 1\}^{128}$ set $r_A = r_B = 0$
	\leftarrow ?? \leftarrow c_B	$c_B \leftarrow f1(PK_B, \widehat{PK}_A, N_B, 0)$
	$\xrightarrow{N_A}$?? $\xrightarrow{\hat{N}_A}$	
$\hat{c}_B \stackrel{?}{=} f1(\widehat{PK}_B, PK_A, \hat{N}_B, 0)$	\leftarrow ?? \leftarrow \sim	
$V_A \leftarrow g(PK_A, \widehat{PK}_B, N_A, \hat{N}_B)$		$V_B \leftarrow g(\widehat{PK}_A, PK_B, \hat{N}_A, N_B)$
display V_A	check $V_A = V_B$	display V_B

output: N_A , \hat{N}_B , r_A , r_B output: \hat{N}_A , N_B , r_A , r_B

if $(PK_A, \widehat{PK}_B) \neq (\widehat{PK}_A, PK_B)$, due to commitment c_B and \widehat{c}_B : Adversary does not know V_B before he receives N_B Adversary cannot influence V_A after sending \widehat{c}_B

SV 2024–25 Case Studies CryptoSec 1054 / 10

Note on Numerical Comparison

- presumably, not many human users will carefully compare the 32-bit strings V_A and V_B
- "just works" is a variant where no check is made (vulnerable to active attacks)

Bluetooth Simple Secure Pairing Variants — ii

Passkey Entry

Device A input: PK_A , \widehat{PK}_B

Device B input: \widehat{PK}_A , PK_B

type
$$r_1 \cdots r_k$$

FOR $i = 1$ to k
pick $N_A \in_U \{0, 1\}^{128}$ pick $N_B \in_U \{0, 1\}^{128}$
 $c_A \leftarrow f1(PK_A, \widehat{PK}_B, N_A, r_i)$ $\xrightarrow{c_A}$ $c_B \leftarrow f1(PK_B, \widehat{PK}_A, N_B, r_i)$
 $\xrightarrow{N_A}$ $\hat{c}_A \stackrel{?}{=} f1(\widehat{PK}_A, PK_B, \hat{N}_A, r_i)$
 $\hat{c}_B \stackrel{?}{=} f1(\widehat{PK}_B, PK_A, \hat{N}_B, r_i)$ $\leftarrow \xrightarrow{N_B}$
ENDFOR
keep the last N_A and N_B

output: N_A , \hat{N}_B , r, r

output: \hat{N}_A , N_B , r, r

Collision Attack on Passkey Entry

find \hat{c}_B , N_0 , N_1 s.t. $f1(\widehat{PK}_B, PK_A, N_0, 0) = f1(\widehat{PK}_B, PK_A, N_1, 1) = \hat{c}_B$ (collision) (2⁶⁴ complexity)

Device Ainput: PK_A , \widehat{PK}_B Device B input: \widehat{PK}_A , PK_B

$$(type \ r_1 \cdots r_k)$$

$$FOR \ i = 1 \text{ to } k$$

$$c_A \leftarrow f1(PK_A, \widehat{PK}_B, N_A, r_i) \xrightarrow{\stackrel{c_A}{\leftarrow}} \stackrel{c_B}{\xrightarrow{\sim}} deduce$$

$$\hat{c}_B \stackrel{?}{=} f1(\widehat{PK}_B, PK_A, \hat{N}_B, r_i) \xrightarrow{N_{r_i}} deduce$$

pick
$$N_B \in_U \{0,1\}^{128}$$

 $c_B \leftarrow f1(PK_B, \widehat{PK}_A, N_B, r_i)$

$$\hat{c}_A \stackrel{?}{=} f1(\widehat{PK}_A, PK_B, \hat{N}_A, r_i)$$

ENDFOR

 N_B

deduce:

deduce bit
$$r_i$$
 s.t. $c_A = f1(PK_A, \widehat{PK}_B, N_A, r_i)$
set $\hat{c}_A = f1(\widehat{PK}_A, PK_B, \hat{N}_A, r_i)$

Pass Entry Analysis

If $(PK_A, \widehat{PK}_B) \neq (\widehat{PK}_A, PK_B)$ and f is collision-resistant:

- Adversary cannot forge \hat{c}_A and \hat{c}_B with a probability higher than $\frac{1}{2}$ in each iteration (by trying to guess r_i)
- So, he cannot pass with probability higher than 2^{-k}

Bluetooth Simple Secure Pairing Variants — iii

Out-of-Band

output: N_A , \hat{N}_B , r_A , r_B output: \hat{N}_A , N_B , r_A , r_B

Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)

- similar association models, but no public-key crypto anymore
- some ill-designed association model
- a strange key hierarchy with not so much entropy in session key derivation

back to chapter

- Case Studies
 - WiFI: WEP/WPA/WPA2
 - Block Chains
 - Mobile Telephony
 - Signal
 - TLS
 - NFC Creditcard Payment
 - Bluetooth
 - The Biometric Passport

Schweizer Pass Passeport suisse Passaporto svizzero Passaport svizzer Swiss passport

ICAO-MRTD Objectives

(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control

- → biometrics
- → contactless IC chip
- → digital signature + PKI

maintained by UN/ICAO (International Civil Aviation Organization)

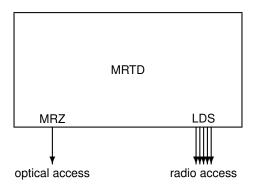
MRTD History

- 1968: ICAO starts working on MRTD
- 1980: first standard (OCR-B Machine Readable Zone (MRZ))
- 1997: ICAO-NTWG (New Tech. WG) starts working on biometrics
- 2001 9/11: US want to speed up the process
- 2002 resolution: ICAO adopts facial recognition (+ optional fingerprint and iris recognition)
- 2003 resolution: ICAO adopts MRTD with contactless IC media (instead of e.g. 2D barcode)
- 2004: version 1.1 of standard with ICC
- 2005: deployment of epassports in several countries
- 2006: extended access control under development in the EU
- 2007: deployment of extended access control (+ more biometrics)
- now part of Doc9303

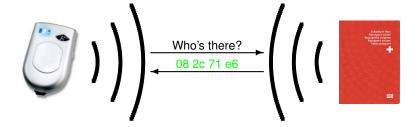
MRZ Example

- document type
- issuing country
- holder name
- doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

MRTD in a Nutshell



ISO 14443 (RFID)

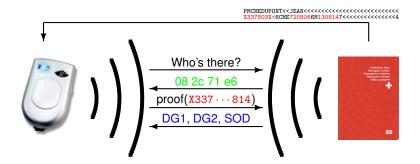


• frequency: 13.56MHz

• typical range: 2cm

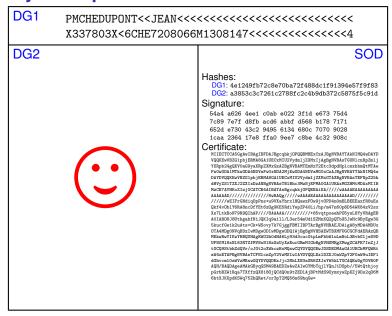
• reported range (with legal equipment): 12m

ICAO (MRTD): BAC and Passive Authentication



- DG1: official name, citizenship, X337 ··· 814, gender
- DG2: facial picture
- SOD: signature by authorities of the hash of DG's

Identity Example



1070 / 1098

MRTD

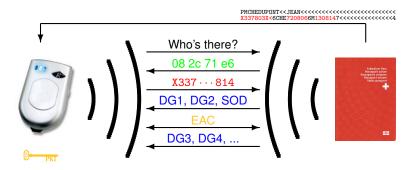
Advantages

- impossible to forge an identity
- protect against non-organized illegal immigration

Problems

- encourage identity theaft
- facial recognition is weakly reliable
- passeport cloning
- tracking people
- leakage of evidence
 - proof of official name
 - proof of age
 - proof of gender
- anonymity loss

EAC: Access Control and Active Authentication



- EAC: chip authentication
- EAC: terminal authentication
- DG3...: fingerprint, other data

EAC

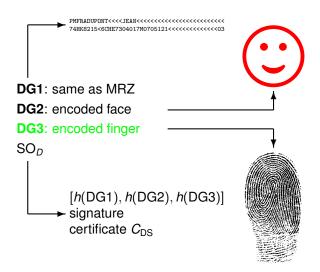
Advantages

- anti-cloning
- better access control
- better identification

Problems

- only where EAC is available
- still evidence leakages
- a new PKI

LDS Example



LDS Structure

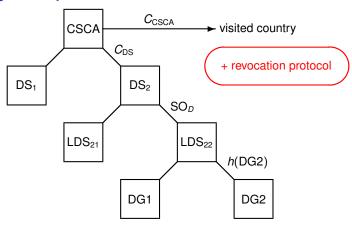
- K_{ENC}, K_{MAC}, KPr_{AA}
- COM: present data groups
- DG1: same as MRZ
- DG2: encoded face
- DG3: encoded finger(s)
- DG4: encoded eye(s)
- DG5: displayed portrait
- DG6: (reserved)
- DG7: displayed signature
- DG8: data feature(s)

- DG9: structure feature(s)
- DG10: substance feature(s)
- DG11: add. personal detail(s)
- DG12: add. document detail(s)
- DG13: optional detail(s)
- DG14: security options
- DG15: KPu_{AA}
- DG16: person(s) to notify
- SO_D

SO_D Structure

- list of hash for data groups DG1-DG15
- formatted signature by DS (include: information about DS)
- (optional) C_{DS}

(Country-wise) PKI



- one CSCA (Country Signing Certificate Authority)
- several DS (*Document Signer*) per country
- SO_D: signature of LDS
- fingerprint of a DG

SV 2024–25 Case Studies CryptoSec 1077 / 1098

Some MRTD Security Notions

- Passive authentication: authentication of the DG by means of a digital signature and a PKI
- Basic access control: access control to the chip based on a (printed) MRZ_info
- Secure messaging: secure communication between chip and terminal
- Active authentication: interactive authentication of the chip using a public key
- Terminal authentication: authentication of the terminal by means of a PKI
- Chip authentication: replacement of active authentication
- Extended access control: use of teminal authentication, chip authentication, and PACE

Passport: From Paper to Bits

paper passport

- invisible if not shown
- hard to copy
- photocopies are non-binding
- needs human check
- access control by the holder

MRTD

- detectable, recognizable
- easy to copy with no AA
- SOD is a digital evidence
- readable automatically
- needs specific access control

MRZ_info

- document type
- issuing country
- holder name
- doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

Basic Access Control

Authenticated Key Exchange Based on MRZ_info

IFD ICC (derive K_{ENC} and K_{MAC} from MRZ_info) **GET CHALLENGE** RND.ICC pick RND.IFD, K.IFD pick RND.ICC, K.ICC $[S]_{K_{\mathsf{ENC}},K_{\mathsf{MAC}}}$ check RND.ICC $S \leftarrow \mathsf{RND}.\mathsf{IFD} || \mathsf{RND}.\mathsf{ICC} || \mathsf{K}.\mathsf{IFD}$ $[R]_{K_{\mathsf{FNC}},K_{\mathsf{MAC}}}$ check RND.IFD $R \leftarrow \mathsf{RND}.\mathsf{ICC} \| \mathsf{RND}.\mathsf{IFD} \| \mathsf{K}.\mathsf{ICC}$ (derive KS_{FNC} and KS_{MAC} from $K_{\text{seed}} = \text{K.ICC} \oplus \text{K.IFD}$)

Active Authentication Protocol

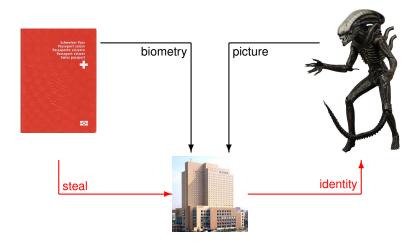
RFID Private Collision Avoidance Protocol (ISO 14443)

- for each new singulation protocol
 ICC introduces himself with a pseudo (32-bit number)
- singulation to establish a communication link between reader and ICC of given pseudo
- pseudo is either a constant or a random number starting with 08

Security and Privacy Issues

- collision avoidance discrepancies
 - \rightarrow deviating from standard induce leakages
- MRZ_info entropy
 - → online attack or offline decryption from skimming
- underestimated wireless range limits
 - → claimed to be possible at a distance of 25m
- identity theft (by stealing/cloning MRTD)
 - → facial recognition is weak
- remote passport detection
 - \rightarrow nice to find passports to steal
- relay attacks
- denial of services
- ...

Identity Theft



a few 100 customers are enough

Extended Access Control (EAC)

- PACE > BAC
- Chip Authentication > AA
- Terminal Authentication to access non-mandatory data
- more biometrics (finger) for more secure identification
- using state-of-the-art cryptography (public-key crypto, PAKE, elliptic curves)
- secure access control but requires a heavy PKI for readers
- in-process standard: protocols with different versions, variants, described in different documents, with different notations...

Sequence of Steps for Inspection

Advanced Inspection

run PACE (or BAC) start secure messaging

(if not in PACE) run Chip Auth.
restart secure messaging

↓
passive auth. of SO_D

↓
(optional) run AA

run Terminal Authentication v1

↓
read and verify data

Basic Inspection

run PACE (or BAC)
start secure messaging

↓
passive auth. of SO_D

(optional) run AA

read and verify basic data

PACE (GM v2)

- better protocol (than BAC) based on $\pi = MRZinfo$
- can play the role of Chip Authentication

PCD password: π		IC password: π secret key: SK_IC
	$(g \in D_{ICC})$	pub key: $PK_{IC} = g^{SK_{IC}}, D_{IC}$
pick s at random	$\longleftarrow^{PK_{IC}, D_{IC}}$	
$z=ENC_{\mathcal{K}_\pi}(s)$	$\xrightarrow{\hspace*{1cm} z \hspace*{1cm}}$	$s = DEC_{\mathcal{K}_\pi}(z)$
$pick\;SK_{MAP,PCD},PK_{MAP,PCD}=g^{SK_{MAP,PCD}}$	$\xrightarrow{PK_{MAP},PCD}$	pick SK _{MAP,IC} , PK _{MAP,IC} = $g^{\mathrm{SK_{MAP,IC}}}$
$\hat{g} = g^s PK^{SK_{MAP,PCD}}_{MAP,IC}$		$\hat{g} = g^{ extsf{s}} PK^{ extsf{SK}_{ extsf{MAP}, extsf{IC}}}_{ extsf{MAP}, extsf{PCD}}$
pick $SK_{DH,PCD},PK_{DH,PCD}=\hat{g}^{SK_{DH,PCD}}$	$\xrightarrow{PK_{DH,PCD}}$	pick $SK_{DH,IC},PK_{DH,IC}=\hat{g}^{SK_{DH,IC}}$
$\mathcal{K} = PK_DH,IC^SK_\mathsf{DH,PCD}$	← PK _{DH,IC}	$K = PK_{DH,PCD}^{SK_{DH,IC}}$
derive KS_{ENC} , KS_{MAC} from K		derive KS_{ENC} , KS_{MAC} from K
$T_{PCD} = MAC_{KS_{MAC}}(PK_{DH,PCD})$	$\xrightarrow{T_{PCD}}$	check T _{PCD}
check $T_{\rm IC}$	← T _{IC}	$\textit{T}_{IC} = MAC_{KS_{MAC}}(PK_{DH,IC})$
$CA_{IC} = DEC_{KS_{ENC}}(\mathit{A}_{IC}), check\; CA_{IC}$	← A _{IC}	$CA_{IC} = rac{SK_{MAP,IC}}{SK_{IC}}, A_{IC} = ENC_{KS_{ENC}}(CA_{IC})$
$\textbf{output:} \ KS_{ENC}, KS_{MAC}, \textcolor{red}{\textbf{\textit{X}}} = \textcolor{blue}{PK_{DH,PCD}}$		$\textbf{output}: KS_{ENC}, KS_{MAC}, \textbf{\textit{X}} = PK_{DH,PCD}$
check CA _{IC} : PK ^{CA_{IC}} PK _{MAP,IC}		

SV 2024–25 Case Studies

Chip Authentication (if not in PACE)

- chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
- semi-static ECDH with domain parameters D_{ICC}
- replace the secure messaging keys
- → resists passive attacks

IFD
$$(g \in D_{\text{ICC}})$$
 secret key: SK_{ICC} pub key: $PK_{\text{ICC}} = g^{SK_{\text{ICC}}}$, D_{ICC} pub key: $PK_{\text{ICC}} = g^{SK_{\text{ICC}}}$, D_{ICC} pub key: $PK_{\text{ICC}} = g^{SK_{\text{ICC}}}$, $D_{\text{ICC}} = g^{SK_$

Terminal Authentication

- terminal sends a certificate to chip (ECDSA)
- terminal signs a challenge + ephemeral key X from Chip Authentication
- ID_{ICC} set to serial number (for BAC) or to ephemeral key of ICC (for PACE)
- → strong access control

 $\begin{array}{ccc} \textbf{IFD} & & \textbf{ICC} \\ & & \xrightarrow{\text{certificate}(\mathsf{PK}_{\mathsf{IFD}})} & \text{check} \\ F \leftarrow \mathsf{ID}_{\mathsf{ICC}} \| \textit{r}_{\mathsf{icc}} \| \textit{H}(X) & \xleftarrow{\textit{r}_{\mathsf{icc}}} & \mathsf{pick} \; \textit{r}_{\mathsf{icc}} \\ s_{\mathsf{IFD}} \leftarrow \mathsf{Sign}_{\mathsf{SK}_{\mathsf{IFD}}}(F) & \xrightarrow{s_{\mathsf{IFD}}} & \mathsf{check} \end{array}$

Terminal Authentication Issues

Terminal revocation issue:

- MRTDs are not online!
- MRTDs have no reliable clock
- → MRTD must trust readers to revoke themselves.

Information Leakage

- SO_D leaks the digest of protected DGs before passing EAC
- could be used to recover missing parts from exhaustively search
- could be used to get a proof if DG is known

Conclusion on MRTD

LDS: contains too much private information

passive authentication: leaks evidence for LDS

BAC: does a poor job

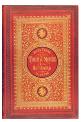
secure messaging: OK

AA: leaks digital evidences, subject to MITM

• EAC: much better, but still leaks + revocation issue

• RFID: leaks

biometrics: leaks template



"Les passeports ne servent jamais qu'à gêner les honnêtes gens et à favoriser la fuite des coquins."

> Jules Verne, 1872 Le tour du monde en 80 jours

back to chapter

Conclusion

- Lightweight networks based on conventional cryptography only (GSM, Bluetooth, ...)
- Although limited, we can make many protocols with only conventional cryptography
- Assembling cryptographic primitives in a protocol is not trivial
- access control based on
 - what you know (password)
 - what you have (a key in a secure token for challenge-response)
 - what you are (biometrics)
- New notions: forward secrecy, plausible deniability, block chain, proof-of-work
- TLS: standard for e-commerce, suffer from PKI weaknesses
- MRTD: secure data authentication, poor privacy
- EMV PayPass: secure for payee, not payer, poor privacy
- they all put together all cryptographic ingredients quite nicely
- they are permanently improved to fix mistakes and use the state-of-the-art cryptography

References

- Borisov-Goldberg-Wagner. Intercepting Mobile Communications: the Insecurity of 802.11. In MOBICOM 2001, ACM.
- Jakobsson-Wetzel. Security Weaknesses in Bluetooth. In CT-RSA 2001, LNCS 2020.
- Vaudenay. On Bluetooth Repairing: Key Agreement based on Symmetric-Key Cryptography. In CISC 2005, LNCS 3822.
- Beck-Tews. Practical Attacks against WEP and WPA. In WiSec 2009, ACM 2009.
- Juels-Molnar-Wagner. Security and Privacy Issues in E-Passports. In SecureComm 2005, IEEE.
- Chaabouni-Vaudenay. The Extended Access Control for Machine Readable Travel Documents. In Biosig 2009, LNI 155.

Must Be Known

- GSM security infrastructure
- mobile telephony security
- Bluetooth pairing
- foward secrecy

Train Yourself

• biometric passport: final exam 2015-16 ex3