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Roadmap

scope of cryptography
prehistory (before XX-th Century)

transposition and substitution
Vigenère

pre-modern cryptography
Kerckhoffs principle
Enigma

cryptography by information theory
Vernam
Shannon
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1 Ancient Cryptography
Scope of Cryptography
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory
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Cryptography = Science of Information and
Communication Security
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Evolution

Prehistory
secret development
cryptography before communication systems
(confidentiality/privacy)
Modern cryptography
academic research
for mass communication
(confidentiality/privacy, detection of malicious modification, data
authentication, non-repudiation, access control, timestamping,
fair exchange, digital rights management, etc)
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Applications

bank cards
Internet (e-commerce)
mobile telephony (DECT, GSM, GPRS, EDGE, 3G, 4G, 5G, ...)
mobile communication (Bluetooth, WiFi...)
e-passport
traceability, logistic & supply chains (RFID)
pay-TV, DRM
access control (car lock systems, metro...)
payment (e-cash)
electronic voting
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Cryptography versus Security

cryptography: a toolbox for setting up security infrastructure
security experts often assume cryptography does a good job
cryptographic tools are pretty good, but not for everything
some can easily be misused
proper usage of cryptography still requires to master it
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Cryptography vs Coding Theory

Code
a system of symbols which represent information

Coding theory
science of code transformation which enables to send infor-
mation through a communication channel in a reliable and
efficient way (→ dummy adversary)

Cryptography
(obsolete definition) the science of secret codes, enabling the
confidentiality of communication through an insecure channel
(→ malicious adversary)

Cipher
secret code, enabling the expression of a public code by a
secret one by making the related information confidential
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Cryptanalysis

Cryptanalysis, cryptographic analysis, cryptoanalysis
theory of security analysis of cryptographic systems

To cryptanalyze a cryptosystem ( 6= to break it)
to prove or to disprove the security provided by a cryptosys-
tem

To break a cryptosystem
to prove insecurity (= to disprove security)
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Problem of this Lecture: Secure Communication
over an Insecure Channel
The Fundamental Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X
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Basic Security Properties

Confidentiality
the information should not leak to any unexpected party
Integrity
the information must be protected against any malicious
modification
Authentication
the information should make clear who is its author
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Main Cryptographic Primitives in this Lecture

symmetric encryption
message authentication code
key agreement protocol
public-key cryptosystem
digital signature
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Symmetric Encryption

Generator

6KeyKey 6 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary
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Message Authentication Code

Generator

6KeyKey 6 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
MAC - - Check

-
ok?

-Message
�

�
Adversary
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Secure Comm. based on Conventional
Cryptography

Generator

6KeyKey 6 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Problem of Symmetric Cryptography

Q: What is the main problem of symmetric-key cryptography?

A: Jr zhfg frg hc n flzzrgevp xrl
ROT13
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Key Agreement Protocol

ProtoBobProtoAlice

6KeyKey

-� AUTHENTICATION
INTEGRITY

6

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Public-Key Cryptosystem (Key Transfer)

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary
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Problem of Public-Key Cryptography

Q: What is the main problem of public-key cryptography?

A: Jr zhfg nhguragvpngr n choyvp xrl
ROT13
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Digital Signature (Public-Key Certificate)

Generator

6Secret Key Public Key6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary

SV 2024–25 Ancient Cryptography CryptoSec 22 / 1098



Secure Communication Standards

TLS (e-commerce, business-to-customer)
IPSEC (VPN, corporate networks)
SSH (secure remote connections)
PGP (secure peer-to-peer, secure email)
GSM/GPRS/3G/4G/5G (mobile telephones)
Bluetooth (wireless local networks)
WPA (WiFi)
MRTD (e-passports)
...
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Example of TLS

Client Server

Authority

pkauth

�

pkserver

K

signature

U
signature

pkserver

�

authenticated public key
pkserver
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1 Ancient Cryptography
Scope of Cryptography
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory
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Secret Writing

Hieroglyphs!
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Transpositions
Spartan scytales

this␣is␣a␣dummy␣message

?

t h i s ␣ i

s ␣ a ␣ d u

m m y ␣ m e

s s a g e

?

TSMSH␣MSIAYAS␣␣G␣DMEIUE
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Simple Substitution: Caesar Cipher

a b c d e f g h i k l m n o p q r s t v x

D E F G H I K L M N O P Q R S T V X A B C

caesar −→ FDHXDV
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Simple Substitution: ROT13

a b c d e f g h i j k l m n o p q r s t u v w x y z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

rot −→ EBG

Application: quiz
Q: Where can we find good quiz?

A: va pnenzone pnaqvrf
ROT13
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Simple Substitution: Random Substitution Table

a b c d e f g h i j k l m n o p q r s t u v w x y z

H D L X O Q K W G S Z A P F T M V C B R E U Y I N J

crypto −→ LCNMRT

Number of possible tables: 26! ≈ 288.4

Quiz:
Q: How to break this?

A: ol fgngvfgvpny nanylfvf
ROT13
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Probabilities of Occurrence in English

letter probability letter probability letter probability
A 0.082 J 0.002 S 0.063
B 0.015 K 0.008 T 0.091
C 0.028 L 0.040 U 0.028
D 0.043 M 0.024 V 0.010
E 0.127 N 0.067 W 0.023
F 0.022 O 0.075 X 0.001
G 0.020 P 0.019 Y 0.020
H 0.061 Q 0.001 Z 0.001
I 0.070 R 0.060
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Rough Frequencies in English

1 most frequent: E
2 very frequent: T A O I N S H R

3 frequent: D L

4 rare: C U M W F G Y P B

5 very rare: V K J X Q Z

30 most common digrams (in decreasing order):
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU,
EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI and OF.

12 most common trigrams (in decreasing order):
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.
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Vigenère Cipher

Plaintext: this is a dummy message

Key: ABC

this is a dummy message

+ ABCA BC A BCABC ABCABCA

= TIKS JU A EWMNA MFUSBIE

Ciphertext: TIKSJUAEWMNAMFUSBIE

e.g. y+ C = A.
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Character Addition Rule

+ a b c d e f g · · ·
A A B C D E F G · · ·
B B C D E F G H · · ·
C C D E F G H I · · ·
D D E F G H I J · · ·
E E F G H I J K · · ·
F F G H I J K L · · ·
G G H I J K L M · · ·
...

...
...

...
...

...
...

...

cultural remark: using the mapping (isomorphism) a↔ 0, b ↔ 1,
c ↔ 2, ... this is the addition modulo 26
(group Z26)
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Column-Dependent Substitution

A B C A B C

t h i T I K

s i s S J U

a d u A E W

m m y −→ M N A

m e s M F U

s a g S B I

e E
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Kasiski Test Example

→ look at unexpectedly frequent patterns

C H R E E VOAHMA E R A T B I AX XWT NX B EEOPHBSBQMQEQE RBW
R V X UOA KXAOS X X WE A HBWG J MMQMNKGRF VGXWTRZXW I A K
L X F P S K AUTEMN D C MG TSX MX B TU I ADNGMGPSR E L XN J EL X
V R V P R T U LHDNQW T WD TYG B P HX T F AL J HASVB F XNGL L CHR
Z BWE L E KMS J I K N B HWRJ GNMG J SG LXFEYPHAGNRB I EQJ T
AMR V L CRREMN D G L X R R I MGN S NRWCHRQHAEYE V TAQE BB I
P E EWE V KAKOEW A D R EMXM T B HHCHRTKDNVRZ C HRCL QOHP
WQ A I I WXNRMGWO I I F KEE

CHR occurs at 1, 166, 236, 276, 286.
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Question

In a random string of 313 characters from an alphabet of
26 letters, is it common to observe 5 occurences of the

same trigram?
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Reminders on Combinatorics

number of k -tuples of elements in a set of size z:
example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

zk

Application (k = 3, z = 26): #possible trigrams is 263 = 17 576
number of possible subsets of t elements in a set of size n:
example n = 4, t = 2: {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}(n

t

)
=

n!
t!(n − t)!

=
n · (n − 1) · · · (n − t + 1)

t · (t − 1) · · · 1
Application: if we draw n balls with replacement in a jar of 1/p
numbered balls, the probability to pick ball number u exactly t
times is

( n
t

)
pt(1− p)n−t

(binomial distribution)
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Are 5 Occurrences Significant?

In a truly random sequence of 313 characters x1x2 . . . x313 with
alphabet of 26 letters

there are n = 311 trigrams t1 = x1x2x3, t2 = x2x3x4, ...
tn = xnxn+1xn+2

every possible trigram abc has a number of occurrences
nabc =

∑n
i=1 1ti=abc

approximation: all ti ’s are independent and uniformly distributed
in a set of 1

p = 263 = 17 576 possibilities

Pr[nabc = t ] =
( n

t

)
pt(1− p)n−t

(λ = n × p is small so Pr[nabc = t ] ≈ λt

t! e−λ: Poisson distribution)
Application: Pr[∃a, b, c nabc ≥ 5] ≈ 2.42× 10−7

observing 5 occurrences of CHR is significantly odd
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Where does CHR Come From?

key of length multiple of 5 + frequent trigram

· · · · · · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · −→ · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
t h e · · C H R · ·
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Kasiski Test

to check a guess n for the key length
look at repeating patterns at a distance multiple of n
check that this is significant
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Index of Coincidence

Index(x1, . . . , xn) = Pr
I,J
[xI = xJ |I 6= J]

=
1

n(n − 1)

∑
1≤i,j≤n

i ̸=j

1xi=xj

=
∑
c∈Z

nc(nc − 1)
n(n − 1)

where I, J ∈ {1, . . . , n} are independent and uniformly distributed

Proposition

For any permutation σ over Z , we have

Index(σ(x1), . . . , σ(xn)) = Index(x1, . . . , xn)

For any permutation σ of {1, . . . , n}, we have

Index(xσ(1), . . . , xσ(n)) = Index(x1, . . . , xn)

the index of coincidence is invariant by substitution and transposition
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Expected Index of Coincidence

E(Index(x1, . . . , xn)) =
1

n(n − 1)

∑
1≤i,j≤n

i ̸=j

Pr[xi = xj ]

=
∑
c∈Z

f 2
c

if all xi have i.i.d. distribution with frequency table fc

Index(Random string)→ 0.038
Index(English text)→ 0.065 when n→ +∞
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Application to the Vigenère Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is
of length 3, we can write

T I K

S J U

A E W

M N A

M F U

S B I

E

so we can compute the index of coincidence of TSAMMSE, IJENFB and
KUWAUI.
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Example — i
guess the key is of length 4

C H R E

E V O A

H M A E

R A T B

I A X X

W T N X
...

...
...

...

first column:

CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE

(string of 79 characters)

Index(col) = Index(A4B5C2D2E7G4H4I3J1K3L5M4N4P2R4S5T3U1V3W4X7Z2)

which is 0.0422: this is too low
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Example — ii
guess the key is of length 5

C H R E E

V O A H M

A E R A T

B I A X X

W T N X B

E E O P H
...

...
...

...
...

first column:

CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK

(string of 63 characters)

Index(col) = Index(A7B6C6D4E1F2I1J2K2M2N4P1Q4R3T2U1V1W9X5) = 0.0630

this is high enough!
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Example — iii

Next:
do a statistical analysis in each column
look at cross-column indices
(find the difference between two letters of the key)
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1 Ancient Cryptography
Scope of Cryptography
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory
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Enigma

electro-mechanical encryption device (typewriter)
could be plugged to a radio transmiter
patented (1918)
developped to be secure even with public specifications
(Kerckhoffs principle), in hostile environment (battlefield)
used by German armies in WW2
preliminary attacks by polish mathematician Rejewski in 1932
(before Anschluss)
“industrial” (over 2000 messages decrypted per day) attack by
UK intelligence at Bletchley Park during WW2 (performing:
Turing)
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Picture of Enigma
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Enigma Circuit

https://en.wikipedia.org/wiki/Enigma_machine

SV 2024–25 Ancient Cryptography CryptoSec 51 / 1098

https://en.wikipedia.org/wiki/Enigma_machine


Example: DEAD BEEF

in/out

A

B

C

D

E

F

plugrotor 1

i1

rotor 2

i2

rotor 3

i3

reflector

deadbeef −→ AADCCBBB
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Enigma Building Blocks

given a permutation σ over Z = {A,B, . . . ,Z}, a fixed point is an
element x ∈ Z such that σ(x) = x
an involution over Z is a permutation σ of Z such that
σ(σ(x)) = x for all x .
Examples: reflector, plug board
a rotor σ defines a set of permutations σ0, . . . , σ25 over Z
the rotor in position i implements permutation σi
such that σi = ρi ◦ σ ◦ ρ−i where ρ(A) = B, ρ(B) = C, ..., ρ(Z) = A

C
B

A
Z

A = σ(C)

σ(B)

σ(A)

D
C

B
A

D
C

B
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The Enigma Cipher (Mathematically)

Secret key: 3 components:
σ (involution made of 6 pairs)
an ordered choice α, β, γ ∈ S of pairwise different
permutations (from a box of 5 rotors)
a number a (initial position of rotors)

Plaintext: x = x1, . . . , xm

Ciphertext: y = y1, . . . , ym

Encryption:

yi = σ−1 ◦ α−1
i1 ◦ β

−1
i2 ◦ γ

−1
i3 ◦ π ◦ γi3 ◦ βi2 ◦ αi1 ◦ σ(xi)

where i3i2i1 are the last three digits of the basis 26
numeration of i + a.
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Key Entropy in Enigma
σ: number of involutions with 14 fixed points(

26
14

)
× 11× 9× 7× · · · × 1

= 9 657 700× 11× 9× 7× · · · × 1
= 100 391 791 500
≈ 237

α, β, γ: number of choices for the rotors

5× 4× 3 = 60 ≈ 26

a: number of initial positions

263 = 17 576 ≈ 214

total: 57 bits
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A Turing Machine
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Q

Can we reasonably assume that the adversary ignores
the cryptosystem?
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The Laws of Modern Cryptography
Law I: the Kerckhoffs Principle

security should not rely on the secrecy of the cryptosystem itself
motivation:
the adversary may get some information about the system (e.g.
by reverse engineering, corruption, etc)
meaning:
security analysis must assumes that the adversary knows the
cryptosystem
does not mean:
cryptosystem must be public
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Kerckhoffs Principles

Kerckhoffs Principles

1 Le système doit être matériellement, sinon mathématiquement,
indéchiffrable;

2 Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi;

3 La clef doit pouvoir en être communiquée et retenue sans le secours de
notes écrites, et être changée ou modifiée au gré des correspondants;

4 Il faut qu’il soit applicable à la correspondance télégraphique;
5 Il faut qu’il soit portatif et que son maniement ou son fonctionnement

n’exige pas le concours de plusieurs personnes;
6 Enfin, il est nécessaire, vu les circonstances qui en commandent

l’application, que le système soit d’un usage facile, ne demandant ni
tension d’esprit, ni la connaissance d’une longue série de règles à
observer.
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Kerckhoffs Principles - Translation

Google Translate:
1 The system must be materially, if not mathematically, indecipherable;
2 It must not require secrecy, and it must be able to fall between the hands of the enemy;
3 The key must be able to be communicated and retained without the aid of written notes, and

be changed or modified at the discretion of the correspondents;
4 It must be applicable to telegraphic correspondence;
5 It must be portable and its handling or operation must not require assistance of several

people;
6 Finally, it is necessary, given the circumstances which require its application, that the system

is easy to use, requiring neither mental tension nor knowledge of a long series of rules to
observe.

My translation:
1 The system must be secure.
2 Security must not depend on the secrecy of the algorithm.
3 The cryptographic key must be easy to communicate or change.
4 It must be compatible with telegraphic systems.
5 It must be portable and usable by a single person.
6 It should remain easy to use in stressful circumstances.
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Evolution

1 security by obscurity: private encryption algorithms
several techniques: substitutions and transpositions

2 Kerckhoffs principle
→ security should rely on the secrecy of the key only
(not on the secrecy of the algorithm)

3 encryption with a configurable secret key
e.g., Vigenère, Enigma
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The Laws of Modern Cryptography
Law II: scalability — the n2 Problem

in a network of n users, there is a number of potential pairs of users
within the order of magnitude of n2

we cannot assume that every pair of users share a secret key
we must find a way for any pair of users to establish a shared
secret key
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The Laws of Modern Cryptography
Law III: the Moore Law

the speed of CPUs doubles every 18–24 months
we should wonder how long a system must remain secure
we must estimate the speed of CPU at the end of this period
we assess security against brute force attacks
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Moore’s Law
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Security by Key Length
a 2007-PC could test 1 000 000 keys per second
a 32Y times led to a 105 factor speed up
→ ft = 106 × 105 t−2007

32 keys per second can be tested at time t
the number of keys we can try with one processor between time
t0 and time t0 +∆ is∫ t0+∆

t0
ft dt =

∫ t0+∆

t0
106 × 10

5
32 (t−2007) dt

=
106

5
32 ln 10

× 10
5
32 (t0−2007)

(
10

5
32∆ − 1

)
≈ cte× 20.52×(t0+∆−2007)

assuming that
ft is correct,
the key length is of 128 bits,
and we have 280 processors which we maintain up to date,

we need to run until t0 +∆ = 2100 to break it
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A 128-Bit Key

11000000 10010011 00000011 01001001
11010011 11110010 01111011 10100101
10101001 00110001 00110000 11011110
00101110 01001110 00011111 00100001

number of possible combinations:

128 times︷ ︸︸ ︷
2× 2× 2× · · · × 2

= 2128

= 340 282 366 920 938 463 463 374 607 431 768 211 456︸ ︷︷ ︸
39 digits
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Exhaustive Search on 128 Bits

in 2007, a standard PC could test 1 000 000 keys per second
to run exhaustive search within 14 billion years, we need 770 000
billons of 2007-PCs!
if the Moore law goes on, a single 2215-PC will do it in a
second
better create the Big Bang and take 14 billion years of
vacations to solve the problem within a second!
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Two Revolutions

communicating
information theory
mass communication (radio)
→ we need standard crypto
computing
computer science
automata (electromechanic devices)
→ adversaries have more power

SV 2024–25 Ancient Cryptography CryptoSec 68 / 1098



1 Ancient Cryptography
Scope of Cryptography
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory
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Bitwise Exclusive Or

exclusive or (XOR) of two bits:
⊕ 0 1
0 0 1
1 1 0

XOR: binary addition where carry bits are ignored
XOR: addition modulo 2
bitwise XOR of two bitstrings:

10010
⊕ 00111
= 10101

XOR properties
closure: the XOR of bitstrings is a bitstring
associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)
commutative: a⊕ b = b ⊕ a
neutral element: a⊕ [00 · · · 0] = a
(self-)invertibility: a⊕ a = [00 · · · 0] (or + = −)
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Vernam Cipher

⊕ 0 1
0 0 1
1 1 0

-Message
10010

⊕
?

00111

-
10101

-
10101

⊕
?

00111

-Message
10010

�
�

Adversary
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Vernam Cipher

we use a uniformly distributed random
key K (a bitstring)
every message X requires a new K of
same size (one-time pad)

Encrypting X with K : compute X ⊕ K
Decrypting Y with K : compute Y ⊕ K

⊕ 0 1
0 0 1
1 1 0

(X ) 10010
⊕ (K ) 00111
= (Y ) 10101

⊕ (K ) 00111
= (X ) 10010
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Q

When is this insecure?
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Using the Same Key Twice

Y1 = X1 ⊕ K
Y2 = X2 ⊕ K

-Message
X1, X2

Encrypt -
Y1, Y2

-
Y1, Y2

Decrypt -Message
X1, X2

�
�

Adversary

Y1 ⊕ Y2 = (X1 ⊕ K )⊕ (X2 ⊕ K ) = (X1 ⊕ X2)⊕ (K ⊕ K ) = X1 ⊕ X2

leakage of the X1 ⊕ X2 value
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Visual Cryptography

Pixel coding

0 −→

1 −→

Pixel XOR

0⊕ 0 −→ ≈

0⊕ 1 −→ =

1⊕ 0 −→ =

1⊕ 1 −→ ≈
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Example

⊕

=
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Using the Same Key Twice

Y1

-⊕
K

-=

X1

Y2

-⊕ -=

X2

?⊕

-=

X1 ⊕ X2
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Insecurity Cases in the Vernam Cipher

if K is smaller than X

Y = (XL ⊕ K )||XR

→ insecure
if K is not uniformly distributed

Pr[K = k ] high =⇒ Pr[X = y ⊕ k ] high

→ insecure
if K is used twice

Y1 ⊕ Y2 = X1 ⊕ X2 =⇒ information about X1 and X2

→ insecure
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Summary of Security Requirements

the key must have (at least) the same length of the message
the key must be uniformly distributed
the key must be thrown away after usage

/: this makes no sense for most of applications!,: this provides perfect security
makes sense to prepare emergency communication (red
telephone)

keys are exchanged (through slow channels) before the
messages to transmit are known

bad news for other application: there is essentially no better
cipher with this strong security property
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Intuition on Why it is Perfectly Secure

if the adversary gets Y = y then for any x

Pr[X = x |Y = y ] = Pr[X = x |X ⊕ K = y ] = Pr[X = x ]

because X and X ⊕ K are statistically independent
the adversary gets no information about X in knowing that Y = y
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Abelian Group Laws

Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a, b) to an element denoted a + b and such that

1. [closure] for any a, b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)

(notation: n.a means a + a + · · ·+ a (n times))
3. [neutral element] there exists an element denoted by 0 s.t. for

any a, a + 0 = 0 + a = a
4. [invertibility] for any a there exists an element denoted by −a s.t.

a + (−a) = (−a) + a = 0 (notation: a− b means a + (−b))
5. [commutativity] for any a, b ∈ G, we have a + b = b + a

Z with the regular addition
{0, 1}n with ⊕

{0, 1, . . . , n − 1} with (a, b) 7→
{

a + b if a + b < n
a + b − n otherwise
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Useful Lemma

Lemma
Let X and K be two independent random variables in a given group.
If K is uniformly distributed, then Y = K + X is uniformly distributed
and independent from X.

Proof.
For any x and y :

Pr[X = x ,Y = y ] = Pr[X = x ,K = y − x ]
= Pr[X = x ]× Pr[K = y − x ]

= Pr[X = x ]
1

#group

Pr[Y = y ] =
∑

x

Pr[X = x ,Y = y ]

=
1

#group
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Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source
producing elements in G

let K be uniformly distributed in G and independent from the
plaintext
given X , the encryption of X with key K is Y = K + X
given Y , the decryption of Y with key K is X = (−K ) + Y
the key is used only once

Theorem
For any distribution of X over G, Y is independent from X.

(perfect secrecy)
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Information Theory
Claude Shannon

[Claude Shannon]
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skip reminders on Shannon entropy

skip

CAUTION: in cryptography, “entropy” is often used in an informal way
by meaning some kind of “effective bit-length”



Reminder on the Shannon Entropy — i

H(X ): number of bits of information to represent the value of X
H(X ,Y ): entropy of (X ,Y )

H(X |Y ) = H(X ,Y )− H(Y )

H(X ) = −
∑

x

Pr[X = x ] log2 Pr[X = x ]

H(X ,Y ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[X = x ,Y = y ]

H(X |Y ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[X = x |Y = y ]
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Reminder on the Shannon Entropy — ii

a real function f is convex on [a, b] iff

∀set S ∀t : S → [a, b] ∀p : S →]0, 1]∑
x∈S

px = 1 =⇒
∑
x∈S

px f (tx) ≥ f

(∑
x∈S

px tx

)

it is strictly convex if we further have the property that equality
implies all tx are equal
a real function f which has a second derivative on ]a, b[ is strictly
convex on [a, b] iff its second derivative is always > 0 on ]a, b[
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Reminder on the Shannon Entropy — iii

Proposition

H(X ) ≥ 0 with equality if, and only if X is constant

Proof.
f (t) = − log2 t is strictly convex on [0, 1]
take tx = px = Pr[X = x ] and get

H(X ) ≥ − log2

(∑
x∈S

p2
x

)

clearly,
∑

x p2
x ≤ 1 so this log is positive

Assuming equality, we must have
∑

x p2
x = 1 so all px must be

equal to 1 so there must be a single x (we cannot have two
different values with probability 1)
(i.e. X is constant equal to this x)
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Reminder on the Shannon Entropy — iv
Proposition

H(X ,Y ) ≥ H(X ) with equality if, and only if Y can be written f (X )

Proof.
We write

H(Y |X ) =
∑

x

Pr[X = x ]
∑

y

Pr[Y = y |X = x ] log2 Pr[Y = y |X = x ]

We know that for each x the inner sum is ≥ 0 with equality iff
there is a single y = f (x) for which Pr[Y = y |X = x ] > 0
Clearly: H(Y |X ) ≥ 0
Assuming equality, for each x we define y = f (x) and get
Pr[Y = f (x)|X = x ] = 1 for all x
so, Pr[Y = f (X )] = 1

H(Y |X ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[Y = y |X = x ]
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Reminder on the Shannon Entropy — v
Proposition

H(X ,Y ) ≤ H(X ) + H(Y ) with equality if, and only if X and Y are
independent.

Proof.
t 7→ t ln t has second derivative 1

t so it is convex and

−
∑

y

Pr[Y = y ]ty log2 ty ≤ −

(∑
y

Pr[Y = y ]ty

)
log2

(∑
y

Pr[Y = y ]ty

)

with equality iff all ty ’s for Pr[Y = y ] 6= 0 are equal
Applying this to ty = Pr[X = x |Y = y ] yields

−
∑

y

Pr[X = x, Y = y ] log2 Pr[X = x|Y = y ] ≤ −Pr[X = x ] log2 Pr[X = x ]

with equality iff Pr[X = x |Y = y ] does not depend on y
summing up for all x leads to H(X |Y ) ≤ H(X ) with equality iff X
and Y are independent
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Reminder on the Shannon Entropy — vi

Proposition

If Pr[X = x ] 6= 0 for n values of x then H(X ) ≤ log2 n with equality if,
and only if all non-zero Pr[X = x ] are equal to 1

n .

Proof.
t 7→ − ln t has second derivative 1

t2 so is convex and

∑
x

Pr[X = x ] log2 tx ≤ log2

(∑
x

Pr[X = x ]tx

)

with equality iff all tx ’s for Pr[X = x ] 6= 0 are equal
Applying this to tx = 1/Pr[X = x ] yields

H(X ) ≤ log2 n

with equality iff all nonzero Pr[X = x ] are equal
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The Shannon Encryption Model

Key
source

6
Key K

6

Message
source

-Message X Encipherer
C

-Cryptogram Y Decipherer
C−1

-X

6
Enemy Cryptanalyst
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The Shannon Encryption Model

message is a random variable with a given a priori distribution
for later: with any a priori distribution
key is a random variable with specified distribution, independent
from the message
correctness property: Pr[C−1

K (CK (X )) = X ] = 1
adversary gets the random variable Y = CK (X ) only
for other security models to be seen: other assumptions
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Perfect Secrecy — i

Definition
Perfect secrecy means that the a posteriori distribution of the
plaintext X after we know the ciphertext Y is equal to the a priori
distribution of the plaintext:

∀x , y Pr[Y = y ] 6= 0 =⇒ Pr[X = x |Y = y ] = Pr[X = x ].

The adversary learns nothing about X by intercepting Y .
(Remark: this definition is relative to the distribution of X .)
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Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and
Y .

Proof.
Independence
⇐⇒ ∀x , y Pr[X = x ,Y = y ] = Pr[X = x ] Pr[Y = y ].
Since Pr[X = x |Y = y ] = Pr[X=x,Y=y ]

Pr[Y=y ] by definition, the result is
trivial!
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Perfect Secrecy - iii (skip)

Proposition

Perfect secrecy is equivalent to H(X |Y ) = H(X ).

Proof.
Perfect secrecy is equivalent to statistic independence of X and Y .
Statistic independence of X and Y is equivalent to
H(X ,Y ) = H(X ) + H(Y ).
Since H(X |Y ) = H(X ,Y )− H(Y ) the result is trivial.
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Vernam Cipher Provides Perfect Secrecy

Theorem
For any distribution of the plaintext, the generalized Vernam cipher
provides perfect secrecy.
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Influence of the Plaintext Distribution
Theorem
Let CK be a cipher with K following a given distribution. Let p and p′

be two distributions for X (independent of K ) such that
support(p′) ⊆ support(p).
CK has perfect secrecy with p =⇒ CK has perfect secrecy with p′.

Proof. If p′(x) 6= 0 then p(x) 6= 0 and

Pr
p′
[Y = y |X = x ] = Pr[CK (x) = y ] = Pr

p
[Y = y |X = x ] = Pr

p
[Y = y ]

↑ ↑ ↑
p′(x) 6= 0 p(x) 6= 0 perfect secrecy

then

Pr
p′
[Y = y ] =

∑
x∈support(p′)

Pr
p′
[Y = y |X = x ]p′(x)

=
∑

x∈support(p′)

Pr
p
[Y = y ]p′(x) = Pr

p
[Y = y ]
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Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies H(K ) ≥ H(X ).

Proof. (skip)
we have H(Y ) ≥ H(Y |K )

knowledge of K makes X ↔ Y , thus H(Y |K ) = H(X |K )

since X and K are independent, we obtain H(Y |K ) = H(X )
we thus have H(Y ) ≥ H(X )

knowledge of X makes K → Y , thus H(Y ,K |X ) = H(K |X )

since X and K are independent, H(K |X ) = H(K ), so
H(Y ,K |X ) = H(K )

we have H(Y ,K |X ) ≥ H(Y |X ), thus H(K ) ≥ H(Y |X )

if we have perfect secrecy, we have
H(Y |X ) = H(X |Y ) + H(Y )− H(X ) = H(Y )
thus, we have H(K ) ≥ H(Y ) ≥ H(X )
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Other Form of the Shannon Theorem (Bad News)
Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as
the support of X .

Proof. Let y be such that Pr[Y = y ] 6= 0.
since X and K must be independent

Pr[X = x ,Y = y ] = Pr[X = x ,CK (x) = y ] = Pr[X = x ] Pr[CK (x) = y ]

perfect secrecy implies for all x such that Pr[X = x ] 6= 0,
Pr[X = y ,Y = y ] = Pr[X = x ] Pr[Y = y ] 6= 0
consequently, for all x in the support of X we have
Pr[CK (x) = y ] 6= 0 so there exists one k in the support of K such
that Ck (x) = y . Let’s write it k = f (x).
for any x in the support of X we have C−1

f (x)(y) = x .
Clearly, f (x) = f (x ′) implies x = x ′.
Consequently, we have an injection from the support of X to the
support of K .

SV 2024–25 Ancient Cryptography CryptoSec 100 / 1098



The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy, the number of possible keys
must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher
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Other Consequences (Bad News)

Theorem
Perfect secrecy implies that X has a finite support.

Proof.
let y s.t. p = Pr[Y = y ] 6= 0

Pr[CK (x) = y ] = Pr[X = x |Y = y ]Pr[Y=y ]
Pr[X=x ] = Pr[Y = y ] due to

perfect secrecy, for all x in the support
since [C−1

K (y) = x ]⇐= [CK (x) = y ], we have
Pr[C−1

K (y) = x ] ≥ Pr[CK (x) = y ] = p for all x in the support
thus

1 ≥
∑

x∈support

Pr[C−1
K (y) = x ] ≥ p.#support

#support(X ) ≤ 1
p
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Leakage of Message Length

over the infinite domain {0, 1}∗, if we pick K as long as X , the
length of X leaks
over the finite domain

⋃
i≤ℓ{0, 1}i (e.g. ℓ = 1TB), we should pick

K ∈ {0, 1}ℓ to have security, which is a waste of bandwidth
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Summary on the Shannon Results

we have mathematically formalized the notion of perfect secrecy
Vernam Cipher achieves perfect secrecy
despite Vernam Cipher is expensive, there is no cheaper
alternative

Q: Can the theory of cryptography stop here?

A: Abg lrg: jung zvffrf vf gur abgvba bs pbzcyrkvgl
ROT13
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Information Theory vs Complexity Theory

Information Theory

Is information there or not?

Is it possible to recover information?

Complexity Theory

How much does it cost to recover
information?

Is it doable to recover information?

security shall rather be based on lower bounding the complexity of
breaking the system
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The Early Days of Computer Science
Alan Turing
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Milestones of Modern Cryptography

Vigenère (XVIth Century): secret key
Kerckhoffs (1883): algorithm known by the adversary
Shannon (1949): an info-theoretical approach of cryptography
Diffie-Hellman (1976): public-key cryptography
DES (1977): encryption standard for non-military applications
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Conclusion

in prehistory: security by obscurity
now a need for standard solutions
perfect security requires an unreasonable cost
conclusion: we must trade security against cost
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Must be Known

Kerckhoffs principle
the ACI trilogy (Authentication, Confidentiality, Integrity)
Vernam cipher
Shannon model of encryption
perfect secrecy
Shannon Theorem
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Train Yourself

Vigenère: final exam 2009–10 ex1
Vernam:
midterm exam 2010–11 ex3
midterm exam 2015–16 ex1
entropy: final exam 2012–13 ex3
ciphertext length: midterm exam 2022–23 ex1
Enigma and perfect secrecy: midterm exam 2023–24 ex1
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1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Public-Key Cryptography

8 Trust Establishment

9 Case Studies
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Roadmap

reminders on arithmetics, groups, Zn

Diffie-Hellman key exchange over a group
reminders on rings, fields, Z∗p
Diffie-Hellman key exchange, concretely
ElGamal cryptosystem
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
Orders in a Group
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Prime Numbers

Definition
A prime number is a positive integer which has exactly two positive
factors: 1 and itself.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Unique Factorization

Theorem
Each integer n can be uniquely written

n = u × pα1
1 × · · · × pαr

r

where p1 < · · · < pr are prime, u = ±1, and α1, . . . , αr are positive
integers.
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Modulo n

Operation x mod n: remainder in the Euclidean division of x by n

x = 8273 143 = n
−715 57 = bx/nc

1123
−1001

x mod n = 122

8273 mod 143 = 122

8273 = 122 + 143× 57
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Euclidean Division

Theorem (Euclidean Division)

For any x ∈ Z and any n > 0 there exists a unique pair (q, r) ∈ Z2

such that x = qn + r and 0 ≤ r < n.
We denote r = x mod n and have q =

⌊ x
n

⌋
.
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Two Notations for “mod”

without parentheses: x mod n
→ a two-input operator
= remainder in the Euclidean division of x by n
with parentheses: a ≡ b (mod n)
→ an attribute to an equivalence relation (here: ≡)
means that b − a is divisible by n
or equivalently: a mod n = b mod n
do not mix up

a = b mod n and a ≡ b (mod n)
↑ ↑

a set to (b mod n) a and b are (equal modulo n )
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Zn for Dummies (n > 1)
Zn = {0, 1, . . . , n − 1}
addition in Zn: a � b = (a + b) mod n
multiplication in Zn: a � b = (a× b) mod n
useful lemma: (a + (b mod n)) mod n = (a + b) mod n
useful lemma: (a× (b mod n)) mod n = (ab) mod n
� and � closure: comes from x mod n ∈ Zn for any x ∈ Z
� associativity: comes from the lemma:

a � (b � c) = (a + ((b + c) mod n)) mod n = (a + b + c) mod n...

� associativity: comes from the lemma:

a � (b � c) = (a× ((bc) mod n)) mod n = (abc) mod n...

neutral elements: 0 for � and 1 for �
invertibility for �: (−a) mod n, comes from the lemma:

a�((−a) mod n) = (a+((−a) mod n)) mod n = (a−a) mod n = 0

distributivity: comes from the lemma:

a � ((b + c) mod n) = (a× (b + c)) mod n = (ab + ac) mod n...
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
Orders in a Group
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Definition of a Group

Definition
A group is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a� b and such that

1. [closure] for any a, b ∈ G, we have a� b ∈ G
2. [associativity] for any a, b, c, we have (a� b)� c = a� (b � c)
3. [neutral element] there exists an element e s.t. for any a,

a� e = e � a = a
4. [invertibility] for any a there exists b s.t. a� b = b � a = e

Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a, b) to an element denoted a� b and such that

1–4. [group] it is a group
5. [commutativity] for any a, b we have a� b = b � a

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 123 / 1098



Additive vs Multiplicative Notations for Groups

additive notations multiplicative notations
group (G,+) (G,×)
operation a + b ab
neutral element 0 1
inverse −a a−1

exponential n.a an

(a and b are group elements; n is an integer)
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Group Homomorphism

Homomorphism: given two groups (G1,×1) and (G2,×2), a
mapping f from G1 to G2 is a group homomorphism if
for any a, b ∈ G1

f (a×1 b) = f (a)×2 f (b)

Example: If g ∈ G, the mapping φ : Z −→ G defined by
φ(a) = ga is a group homomorphism.
∀a, b ∈ Z φ(a + b) = φ(a)φ(b)

Isomorphism: a group homomorphism which is bijective is called an
isomorphism

isomorphism = change of notation
Property: A group homomorphism is injective iff
∀a ∈ G1 f (a) neutral in G2 =⇒ a neutral in G1
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Group Constructions: Subgroups

Subgroups: given (G,×), and given H ⊆ G which is nonempty and
closed by × and inversion, consider (H,×)

Example:
5Z = {. . . ,−15,−10,−5, 0, 5, 10, 15, . . .} is a subgroup of Z
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Subgroups of Z

Theorem
If H is a subgroup of Z and H 6= {0}, then H = nZ where n is the
smallest positive element of H.

Proof.
let a ∈ H and write a = qn + r with q, r ∈ Z and 0 ≤ r < n
(Euclidean division)
since H is a group and a, n ∈ H we have r = a− qn ∈ H
since 0 ≤ r < n and n is the smallest positive element of H we
must have r = 0, thus a = qn ∈ nZ
therefore, H ⊆ nZ
conversely, rn must be in H for all r ∈ Z, therefore H = nZ
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Generators

Given a group (G, .), an element g generates/spans a subgroup
〈g〉 = {. . . , g−2, g−1, g0, g1, g2, . . .}

If 〈g〉 is finite, of cardinality n, then gn = 1 and
〈g〉 = {g0, g1, . . . , gn−1}

(see next slide)
if x ∈ 〈g〉, logg x is uniquely determined up to some multiple of n:

logg x is an element of Zn

i 7→ g i is a group isomorphism between Zn and 〈g〉
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Finite Groups and Orders

Definition
If (G, .) is a group and if G is a finite set, then the cardinality of G is
called the group order.
If g generates a subgroup of order n, then n is called the order of g.

Proposition

The order of g is the smallest i > 0 s.t. g i = 1.

Proof.
the set of all i ∈ Z such that g i = 1 is a subgroup of Z
(preimage of subgroup {1} by group homomorphism i 7→ g i ...)
it must be of form nZ where n is the smallest among all i > 0
{1, g, g2, . . . , gn−1} is a non-repeating exhaustive list of all 〈g〉
elements
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Consequence

if g is of order n...
then 〈g〉 = {1, g, g2, . . . , gn−1}
∀i g i = 1⇐⇒ n|i
∀i , j g i = g j ⇐⇒ i ≡ j (mod n)
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Group Constructions: Groups Product

Product groups: given (G1,×1) and (G2,×2), consider G = G1 ×G2
and (a1, a2)× (b1, b2) = (a1 ×1 b1, a2 ×2 b2)

Power groups: given (G, ∗) and I, consider GI and
(ai)i∈I × (bi)i∈I = (ai ∗ bi)i∈I

Example:
C∗ × {−1,+1} = {(z, s); z ∈ C∗, s = ±1} with
(z, s)× (z ′, s′) = (zz ′, ss′)
Z{a,b,c} is the set of mappings from D = {a, b, c} to Z with f + g
defined by (f + g)(x) = f (x) + g(x)
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Functional vs Family Notations for Power Sets

functional notations family notations
function domain D index set I
function range R set S

finite domain f : {1, . . . , n} → R (x1, . . . , xn)
infinite domain f : D → R (xi)i∈I
input x ∈ D i ∈ I
image f (x) ∈ R xi ∈ S
set RD SI or Sn

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 132 / 1098



Group Constructions: Quotient Group

Quotient groups: given a commutative group G and a subgroup H,
consider the set G/H of classes for congruence
modulo H with the law induced by +

a and b in G are said to be congruent modulo H if b − a ∈ H
notation: a ≡ b (mod H)

the relation “...is congruent to ... modulo H” is an equivalence
relation (reflexive, symmetric, transitive)
notation: for a ∈ G, a + H is the set of all G elements which can
be written a + h for some h ∈ H (elements congruent to a)
every class of equivalence can be written a + H for some a ∈ G
a is called a representative for the class
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Quotient of an Abelian Group by a Subgroup

0 a + c b

a c a + b

x a + c + x b + x

a + x c + x a + b + x

y a + c + y b + y

a + y c + y a + b + y

x + y

H

a + H

b + H

a + b + H

(a + H) + (b + H) = (a + b) + H
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Quotient Example: Z/6Z

0 5 2

1 4 3

6x 5 + 6x 2 + 6x

1 + 6x 4 + 6x 3 + 6x

6y 5 + 6y 2 + 6y

1 + 6y 4 + 6y 3 + 6y

6x + 6y

6Z

1 + 6Z

2 + 6Z

3 + 6Z

Z/H = {H, 1 + H, 2 + H, 3 + H, 4 + H, 5 + H}
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Lagrange Theorem

Theorem (Lagrange)

In any finite group, the order of any element is a factor of the order of
the group.

Proof.
in G/〈g〉 (set quotient), all a + 〈g〉 have same number of elements so
#G (the order of G) is divisible by #〈g〉 (the order of g)

Consequence

∀g ∈ G g#G = 1
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Application: Generators in a Group of Prime Order

Theorem
if (G, .) has prime order, all elements (except 1) are generators

Proof.
let p be the order of G
an element x ∈ G such that x 6= 1 has an order n > 1
due to the Lagrange Theorem, n|p, so n = p since p is prime
g0, . . . , gn−1 must be pairwise different, so n ≤ p
so n = p: g must generate G
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The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy )

security requirement: given (g, gx , gy ), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)
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Using the Diffie-Hellman Key Agreement Protocol

allows to set up a secret key over a public channel
(assuming authentication)
no further need to set up pre-shared keys: sets up keys when
needed
→ public-key cryptography

Example of Diffie-Hellman groups:
Z∗p (compute gx mod p)
elliptic curves
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Addition with Big Numbers (in Decimal)

1 1 1

8 427 403
+ 12 951 842
= 21 379 245

Input: two integers a and b of ℓ digits
Output: one integer c = a + b
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: write d = 10r + ci with ci < 10
5: end for
6: cℓ ← r

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 141 / 1098



Addition in Binary

1 + 1 = 10

1 1

1 001 001
+ 10 011 000
= 11 100 001

Input: a and b, two integers of at most ℓ bits
Output: c, an integer of at most ℓ+1 bits representing

a + b
Complexity: O(ℓ)
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: set ci and r to bits such that d = 2r + ci

5: end for
6: cℓ ← r
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Addition (Binary/Hexadecimal/Decimal)

1 0 1 0 1 0 0 0x54 (84)
+ 1 0 0 1 0 0 1 0 0x92 (146)
= 1 1 1 0 0 1 1 0 0xe6 (230)

hexadecimal = compact way to represent bistrings
(bits groupped into “nibbles” = packets of 4 bits)
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Definition of a Monoid

Definition
A monoid is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a + b and such that

1. [closure] for any a, b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)
3. [neutral element] there exists an element 0 s.t. for any a,

a + 0 = 0 + a = a

multiplication of a positive integer n by a monoid element a:

n.a = a + a + · · ·+ a︸ ︷︷ ︸
n times
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Multiplication

we want to multiply a monoid element (a = 12) by an integer
(n = 100101 in binary):

12× 100101
= 12×

(
1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 2 + 1

)
= 12×

(
25 + 22 + 1

)
= 12× 25 + 12× 22 + 12× 1

multiplication by 2 consists of adding to itself
(= a shift left for addition over the integers in binary)
multiplication by 2i consists of multiplying i times by 2
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Multiplication Algorithm

12× 100101 = 444

1 1 0 0 0x00c (12)
× 1 0 0 1 0 1 0x025 (37)

1 1 0 0 0x00c (12)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x030 (48)
+ 0 0 0 0 0x000 (0)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x180 (384)
= 1 1 0 1 1 1 1 0 0 0x1bc (444)

�444
?

3841

� +

DB �
192

0 DB �
96
0 DB �

�+
?

60

48
1 DB �

24
0 DB �

+�?
12 0

121
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Double-and-Add From Right to Left

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: y ← a
3: for i = 0 to ℓ− 1 do
4: if ni = 1 then
5: x ← x + y
6: end if
7: y ← y + y
8: end for
9: c ← x
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From Left to Right

12× 100101 = 444

0 -DB -+-
0 12

12

?

1

DB -
24

0

DB -
48

0

DB -+-
96 108

?

1

DB -
216

0

DB -+-
432 444

?

1

12× 1

12× 10

12× 100

12× 1001

12× 10010

12× 100101
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Double-and-Add From Left to Right

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x
4: if ni = 1 then
5: x ← x + a
6: end if
7: end for
8: c ← x
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From Double-and-Add to Square-and-Multiply

if we can compute a monoid law a + b in O(T ) then we can
compute n.a for n ∈ N in O(T log n) instead of O(Tn) by trivial
algorithm

Example:
monoid (Z,+): a positive integer multiplied by a Z element
monoid (EC,+): an integer multiplied by a point
monoid (Zm,×): a Zm element raised to some integral power

Same with multiplicative notation:
if we can compute a monoid law ab in O(T ) then we can
compute an for n ∈ N in O(T log n)
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Definition of a Ring
Definition
A ring is an Abelian group (R,+) together with a mapping from R×R
to R which maps (a, b) to an element denoted ab and such that
1-4. [group] R with + is a group

5. [Abelian] for any a, b, we have a + b = b + a
6. [closure] for any a, b ∈ R, we have ab ∈ R
7. [associativity] for any a, b, c, we have (ab)c = a(bc)
8. [neutral element] there exists 1 s.t. for any a, a1 = 1a = a
9. [distributivity] for any a, b, c, we have a(b + c) = ab + ac and

(a + b)c = ac + bc

Definition
A commutative ring is a ring R such that

1–9. [ring] it is a ring
10. [commutativity] for any a, b we have ab = ba
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Group of Units

not every element x in a ring R has an inverse for the
multiplication
we denote by R∗ the set of elements having a multiplicative
inverse
those elements are called units
R∗ with the multiplication is a group
this is the group of units of the ring R

common mistake: R∗ = R − {0}
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Group and Ring Constructors

sub-structure (sub-group, ideal)
subgroup: subset of a group stable by group law and inversion
ideal: subgroup of a ring stable by multiplication by any ring
element
spanned structure
set of all values generated by structure operations
product structure
set of pairs with inherited structure operations
power structure
set of tuples / set of functions of given domain with range in
structure
quotient (Abelian group by a subgroup, ring by an ideal)
structure induced by grouping “equivalent” elements
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Example: Z

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

1. Z is closed for the addition
2. the addition is associative in Z
3. 0 is neutral for the addition
4. for any a ∈ Z we have −a ∈ Z which is the inverse of a for

addition
5. the addition is commutative in Z
6. Z is closed for the multiplication
7. the multiplication is associative in Z
8. 1 is neutral for the multiplication
9. addition is distributive for multiplication

10. the multiplication is commutative in Z

Z is a commutative ring of infinite size
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Example: Z[X ]

Z[X ] = set of polynomials with coefficients in Z

example: (5X 3− 3X 2 +X − 4) + (X 2− 2X + 1) = 5X 3− 2X 2−X − 3
1-5. Z[X ] with the addition is an Abelian group (isomorphic to Z(N))

6. Z[X ] is closed under multiplication
7. multiplication is associative in Z[X ]

8. the constant polynomial 1 is neutral for the multiplication
9. distributivity: we have

A(X )(B(X ) + C(X )) = A(X )B(X ) + A(X )C(X ) for all
A(X ),B(X ),C(X ) ∈ Z[X ]

10. multiplication is commutative in Z[X ]

Z[X ] is a commutative ring of infinite size

(same for R[X ] for any commutative ring R)
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Example: Modulo 9 Reduction of Large Numbers

296 527 mod 9
= (200 000 + 90 000 + 6 000 + 500 + 20 + 7) mod 9
= (2× 100 000 + 9× 10 000 + 6× 1 000 + 5× 100 + 2× 10 + 7) mod 9
= (2× 105 + 9× 104 + 6× 103 + 5× 102 + 2× 10 + 7) mod 9
= (2× (10 mod 9)5 + 9× (10 mod 9)4 + 6× (10 mod 9)3+

+5× (10 mod 9)2 + 2× (10 mod 9) + 7) mod 9
= (2× 15 + 9× 14 + 6× 13 + 5× 12 + 2× 1 + 7) mod 9
= (2 + 9 + 6 + 5 + 2 + 7) mod 9
= 31 mod 9
= (3 + 1) mod 9
= 4 mod 9
= 4
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“Preuve par 9”

mod9
5 2 6 4

× 2 8 × 1
4 2 0 8

+ 1 0 5 2
1 4 7 2 8 4
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Example: the Ring of Residues Modulo n

Zn = {0, 1, 2, 3, . . . , n − 1}

1. Zn is closed for the addition modulo n
2. the addition modulo n is associative in Zn (next slides)
3. 0 is neutral for the addition
4. for any nonzero a ∈ Zn we have n − a ∈ Zn which is the inverse

of a for addition modulo n (0 is self-inverse)
5. the addition modulo n is commutative in Zn

6. Zn is closed for the multiplication modulo n
7. the multiplication modulo n is associative in Zn

8. 1 is neutral for the multiplication
9. addition modulo n is distributive over multiplication modulo n

(next slides)
10. the multiplication modulo n is commutative in Zn

Zn is a commutative ring of n elements
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Cerebral Zn

nZ is an ideal of Z (with laws + and ×) (ideal generated by n)
we can do the quotient Z/nZ of Z by nZ
congruence modulo nZ is written

a ≡ b (mod n) ⇐⇒ a− b ∈ nZ ⇐⇒ a mod n = b mod n

an exhaustive list of equivalence classes is

0 + nZ , 1 + nZ , 2 + nZ , . . . , (n − 1) + nZ

note that (a + nZ) + (b + nZ) = ((a + b) mod n) + nZ
note that (a + nZ)× (b + nZ) = ((a× b) mod n) + nZ
we simply write a (the representative in [0, n − 1]) instead of
a + nZ
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Zn Tips

for any polynomial P(x) ∈ Z[x ] and any a, n ∈ Z we have

P(a) mod n = P(a mod n) mod n

can put “modn” reductions in the ground floor
if x has order m in Z∗n then for any i ∈ Z

x i mod n = x i mod m mod n

can put “modm” reductions in the upper floor
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Exercise

Z15 has order 15
We have 〈5〉 = {0, 5, 10}.
This is a subgroup of order 3
5 has order 3 in Z15

in Z15: 〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13}.
in Z15, 2 has order 15 (so, 2 is a generator)
We have 〈1〉 = Z15
1 is a generator
Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}
in Z∗15, 2 has the order 4: 〈2〉 = {1, 2, 4, 8}
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Zn Computations

Efficiently computable operations:
addition: (a + b) mod n
multiplication: (a× b) mod n (double-and-add)
modulo: a mod n (Euclidean division)
inverse: a−1 mod n (when gcd(a, n) = 1) (extended Euclid
algorithm)
power: ae mod n (for e integer only) (square-and-multiply)

Remaining problem: extracting roots: e
√

a mod n (or ar mod n for r
rational)
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Addition in Zn

Input: an integer n of ℓ bits, two integers a and
b less than n

Output: c, an integer which represents a +
b mod n

Complexity: O(ℓ)
1: add a and b in c
2: compare c and n
3: if c ≥ n then
4: subtract n from c
5: end if

remark: comparison and subtraction take O(ℓ) time as well
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Multiplication in Zn From Left to Right

Input: an integer n of ℓ bits, a, b ∈ Zn
(b in binary)

Output: c = a× b mod n
Complexity: O(ℓ2)

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x mod n
4: if bi = 1 then
5: x ← x + a mod n
6: end if
7: end for
8: c ← x
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Exponentiation From Left to Right
Square-and-Multiply

Input: a and n, two integers of at most ℓ bits, an
integer e (e in binary)

Output: x = ae mod n
Complexity: O(ℓ2 log e)

1: x ← 1
2: for i = blog2 ec to 0 do
3: x ← x × x mod n
4: if ei = 1 then
5: x ← x × a mod n
6: end if
7: end for
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Euclidean Division

we can just adapt the algorithm we have learnt at school
(not trivial to implement!)

for any a ∈ Z and n > 0 there exists a unique pair (q, r) ∈ Z2

such that a = qn + r and 0 ≤ r < n
q =

⌊ a
n

⌋
and r = a mod n

algorithm runs in O(ℓ2)
(ℓ is the size of a, n < a)
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Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof.
=⇒ if gcd(x , n) = d > 1 then d divides (x · y) mod n for any y so
(x · y) mod n 6= 1 and x is non invertible.
⇐= to be seen later
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Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d = gcd(a, b)
Complexity: O(ℓ2)

1: x ← a, y ← b
2: while y > 0 do
3: make an Euclidean division x = qy + r
4: do simultaneously x ← y and y ← x −qy
5: end while
6: d ← x
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Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence.

iteration x y q
0 22−35×0

↙ =

1 35−22×1
↙ =

2 22−13×1
↙ =

3 13− 9 ×1
↙ =

4 9 − 4 ×2
↙ =

5 4 − 1 ×4
↙ =

6 1 0

Thus gcd(22, 35) = 1.
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Why does it Work?

it eventually stops (y strictly decreases and y ≥ 0)
a divisor of x and y is a divisor of x − qy for all q
x = (x − qy)− (−q)y
d divides x and y ⇐⇒ d divides y and x − qy
for any q, gcd(x , y) = gcd(y , x − qy)
gcd(x , 0) = x
conclusion: the algorithm terminates with gcd(a, b)
to be discussed (in another course): runing time (complexity) is
quadratic
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Extended Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d , u, v such that d = au + bv =

gcd(a, b)
Complexity: O(ℓ2)

1: x⃗ ← (a, 1, 0), y⃗ ← (b, 0, 1)
2: while y1 > 0 do
3: make an Euclidean division x1 = qy1 + r
4: do simultaneously x⃗ ← y⃗ and y⃗ ← x⃗−qy⃗
5: end while
6: (d , u, v)← x⃗

x⃗ , y⃗ ∈ {(α, β, γ);α = a · β + b · γ}
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Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence of vectors.

iteration x⃗ y⃗ q
0 (22, 1, 0) − (35, 0, 1) ×0

↙ =

1 (35, 0, 1) − (22, 1, 0) ×1
↙ =

2 (22, 1, 0) − (13,−1, 1) ×1
↙ =

3 (13,−1, 1)− (9, 2,−1) ×1
↙ =

4 (9, 2,−1) − (4,−3, 2) ×2
↙ =

5 (4,−3, 2) − (1, 8,−5) ×4
↙ =

6 (1, 8,−5) (0,−35, 22)

Thus 1 = 22× 8− 35× 5.
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Modular Inversion

to compute the inverse of x modulo n:
1 run the Extended Euclid algorithm with input (x , n) and get u, v

such that ux + vn = d = gcd(x , n)
2 if d 6= 1, x is not invertible: error!
3 output u: it is such that ux mod n = 1

(Note: we may need to reduce u modulo n)
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Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof:
⇒: already seen (slide 168)
⇐: if gcd(x , n) = 1, run the Extended Euclid algorithm and get
an equation ux + vn = 1 then deduce ux mod n = 1

Conclusion: the Extended Euclid algorithm is an inversion algorithm
with complexity O(ℓ2)
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Arithmetics with Big Numbers (Recap)

addition (O(ℓ)): x , y 7→ x + y
multiplication (O(ℓ2)): x , y 7→ x × y
Euclidean division (O(ℓ2)): x , n 7→ x mod n

Euclid Algorithm (O(ℓ2)): x , y 7→ u, v s.t. ux + vy = gcd(x , y)
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Modular Arithmetic (Recap)

addition (O(ℓ)): x , y , n 7→ (x + y) mod n
multiplication (O(ℓ2)): x , y , n 7→ (x × y) mod n
modulo (O(ℓ2)): x , n 7→ x mod n

fast exponential (O(ℓ2 log e)): x , e, n 7→ xe mod n
inversion in Zn (O(ℓ2)): x , n 7→ y s.t. xy mod n = 1 (when
feasible)
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FFT-based Multiplication

we could have better complexities with a better multiplication
algorithm
in this lecture, we limit to the values from the school-book
algorithm
in practice, this algorithm is sufficient for the lengths we use
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Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem
For all proper subgroup I of Z there exists n such that

I = nZ = {. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . .}
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Element Order

Given x in a group G:
{i ∈ Z; x i = 1} is a subgroup of Z
so, {i ∈ Z; x i = 1} = nZ for some n which is the smallest positive
n such that xn = 1
n is called the order of x in G.
n is such that

x i = 1⇐⇒ (n divides i)

see slide 128
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Group Exponent

Given a group G:
{i ∈ Z; ∀x ∈ G x i = 1} is a subgroup of Z
so, {i ∈ Z; ∀x ∈ G x i = 1} = λZ for some λ which is the smallest
positive λ such that ∀x ∈ G, xλ = 1
λ is called the exponent of G.
λ is such that (

∀x ∈ G x i = 1
)
⇐⇒ (λ divides i)

note that for all x , λ ∈ {i ∈ Z; x i = 1} = nZ so λ is a multiple of n,
the order of x
note that #G ∈ {i ∈ Z; ∀x ∈ G x i = 1} = λZ so λ is a factor of
#G
so, ∀x ∈ G order(x)|λ|#G
λ is the lcm of all order(x), x ∈ G
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Orders in Z∗m

Z∗m is of order φ(m) (example: Z∗35 is of order 24)
Z∗m is of exponent λ(m) (example: Z∗35 is of exponent 12)
for m = pα1

1 × · · · × pαr
r with pairwise different prime numbers

p1, . . . , pr , we have

φ(m) = (p1 − 1)pα1−1
1 × · · · × (pr − 1)pαr−1

r

λ(m) = lcm
(
λ(pα1

1 ), · · · , λ(pαr
r )
)

we have λ(pα) = φ(pα), except for p = 2 and α ≥ 3 for which
λ(pα) = 1

2φ(p
α)

for any x ∈ Z∗m, order(x)|λ(m)|φ(m)

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 183 / 1098



Checking a Generator of a Group with Known
Order Factorization

Input: an element g in an Abelian cyclic group
of order with known factorization n = pα1

1 ×
· · · × pαr

r
Output: say if g is a generator
Complexity: O(r) exponentials

1: for i = 1 to r do
2: y ← gn/pi

3: if y = 1 then
4: abort: g is not a generator
5: end if
6: end for
7: g is a generator

Proof. The order of g is a factor of n. If it is no factor of any n/pi then
it must be n.
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Discussion

for g arbitrary, we need the factorization of n
if g is randomly selected, we only need the small factors of n
because (to be seen in the next chapter)

Pr
g

[
g

n
pi = 1

]
=

1
pi

which is small for pi large
if n is hard to factor, we can still find generators:
find the prime factors up to some bound B
application: generate a generator of Z∗p for a prime p
(we will see that it is cyclic)
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Picking a Generator in a Cyclic Group with Known
Order

Input: the order n of an Abelian cyclic group, a
bound B

Output: a generator g of the group
1: find the list p1, . . . , ps of all prime factors of n

which are less than B
2: repeat
3: pick a random g in the group
4: b ← true
5: for i = 1 to s do
6: y ← gn/pi

7: if y = 1 then
8: b ← false
9: end if

10: end for
11: until b

Pr[output g not a generator] ≤ 1
B logB

log n
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Generating a Generator
We consider a cyclic group G of order n and we let n =

∏r
i=1 pαi

i with
pairwise different primes pi

g is a generator of G iff g
n
pi 6= 1 for i = 1, . . . , r

Pr
g∈U G

[
g

n
pi = 1

]
=

1
pi

and these events are independent

(to be seen in next chapter with CRT)
work with an incomplete factorization: we let n = q

∏s
i=1 pαi

i
which includes all small factors pi ≤ B (i.e. pi > B for all i > s)
we say that g passes the test if g

n
pi 6= 1 for i = 1, . . . , s

Pr[not generator|passed] = Pr
[
∃i > s g

n
pi = 1

∣∣∣ ∀i ≤ s g
n
pi 6= 1

]
≤ 1

B
(r − s)

≤ log q
B logB

≤ log n
B logB

example: n of 1 024 bits, B = 232; Pr[not generator|passed] ≤ 2−27
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
Orders in a Group
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Definition of a Field

Definition
A field is a commutative ring (K ,+,×) such that
1-9. [ring] K is a ring with + and ×
10. [commutativity] for any a, b, we have ab = ba
11. [invertibility] for any a 6= 0 there exists b = a−1 s.t. ab = ba = 1
example:

Q, R, C
Zp for p prime (next slide)
GF(2n) (in Chapter 4)
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Zp Properties

Theorem (Zp structure)

Let p be a prime number.
1 Z∗p = {1, . . . , p − 1}
2 (Little Fermat Theorem) for any x ∈ Z∗p, we have xp−1 ≡ 1

(mod p)
3 Z∗p is a cyclic group. So, there exist g such that

Z∗p = {g0, g1, g2 mod p, . . . , gp−2 mod p}
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Proof

1 if 1 ≤ x ≤ p − 1, since p is prime, we must have gcd(x , p) = 1
thus x ∈ Z∗p

2 due to the Lagrange Theorem, for any x ∈ Z∗p, we have xp−1 ≡ 1
(mod p)

3 (hard)
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An Interesting Group

the subgroup
〈g〉 ⊆ Z∗p

of prime order q

〈g〉 = {1, g, . . . , gq−1} ↔ {0, 1, . . . , q − 1} = Zq
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Example: the SSH2 Parameters

p = 21024 − 2960 − 1 + 264 ⌊2894π + 129093
⌋

g = 2

q =
p − 1

2

try it with gp:

allocatemem(80000000)

\p 300

p=2^1024-2^960-1+2^64*floor(2^894*Pi+129093)

g=2

q=(p-1)/2

isprime(p)

isprime(q)

Mod(g,p)^q
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Algorithms To Be Seen Later

we can generate large prime numbers
we can verify the primality of a number
we can find (p, q, g) such that p and q are prime, q divides p − 1,
and g has order q in Z∗p
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The Discrete Logarithm Problem

Definition (Discrete Logarithm (DL) Problem)

The DL problem, relative to Setup, is hard if for any PPT (probabilistic
polynomial-time) algorithm A, the probability that the following game
returns 1 is negl(λ):
DL(λ):

1: Setup(1λ)→ (group, q, g)
2: pick x ∈ Zq
3: X ← gx

4: A(group, q, g,X )→ x ′

5: return 1X=gx′

Examples:
Zn: easy (use the Extended Euclid algorithm)
Z∗p: (maybe) hard
over an elliptic curve: (maybe) hard
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Is Logarithme Hard?!?

We can compute log
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The Notion of Game

Given a PPT adversary A:
Game(security parameter):

1: setup of parameters
2: initialization of the game
3: A(what he should know)→ result
4: return 1winning condition

Advantage of A:

Adv(security parameter) = Pr[Game→ 1]

Security:
∀PPT A Adv = negl
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DL(λ):
1: Setup(1λ)→ (group, q, g)
2: pick x ∈ Zq
3: X ← gx

4: A(group, q, g,X )→ x ′

5: return 1X=gx′



Negligible Function

f (λ) = negl(λ)
m

∀n f (λ) = O(λ−n)

as λ→ +∞

Example:
f (λ) = c−λ is negligible (for c > 1)
f (λ) = λ−1 000 000 000 is not negligible

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 198 / 1098



Some Facts About The Discrete Logarithm
Problem

in a cyclic group of order q:
easy on a quantum computer:
→ Shor algorithm

easy if q has only small prime factors (e.g. < 2100):
→ Pohlig-Hellman algorithm

best algorithm for a subgroup of Z∗p with p and q prime:
→ General Number Field Sieve (GNFS) with complexity

e

(
3
√

64
9 +o(1)

)
(ln p)

1
3 (ln ln p)

2
3

this is mostly precomputation (without X )

the computation from y takes e
(

3
√

3+o(1)
)
(ln p)

1
3 (ln ln p)

2
3

generic algorithms in O(√q):
→ baby-step giant-step algorithm
→ Pollard ρ algorithm
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Baby Step - Giant Step Algorithm

Input: g and X in a group G, B an upper bound for #G
Output: the logarithm of X in base g
Complexity: O(

√
B) group operations

Precomputation
1: let ℓ = d

√
Be be the size of a “giant step”

2: for i = 0, . . . , ℓ− 1 do
3: set T{g iℓ} ← i
4: end for

Algorithm
5: for j = 0, . . . , ℓ− 1 do
6: compute z = Xg−j

7: if T{z} exists then
8: i ← T{z}
9: yield x = iℓ+ j and stop ▷ we get Xg−j = g iℓ

10: end if
11: end for
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Attacks based on Precomputation
Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

over Z∗p, the discrete logarithm can be solved in

p length precomputation attack
(bits) (core-time) (core-time)
512 10.2 years 10 minutes
768 36 500 years 2 days

1024 45 000 000 years 30 days

example: SSH2 uses a fixed p of 1024 bits...
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
Orders in a Group
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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The Diffie-Hellman Key Agreement Protocol (again)

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy )

security requirement: given (g, gx , gy ), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)
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An Unavoidable Active Attack
Man-in-the-Middle Attack

Alice Eve Bob

X−−−−−−→ X ′−−−−−−→
Y ′←−−−−−− Y←−−−−−−

(K1) (K2)

send m
[m]K1−−−−−−→ get m

make m′
[m′]K2−−−−−−→ receive m′
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Passive Adversaries

passive adversary just listens to communications and tries to
decrypt communications (e.g. by recovering the key)
the Diffie-Hellman shall resist to passive attacks: given only g, X ,
and Y , it must be hard to compute K
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The Computational Diffie-Hellman Problem

Definition (Computational Diffie-Hellman (CDH) Problem)

The CDH problem relative to Setup is hard if for any PPT algorithm A,
the probability that the following game returns 1 is negl(λ):
CDH(λ):

1: Setup(1λ)→ (group, q, g)
2: pick x , y ∈ Zq
3: X ← gx , Y ← gy

4: A(group, q, g,X ,Y )→ K
5: return 1K=gxy

hardness requires the Discrete Logarithm Problem to be hard (see
next slide)
Examples:

a subgroup of Z∗p of prime order q
an elliptic curve
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CDH hard =⇒ DL hard
The CDH Problem Reduces to the DL Problem

assume CDH is hard
to prove DL hardness, consider a DL algorithm A
construct B s.t. A wins DL =⇒ B wins CDH:

Pr





DLA game:
Setup→ . . . , g
pick x
X ← gx

A(. . . ,X )→ x ′

return 1X=gx′

→ 1

 ≤ Pr





CDHB game:
Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

A(. . . ,X )→ x ′

K ← Y x′

return 1K=gxy


→ 1


= negl

X = gx′ =⇒ K = Y x′ = gyx′ = X y = gxy

(More details on next slide.)
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B(group, q, g,X ,Y ) :
1: run A(group, q, g,X )→ x ′

2: compute K = Y x′

3: return K



CDH hard =⇒ DL hard (details)

Pr





DLA game:
Setup→ . . . , g
pick x
X ← gx

A(. . . ,X )→ x ′

return 1X=gx′

→ 1

 = Pr





Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

A(. . . ,X )→ x ′

K ← Y x′

return 1X=gx′


→ 1



≤ Pr





Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

A(. . . ,X )→ x ′

K ← Y x′

return 1K=gxy


→ 1


= Pr





CDHB game:
Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

B(. . . ,X ,Y )→ K
return 1K=gxy


→ 1


X = gx′ =⇒ Y x′ = gyx′ = X y = gxy
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B(group, q, g,X ,Y ) :
1: A(group, q, g,X )→ x ′

2: K ← Y x′

3: return K



DDH Problem

Definition (Decisional Diffie-Hellman (DDH) Problem)

The DDH problem relative to Setup is hard if for any PPT algorithm A,
we have

AdvA(λ) = Pr[DDH(λ, 1)→ 1]− Pr[DDH(λ, 0)→ 1] = negl(λ)

DDH(λ, b):
1: Setup(1λ)→ (group, q, g)
2: pick x , y , z ∈ Zq
3: if b = 1 then z ← xy
4: X ← gx , Y ← gy , Z ← gz

5: A(group, q, g,X ,Y ,Z )→ t
6: return t
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DDH hard =⇒ CDH hard — i

assume DDH is hard
consider
C(group, q, g,X ,Y ,Z ) :

1: pick x ′ ∈ Zq
2: return 1X=gx′ ,Z=Y x′

negl = AdvC = Pr[DDHC(1)→ 1]−Pr[DDHC(0)→ 1] =
1
q
− 1

q2 ∼
1
q

hence 1
q = negl(λ)
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DDH hard =⇒ CDH hard — ii

to prove CDH hardness, consider a CDH algorithm A
we define a DDH algorithm as follows
B(group, q, g,X ,Y ,Z ) :

1: run A(group, g,X ,Y )→ K
2: return 1K=Z

DDHB(1)→ 1 is equivalent to CDHA → 1

Pr[DDHB(1)→ 1] = Pr[CDHA → 1]

in DDHB(0), Z is uniform in 〈g〉 and independent from K

Pr[DDHB(0)→ 1] =
1
q

= negl

hence, AdvB(λ) = AdvA(λ)− negl
we know that AdvB(λ) = negl(λ) (since DDH is hard)
hence, Pr[A wins] = negl(λ)
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DDH Easy Case of a Group whose Order has a
Small Factor

G of order q such that q′ = q
w is small and q′ > 1:

let A(group, g,X ,Y ,Z ) = 1 iff

loggw Z w =
(
loggw X w)× (loggw Y w)

we have AdvA(λ) = 1− 1
q′

Indeed,

Pr[DDH(λ, 0)→ 1] =
1
q′

, Pr[DDH(λ, 1)→ 1] = 1

If q′ > 1 then q′ ≥ 2 and AdvA(λ) ≥ 1
2 which is not negligible.
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Hardness Depending on Groups

DL hard ⇐= CDH hard ⇐= DDH hard

easy if order is smooth easy if order has a
small factor (> 1)
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Hard Cases

The DDH problem is believed to be hard relative to:
large subgroup of prime order of Z∗p (p prime)

1: pick a random prime q of size 2λ
(so that generic algorithms have complexity > λ)

2: pick a random p of size f (λ) such that q|p − 1
(so that GNFS has complexity > λ)

3: start again until p is prime
4: pick a random g in Z∗p of order q

large subgroup of prime order of a “regular” elliptic curve
(“pick a random prime” and Step 4 to be seen later)
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Problems when not Checking Group Membership
Lim-Lee CRYPTO 1997

assume:
Bob uses a static key Y
Bob’s algorithm runs even though X does not belong to the group

we can select X outside of the group, with a small order q′

Adversary Bob
(Bob’s public key Y ) (static y , Y = gy )

pick X of small order q′ X−−−−−−−−−−−−→ K = X y

ct←−−−−−−−−−−−− ct = EncKDF(K )(pt)

find yq′ such that DecKDF(X yq′ )(ct) makes sense
deduce y mod q′ = yq′

(KDF to be seen later)
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Man-in-the-Middle Attack Making K1 = K2 — i

(Using any group)

Alice Eve Bob

pick x , X ← gx X−−−−−−−−→

X ′ ← 1 X′−−−−−−−−→
Y←−−−−−−−− pick y , Y ← gy

Y ′←−−−−−−−− Y ′ ← 1
K ← (Y ′)x (K = 1) K ← (X ′)y

after that, Eve remains passive
→ we must check X 6= 1 and Y 6= 1
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Man-in-the-Middle Attack Making K1 = K2 — ii

(Using groups of order divisible by w s.t. DL is easy in 〈gw 〉)

Alice Eve Bob

pick x , X ← gx X−−−−−→

X ′ ← X w X′−−−−−→
Y←−−−−− pick y , Y ← gy

Y ′←−−−−− Y ′ ← Y w

K ← (Y ′)x solve X ′ = gx′w , K ← Y x′w K ← (X ′)y

(K = gxyw )

after that, Eve remains passive

Y x′w = gx′yw = (gx′w )y = X ′y = K

→ we should use groups of prime order
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Problems with Subgroups
Adrian++; Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice; CCS 2015

we can compute logX modulo the small factors of the order
1: set q the order of g
2: for all small prime factor r of q do
3: take Z = X

q
r ▷ we have Z ∈ 〈g

q
r 〉 of order r

4: find xr s.t. Z = (g
q
r )xr ▷ easy because r is small

5: deduce logX mod r = xr :
▷ if X = gx then (g

q
r )xr = Z = (g

q
r )x so x ≡ xr (mod r)

6: end for
7: compute CRT(all xr ) (explained in next chapter)

▷ from x mod r for all r , we can reconstruct x with CRT
we can deduce x = logX when it is small
(example: lazy servers which select a small x)
done for 159 DH servers (out of 3.4M) on the Internet in 2015
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Other issue: Weird Key Distribution

the final key K is random in 〈g〉 which has its own representation
E.g. 〈g〉 ⊂ Z∗p is a very small subset. So, the binary
representation of K is far from being uniformly distributed
we need a bitstring with a “reliable distribution”
solution: use a Key Derivation Function (KDF)
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Summary: Problems with the Original DH Protocol

nobody is checking the group membership for X and Y
problems with subgroups of 〈g〉

subgroup {1} (unavoidable): if either X or Y is 1, then K = 1 for
sure
other subgroups (avoidable): the discrete logarithm problem may
become easy in subgroups

problem with gxy having a bad distribution
(elements in 〈g〉 may be sparse, so there is a structured
information in gxy )
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Correct Diffie-Hellman Key Exchange

Assume a group 〈g〉 generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X 6∈ 〈g〉 − {1}, abort

if Y 6∈ 〈g〉 − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y )
(K = KDF(gxy ))

KDF: a Key Derivation Function
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RFC 2631
Diffie-Hellman Key Agreement Method

group parameters (p, q, g):
p prime, q prime, q divides p− 1 (generation algo in a next slide),
g = h

p−1
q mod p with h random until 1 < h < p − 1 and g > 1

secret keys: xA, xB between 1 and q − 1
public keys: yA = gxA mod p, yB = gxB mod p
3 modes:

ephemeral-ephemeral mode: both keys are fresh
ephemeral-static mode: recipient uses a static public key
static-static mode: both participants use a static public key

shared secret: ZZ = gxAxB mod p

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 222 / 1098



Exercise

group parameters (p, q, g):
p prime, q prime, q divides p − 1,
g = h

p−1
q mod p with any h such that 1 < h < p − 1 and g > 1

Show that g generates a subgroup of Z∗p of order q.
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Group Parameter Generation in RFC 2631
1: m = required length for q, m′ = d m

160e
2: repeat
3: pick a random seed
4: U←

∑m′−1
i=0 2160i (SHA1(seed+i)⊕SHA1(seed+m′+i)) mod 2m

5: q ← U OR 1 OR 2m−1

6: until q is prime
7: L← required length for p, L′ ← d L

160e
8: counter← 0
9: repeat

10: R ← seed + 2m′ + (L′ ∗ counter)
11: W ←

(∑L′

i=0 2160iSHA1(R + i)
)
mod 2L

12: X ←W OR 2L−1

13: p ← X − (X mod (2q)) + 1
14: counter← counter + 1
15: if counter ≥ 4096

⌈ L
1024

⌉
then abort (fail)

16: until p > 2L−1 and p is prime
17: return p, q, seed, counter
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Parameter Validation in RFC 2631 (Group
Membership Verification Part)

Group parameters validation:
p and q are prime and q divides p − 1
(optional) p and q follow parameter generation algorithm from
seed and counter
gq mod p = 1 and 1 < g < p

Public key validation:
check 2 ≤ y ≤ p − 1 and yq mod p = 1
→ this is enough to prove y ∈ 〈g〉 − {1}! (see next slide)
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Checking Group Membership

(〈g〉 is the unique subgroup of Z∗p of order q)

Theorem
Let p, q, g be integers such that p and q are prime, q divides p − 1,
g mod p 6= 1, and gq mod p = 1. Then

〈g〉 is a subgroup of Z∗p of order q
〈g〉 = {y ∈ Z∗p; yq mod p = 1}

Application to RFC 2631: we can check that y is in the group
generated by g by checking yq mod p = 1
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Proof

〈g〉 is a subgroup of Z∗p of order q: clear
〈g〉 ⊆ {y ∈ Z∗p; yq mod p = 1}: clear
〈g〉 ⊇ {y ∈ Z∗p; yq mod p = 1}:
let y ∈ Z∗p be such that yq mod p = 1

let θ ∈ Z∗
p be a generator of Z∗

p , write g = θa mod p, y = θb mod p
since gq ≡ yq ≡ 1 (mod p), we have qa ≡ qb ≡ 0 (mod p − 1)
so, we can write a = p−1

q a′ and b = p−1
q b′ with a′, b′ ≤ q

since g mod p 6= 1, we have 1 ≤ a′ < q
since q is prime, there exists c such that a′c mod q = 1
we have

gb′c ≡ θab′c ≡ θa′bc ≡ ya′c ≡ y1+kq ≡ y (mod p)

so, y ∈ 〈g〉
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Example: Semi-Authenticated Key Exchange in
SSH2

IC and IS: negotiation of crypto algorithms
KS: public key of the server (may come with a certificate)
for diffie-hellman-group1-sha1 key exchange:
p = 21024 − 2960 − 1 + 264

⌊
2894π + 129093

⌋
, g = 2, q = p−1

2

Client Server

version VC , initial message IC
VC ,IC−−−−−−−−−−−−→
VS ,IS←−−−−−−−−−−−− version VS , initial message IS

pick x , e = gx mod p e−−−−−−−−−−−−→
pick y , f = gy mod p, K = ey mod p
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K )

KS ,f ,s
←−−−−−−−−−−−− s = Sig(H) (DSA using p, q, g)

K = f x mod p, check KS
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K )

VerKS
(s, H)
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
Orders in a Group
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Public-Key Cryptosystem

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary
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Non-Deterministic Encryption

Encrypt Decrypt

Plaintext set Ciphertext set Plaintext set
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Semi-Static-DH to Public-Key Encryption
Towards ElGamal Encryption

Alice Bob
input: m secret key: y

public key: Y = gy

Y←−−−−−−−−−−−−

pick x at random
X = gx X−−−−−−−−−−−−→ K = KDF(X y )

K = KDF(Y x)

c = symEncK (m)
c−−−−−−−−−−−−→ m = symDecK (c)

output: m
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The Plain ElGamal Encryption Case

In the original ElGamal cryptosystem:
in Z∗p, not of prime order...
no KDF...
symEnc is one-time-pad, adapted in the DH group

... this is all we should not do...
but wait: this is the basis of many cryptosystems...

In what follows: we work in 〈g〉 of order n
CAUTION: notation change
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ElGamal Cryptosystem

Public parameters: (g, n), a group 〈g〉 of order n generated by
some g

Set up: generate a random x ∈ Zn, and compute y = gx

Message: an element m ∈ 〈g〉
Public key: pk = y
Secret key: sk = x
Encryption: pick a random r ∈ Zn, compute u = gr , and v = my r

The ciphertext is (u, v)
Decryption: extract the u and v parts of the ciphertext and compute

m = vu−x
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ElGamal Cryptosystem
Semi-Static DH + Vernam Generalized

Alice Bob
input: m secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m
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Plain ElGamal Encryption

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

(gr , my r )
-

(u, v)
Decrypt -Message

vu−x

�
�

Adversary

y = gx

6
?

domain parameters:
g: a group generator

n: order of g

(assume m ∈ 〈g〉)
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ElGamal Encryption Complexity

in subgroups of Z∗p with p of length ℓ:

Domain parameter selection: O(ℓ4)
(prime numbers generation to be seen in next chapter)
Generator: O(ℓ3)

Encryption: O(ℓ3)

Decryption: O(ℓ3)
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ElGamal Security: ElGamal Problems

EGKR (ElGamal Key Recovery Problem)

1: Setup(1λ)→ (group, n, g)
2: Gen(group, n, g)→ (y , x) ▷ pick x ∈ Zn, y = gx

3: A(group, n, g, y)→ x ′

4: return 1x=x′

EGD (ElGamal Decryption Problem)

1: Setup(1λ)→ (group, n, g)
2: Gen(group, n, g)→ (y , x) ▷ pick x ∈ Zn, y = gx

3: pick pt ∈ 〈g〉 ▷ pick pt ∈ 〈g〉
4: Enc(y , pt)→ (u, v) ▷ pick r ∈ Zn, u = gr , v = pt · y r

5: A(group, n, g, y , u, v)→ m
6: return 1m=pt

key recovery problem ⇐⇒ DL problem
decryption problem ⇐⇒ CDH problem [next slide]
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EGD hard =⇒ CDH hard
The EGD Problem Reduces to the CDH Problem

assume EGD is hard
to prove CDH hardness, consider a CDH algorithm A
construct B s.t. A wins CDH =⇒ B wins EGD:

Pr





CDHA game:
Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

A(. . . ,X ,Y )→ K
return 1K=gxy


→ 1


≤ Pr





EGDB game:
Setup→ . . . , g
pick x , y ← gx

pick pt
pick r , u ← gr

v ← pt · y r

A(. . . , y , u)→ K
m← v/K
return 1m=pt


→ 1


= negl
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1: A(. . . , g, y , u)→ K
2: m← v/K
3: return m



CDH hard =⇒ EGD hard
The CDH Problem Reduces to the EGD Problem

assume CDH is hard
to prove EGD hardness, consider a EGD algorithm A
construct B s.t. A wins EGD =⇒ B wins CDH:

Pr





EGDA game:
Setup→ . . . , g
pick x , y ← gx

pick pt
pick r , u ← gr

v ← pt · y r

A(. . . , y , u, v)→ m
return 1m=pt


→ 1


≤ Pr





CDHB game:
Setup→ . . . , g
pick x , y
X ← gx

Y ← gy

pick v
A(. . . ,X ,Y , v)→ m
K ← v/m
return 1K=gxy


→ 1


= negl
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ElGamal Encryption Security

key recovery is equivalent to solving DL
decryption is equivalent to the solving CDH
INDCPA security equivalent to solving DDH
(IND-CPA security defined on slide 785)

SV 2024–25 Diffie-Hellman Cryptography CryptoSec 241 / 1098



Conclusion

Zn ring, Zp field: a nice playground for cryptography
algorithmic number theory: easy to add multiply, invert,
compute exponentials in Zn and Zp

DL, CDH, and DDH problems: some cryptosystems based on
their hardness
Diffie-Hellman key exchange: can set up a symmetric key over
a public channel, resist to passive adversaries
ElGamal encryption: an example of probabilistic cryptosystem
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Must be Known

groups, rings, fields:
orders + tricks to check/pick a generator
Lagrange Theorem

Zn ring: invertibility
Zp field: the multiplicative group is cyclic
algorithmic number theory:

square-and-multiply
extended Euclid algorithm

Diffie-Hellman key exchange:
resist to passive adversaries
better on a goup of prime order
requires the hardness of DL

ElGamal encryption:
requires the hardness of CDH
encrypt group elements
better on a group of prime order
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Train Yourself

subgroup issues: final exam 2016–17 ex5
variant of DH: midterm exam 2017–18 ex3
DDH mod pq: midterm exam 2022–23 ex2
DLP in GGM: final exam 2022–23 ex3
DH in comosite group: midterm exam 2023–24 ex2
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Roadmap

more on number theory
prime number generation
RSA cryptosystem
square roots
factoring problem
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3 RSA Cryptography
Euler and Other Chinese
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem
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Euler Totient Function

φ(n) is the order of Z∗
n

Theorem
Given an integer n, we have the following results.

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.
Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime
For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).
if e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For
all y ∈ Z∗n, yd mod n is the only eth root of y modulo n
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Proof — i

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.

Proof.
=⇒: if gcd(x , n) = d > 1, then d divides (x · y) mod n for any y so
(xy) mod n cannot be equal to 1.
⇐=: if gcd(x , n) = 1, the extended Euclid algorithm constructs an
inverse of x (see slide 175 )
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Proof — ii

Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime

Proof. By definition, Zn is a field⇐⇒ Z∗n = Zn\{0}.
Since Z∗n ⊆ Zn\{0}, Z∗n and Zn\{0} are equal iff they have the same
cardinality.
We have #Z∗n = φ(n) and #Zn\{0} = n − 1, so we deduce
Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1.

Z∗n = Zn\{0} ⇐⇒ ∀x ∈ {1, . . . , n − 1} gcd(x , n) = 1
⇐⇒ n is prime

(Zn field⇐= n prime was seen on slide 190 )
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Proof — iii

For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).

Proof. Due to the Lagrange Theorem, the order k of x divides the
order φ(n) of Z∗n.
Let φ(n) = k · r . We have xφ(n) ≡ xk·r ≡ (xk )r ≡ 1r ≡ 1.
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Proof — iv

“for y ∈ Z∗n, x = yd is the unique root of equation y = xe”

If e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For all
y ∈ Z∗n, yd mod n is the only eth root of y modulo n

Proof. We have e · d = 1 + k · φ(n) for some k .
x ≡ yd =⇒ xe ≡ y1+k·φ(n) ≡ y so x = yd is a eth root of y .
If y ≡ xe, we have x ∈ Z∗n because(

y−1xe−1) x ≡ 1

we have y ≡ xe =⇒ yd ≡ x1+k·φ(n) ≡ x so a eth root of y must
be unique.
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Application: RSA Cryptosystem

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. For any
a, b ∈ Z, there exists x ∈ Z such that

x ≡ a (mod m)

x ≡ b (mod n)

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m = 5, n = 7, mn = 35, a = 3, b = 4)
We find that x = 18 is a solution and for all solution, x mod (mn) = 18
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m, n) = 1. We have
f : Zmn → Zm × Zn defined by f (x) = (x mod m, x mod n) is a ring
isomorphism
f−1(a, b) ≡ an(n−1 mod m) + bm(m−1 mod n) (mod mn)

Example: (m = 5, n = 7, mn = 35)

f−1(3, 4)=
(
3× 7× (7−1 mod 5) + 4× 5× (5−1 mod 7)

)
mod 35

=· · · = 18

Application: φ(pq) = (p − 1)(q − 1) when p and q are two different
primes
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Application 1: Count Soldiers

x ≡ 3 · 11 · (11−1 mod 7) + 9 · 7 · (7−1 mod 11) (mod 77)
≡ 3× 22 + 9× 56 (mod 77)
≡ 31 (mod 77)

... there must be 108 soldiers
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Application 2: Equality Modulo Composite
Numbers

Theorem
For any a, b,m, n ∈ Z such that gcd(m, n) = 1, then

a ≡ b (mod m)
a ≡ b (mod n)

}
⇐⇒ a ≡ b (mod mn).

Indeed, f (a mod (mn)) = f (b mod (mn)) hence
a mod (mn) = b mod (mn)
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Application 3: Correctness of RSA

let N = pq be the product of two different prime numbers p and q
for any x ∈ Z such that x mod p 6= 0 we have
(xe mod N)d mod N ≡ x (mod p)
(comes from p − 1 divides φ(N) thus ed mod (p − 1) = 1)
this also holds when x mod p = 0
similarly: for any x ∈ Z we have (xe mod N)d mod N ≡ x (mod q)
from CRT (Application 2): for any x ∈ Z we have
(xe mod N)d mod N ≡ x (mod N)

for any x ∈ ZN we have (xe mod N)d mod N = x
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Application 4: Exponentiation Acceleration

log2 p ≈ log2 q ≈ ℓ

2

(y mod q)d mod (q−1) mod q

(y mod p)d mod (p−1) mod p

1

q
CRT - yd mod pq

2×O
((

ℓ
2

)3
)

O
(
ℓ3
)
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Proof of CRT — i

Fact 1: f is a ring homomorphism from Zmn to Zm × Zn

f (x +Zmn y) = f (x) +Zm×Zn f (y)
indeed:

((x + y) mod (mn)) mod m = ((x mod m) + (y mod m)) mod m
((x + y) mod (mn)) mod n = ((x mod n) + (y mod n)) mod n

f (x ×Zmn y) = f (x)×Zm×Zn f (y)
(same)
f (1) = (1, 1)
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Proof of CRT — ii

Fact 2: f is an isomorphism
f (x) = (0, 0) implies m and n divide x
since gcd(m, n) = 1, mn divides x (see next slide)
thus x mod (mn) = 0
f is injective: for all x , y ∈ Zmn, if f (x) = f (y) then
f (x − y) = (0, 0) thus x − y mod (mn) = 0 hence x = y
f is an isomorphism: Zmn and Zm × Zn have the same cardinality
and f is injective thus f is a bijection
since f is further a homomorphism, f is an isomorphism
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Null Kernel

m and n divide x and are coprime
let n = pα1

1 · · · p
αr
r be the unique factorization of n into pairwise

different primes pi

write x = mx ′ (since m divides x)
since n divides x , each pαi

i divides x = mx ′

since n is coprime with m, pi does not divide m
hence, pαi

i divides x ′

each pαi
i divides x ′ so n divides x ′

write x ′ = nx ′′

x = mnx ′′: mn divides x
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Proof of CRT — iii

Fact 3: f (an(n−1 mod m) + bm(m−1 mod n)) = (a, b)

an(n−1 mod m) + bm(m−1 mod n) ≡ a (mod m)

an(n−1 mod m) + bm(m−1 mod n) ≡ b (mod n)

thus f of the left hand side is (a, b)
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CRT Backward: Another Approach

Theorem (CRT Backward)

Let m and n be two integers such that gcd(m, n) = 1. Let
u = n(n−1 mod m) and v = m(m−1 mod n). The function

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

is well defined and is a ring isomorphism.

Note: g is well defined because

g : Z× Z −→ Zmn
(a, b) 7−→ (a + im)u + (b + jn)v mod (mn)

does not depend on i or j
Consequence: (u + v) mod (mn) = g(1, 1) = 1
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Proof

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

Proof.
g(a, b) + g(a′, b′) ≡ g(a + a′, b + b′) (mod mn) so g is a group
homomorphism
g(a, b) = 0 implies a mod m = 0 and b mod n = 0 so g is
injective
due to cardinality, g is bijective: so, a group isomorphism
g−1(x) = (x mod m, x mod n) is homomorphic for × so we have
a ring isomorphism
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Euler Totient Function

Corollary

Let m and n be two integers such that gcd(m, n) = 1. We have
φ(mn) = φ(m)φ(n).
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Proof

Fact: f is a bijection from Z∗mn to Z∗m × Z∗n (thus φ(mn) = φ(m)φ(n)):
if x ∈ Z∗mn then f (x).f (x−1) = f (1) = (1, 1) so both components of
f (x) are invertible: f (x) ∈ Z∗m × Z∗n
so f maps Z∗mn to Z∗m × Z∗n
conversely, if (a, b) ∈ Z∗m × Z∗n, let x = f−1(a, b) and
y = f−1(a−1, b−1)
we have f (xy) = f (x).f (y) = (a, b).(a−1, b−1) = (1, 1) = f (1) so
xy = 1 so x ∈ Z∗mn
so f from Z∗mn to Z∗m × Z∗n is surjective
f is an injection on Zmn so an injection on Z∗mn as well

actually, Z∗mn and Z∗m × Z∗n are isomorphic groups (and f is such
isomorphism)
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Computation of Euler Totient Function

φ(p) = p − 1 for p prime
φ(mn) = φ(m)× φ(n) when gcd(m, n) = 1
φ(pa) = (p − 1)pa−1 for p prime

φ
(
pa1

1 × · · · × par
r
)

= (p1 − 1)pa1−1
1 × · · · × (pr − 1)par−1

r

= pa1
1 × · · · × par

r
(p1 − 1)× · · · × (pr − 1)

p1 × · · · × pr

for pairwise different prime numbers p1, . . . , pr
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For Generating a Generator go to

For g ∈U G in a cyclic group G of order n =
∏r

j=1 pαj
j with pairwise

different primes pj :
let h ∈ G be a generator; due to CRT, there is an isomorphism f

G
logh−→ Zn

f−→
r∏

j=1

Zp
αj
j

so g
f◦logh7−→ (aj)1≤j≤r ∈U Zpα1

1
× · · · × Zpαr

r

due to isomorphism,

g
n
pi = 1 ⇐⇒

r∧
j=1

n
pi

aj ≡ 0 (mod pαj
j )

⇐⇒ n
pi

ai ≡ 0 (mod pαi
i )

⇐⇒ ai mod pi = 0

ai ’s are independent and uniform

so Pr
g∈U G

[
g

n
pi = 1

]
=

1
pi

and these events are independent
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Trial Division Algorithm

Input: an integer n
Output: a list of prime numbers whose product

is n
Complexity: O(

√
n) iterations (poly-time arith-

metic operations in each iteration)
1: x ← n, i ← 2
2: while x > 1 and i ≤ b

√
xc do

3: while i divides x do
4: print i
5: x ← x/i
6: end while
7: i ← i + 1
8: end while
9: if x > 1 then print x
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Fermat Test

Theorem (Little Fermat Theorem)

If n is prime, for any b ∈ {1, . . . , n − 1}, bn−1 mod n = 1.

?
pick b at random

?
bn−1 mod n = 1?

?
n composite

-yes

no

k iterations

?
end

n maybe prime

�
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Fermat Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-primality or pseudo-

primality
Complexity: O(kℓ3)

1: repeat
2: pick a random b such that 0 < b < n
3: x ← bn−1 mod n
4: if x 6= 1 then
5: output “composite” and stop
6: end if
7: until k iterations are made
8: output “maybe prime” and stop
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Significance of the Fermat Test

False Negative: Pr[output : composite|n prime] = 0
False Positive: there exist pathologic numbers n which are not
prime such that Pr[output : maybe prime|n] is high.
Carmichael Numbers n are composite such that for any b,
b ∈ Z∗n ⇐⇒ bn−1 mod n = 1. Hence

Pr[output : maybe prime|n] =
(

φ(n)
n−1

)k
.
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Carmichael Numbers

Definition
We call Carmichael number any integer n which is a product of (at
least 2) pairwise different prime numbers pi such that pi − 1 is a factor
of n − 1.

Theorem
An integer n is a Carmichael number if and only if it is composite and
for any b s.t. gcd(b, n) = 1, we have bn−1 ≡ 1 (mod n).

Proof.
⇒: get bn−1 mod pi = 1 then apply CRT
⇐: get bn−1 mod pi = 1 for a genarator b of Z∗pi

so pi − 1|n − 1
PB to show that n is square-free (pi ’s are pairwise different)
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Carmichael Numbers: the 561 Case

Example: n = 561 = 3 · 11 · 17 is such that for all b s.t. gcd(b, n) = 1,
we have bn−1 ≡ 1 (mod n).
n − 1 = 560 = 24 × 5× 7 is divisible by 3− 1, 11− 1, 17− 1

The Fermat test may be wrong with probability(
φ(n)
n − 1

)k

=

(
2× 10× 16

560

)k

=

(
4
7

)k
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Carmichael Numbers: the 949 631 589 089 Case

949 631 589 089 = 6917× 10193× 13469
949 631 589 088 = 25 × 73 × 13× 19× 37× 9467

6917 is prime, 6916 = 22 × 7× 13× 19
10193 is prime, 10192 = 24 × 72 × 13
13469 is prime, 13468 = 22 × 7× 13× 37
the test may be wrong with probability(

φ(n)
n − 1

)k

=

(
9464
9467

)k

≈ (1− 0.000317)k

example: for k = 20 the error probability is approximately
1− 0.00631
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Towards The Miller-Rabin Test

We write n − 1 = 2st with t odd

If n is prime, we have bn−1 mod n =
(
· · ·
(
(bt)2

)2 · · ·
)2

mod n = 1

If n is prime, +1 and −1 are the only possible square roots of 1
( slide 297 )
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The Miller-Rabin Test

bt mod n -6= 1
SQ -6= 1

SQ -6= 1 · · · -6= 1
SQ -6= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷

Miller-Rabin test with basis b: check that the sequence
(bt , b2t , . . . , b2s t) is of form either (1, 1, . . . , 1) or (⋆, . . . , ⋆,−1, 1, . . . , 1)
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The Miller-Rabin Primality Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-primality

or pseudo-primality
Complexity: O(kℓ3)

1: if n = 2 then
2: return “prime”
3: end if
4: if n is even then
5: return “composite”
6: end if
7: write n = 2st + 1 with t odd

8: repeat
9: pick b ∈ {1, . . . , n − 1}

10: x ← bt mod n
11: i ← 0
12: if x 6= 1 then
13: while x 6= n − 1 do
14: x ← x2 mod n
15: i ← i + 1
16: if i = s or x = 1 then
17: return “composite”
18: end if
19: end while
20: end if
21: until k iterations are made
22: return “maybe prime”
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Miller-Rabin Criterion

Theorem
An integer n is prime if and only if it passes the Miller-Rabin test for
all b ∈ Z∗n.

Proof (Sketch).
⇒ trivial
⇐ observe that passing Miller-Rabin implies passing Fermat
→ just prove that Carmichael numbers do not pass
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Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of b ∈ Z∗n pass the Miller-Rabin test, then all
b ∈ Z∗n do so.

Consequence: false positives are negligible:

Pr[output maybe prime|n composite] ≤ 4−k
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Prime Number Generation
Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in {2, 3, . . . ,N}. We
have p(N) ∼ N

ln N when N increases toward the infinity.

→ the probability that a random ℓ-bit number is prime is ≈ 1
ℓ ln 2

Example: a 512-bit random integer is prime with probability ≈ 1
355

→ generating a random ℓ-bit prime number takes O(ℓ4 + kℓ3)

pick p at random

?
is it prime?

?
p found

no

yes

�

×O(ℓ)(O(ℓ3) for composite)

(O(kℓ3) for prime)
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Implementation

Input: ℓ
Output: a random prime number less than 2ℓ

Complexity: O(ℓ4) arithmetic operations
1: repeat
2: pick a random number n of ℓ bits
3: until a primality test with k iterations accepts

n as a prime number
4: output n

With k = 1
2 (log2 ℓ− log2 ε) the probability that this algorithm outputs a

composite number is less than ε.

Pr[output not prime] ≤ O(ℓ)× 4−k = O(ε)

(next slide)
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Incorrectness Probability
pi : probability to make exactly i iterations and make an incorrect
response at the i-th iteration
Pr[output not prime] =

∑
i pi

we have

pi ≤ Pr[pick composite and be wrong] Pr[pick composite]i−1

≤ Pr[wrong—composite] Pr[pick composite]i−1

≤ 4−k Pr[pick composite]i−1

hence

Pr[output not prime] =
∑

i

pi

≤ 4−k
∑

i

Pr[pick composite]i−1

= 4−k/Pr[pick prime]
= O(ℓ)× 4−k
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Plain RSA Cryptosystem

Public parameter: an integer ℓ.
Set up: find two random different prime numbers p and q of

size ℓ
2 bits. Set N = pq. Select e such that

gcd(e, (p − 1)(q − 1)) = 1:
either pick a random e until it is valid
or pick e = 17 or e = 216 + 1 if valid.

Set d = e−1 mod ((p − 1)(q − 1)).
Message: an element x ∈ ZN .

Public key: pk = (e,N).
Secret key: sk = (d ,N).
Encryption: y = xe mod N.
Decryption: x = yd mod N.
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Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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RSA Correctness

Theorem (Euler)

Let p, q be two different primes and N = p × q.
For any x ∈ {0, . . . ,N − 1} and any k, we have xkφ(N)+1 mod N = x.

Consequence: RSA decryption works!
Proof. from CRT...
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RSA Complexity

RSA with a modulus of ℓ bits and a random e.
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ3)

Decryption: O(ℓ3)

RSA with a modulus of ℓ bits and a constant e (e.g. e = 216 + 1).
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ2)

Decryption: O(ℓ3)
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ElGamal vs RSA

Complexity of Gen is much lower for ElGamal (ElGamal is better)
Complexity of Enc is lower for RSA (constant e) (RSA is better)
Problem: ElGamal encryption is length-increasing (RSA is better)
ElGamal can be easily adapted to other groups (e.g. elliptic
curves) (ElGamal is better)
ElGamal is probabilistic, (plain) RSA is deterministic
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Square Roots in Fields

Lemma
Let K be a field. For any x ∈ K we have

x2 = 1 =⇒

 x = 1
or
x = −1

Proof. Assume that x2 = 1. We know that x2 − 1 = (x − 1)(x + 1).
Case 1: x − 1 = 0 thus x = 1.
Case 2: x − 1 6= 0 so we can divide 0 = x2 − 1 by x − 1 and
obtain x + 1 = 0 thus x = −1.

Consequence: x2 = a has at most 2 roots in a field
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Existence of Square Roots in Zp

Theorem
Let p be an odd prime number.
b ∈ Z∗p has a square root if and only if b

p−1
2 mod p = 1.

In that case, we say that b is a quadratic residue.

Proof:
⇒ if c2 ≡ b then b

p−1
2 ≡ cp−1 = 1

⇐ since Z∗p is cyclic, let g be a generator and write b ≡ ge

we have b
p−1

2 ≡ 1 so p−1
2 e is multiple of p − 1

thus e is even, let e = 2e′ and we have b ≡ g2e′ ≡
(

ge′
)2

so b

has a square root ge′
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Computing Square Roots in Zp, p = 3 (mod 4)

p+1
4 is integer!

Lemma
Let p be a prime number such that p ≡ 3 (mod 4). For any x ∈ Zp we
have

y2 ≡ x (mod p) =⇒


y ≡ x

p+1
4 (mod p)

or
y ≡ −x

p+1
4 (mod p)

Proof.
In Zp, we have(

x
p+1

4

)2
= x

p+1
2 = yp+1 = yp−1 × y2 = y2 = x

so x
p+1

4 = ±y .
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Example

square root of 5 in Z11

remark that 11 mod 4 = 3
remark that 5

11−1
2 mod 11 = 5× (52)2 mod 11 = 1 so 5 has a

square root modulo 11

compute 5
11+1

4 mod 11 = 5× 52 mod 11 = 4
remark that 42 mod 11 = 5 so 4 is a square root of 5
other square root is −4 mod 11 = 7
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Tonelli Algorithm

Input: a quadratic residue a ∈ Z∗p where p ≥ 3
is prime

Output: b such that b2 ≡ a (mod p)
Complexity: O((log p)3)

1: repeat
2: choose g ∈ Z∗p at random
3: until g is not a quadratic residue
4: let p − 1 = 2st with t odd
5: e← 0
6: for i = 2 to s do
7: if (ag−e)

p−1
2i mod p 6= 1 then

8: e← 2i−1 + e
9: end if

10: end for
11: b ← g−t e

2 a
t+1

2 mod p
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Square Roots in Zn, n = pq

Lemma
Let p, q be two different prime numbers and n = pq. Let x ∈ Zn, and a
and b such that

x ≡ a2 (mod p)
x ≡ b2 (mod q)

We have

x ≡ y2 (mod n)⇐⇒
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)

Consequence: in general, x has 4 square roots in Zn.
Proof. Thanks to the CRT x ≡ y2 (mod n) is equivalent to

x ≡ y2 (mod p)
x ≡ y2 (mod q)

}
⇔
{

a2 ≡ y2 (mod p)
b2 ≡ y2 (mod q)

}
⇔
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)
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Factoring Problem

Gen-Factoring Problem

Factoring(λ):
1: Gen(1λ)→ n
2: A(n)→ (p, q)
3: return 1p×q=n ∧ p,q∈{2,...,n−1}

Example: Gen generates an RSA modulus
(Note: this is the splitting problem, not the full factoring problem.)
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Record using the Number Field Sieve Algorithm

Complexity: e
O
(
(ln n)

1
3 (ln ln n)

2
3

)

RSA768
= 1230186684530117755130494958384962720772853569595334792197322452151726400507

2636575187452021997864693899564749427740638459251925573263034537315482685079
1702612214291346167042921431160222124047927473779408066535141959745985690214
3413

= 3347807169895689878604416984821269081770479498371376856891243138898288379387
8002287614711652531743087737814467999489
×
3674604366679959042824463379962795263227915816434308764267603228381573966651
1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on
one core 2.2GHz Opteron.
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Factorization Tomorrow

Factorization of n with complexity O((ln n)2 ln ln n ln ln ln n) by using
Shor’s algorithm

It only works on a quantum computer
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Factoring Algorithms on Classical Computers

GNFS: factor n

complexity = e
3
√

64
9 +o(1)(ln n)

1
3 (ln ln n)

2
3

best algorithm for RSA moduli
ECM: finds a factor p

complexity = e
√

2+o(1)(ln p)
1
2 (ln ln p)

1
2

useful for numbers with a small prime factor
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Square Roots in Zpq

RSA-Gen: generates integers of form n = pq with p 6= q both prime

RSA-Factoring

Factoring(λ):
1: RSA-Gen(1λ)→ n
2: A(n)→ (p, q)
3: return 1p×q=n ∧ p,q∈{2,...,n−1}

m

RSA-Square roots

Factoring(λ):
1: RSA-Gen(1λ)→ n
2: pick x ∈ QRn
3: A(n, x)→ y
4: return 1y2 mod n=x
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Factoring n =⇒ Computing Square Roots in Zn

Input: n, x
Output: y such that y2 mod n = x
Complexity: O((log n)3) + factoring n
B(n, x):

1: A(n)→ (p, q) ▷ A playing the factoring
game

2: find yp, a square roots of x modulo p by using
efficient algorithms

(e.g. for p mod 4 = 3 compute x
p+1

4 mod
p)

3: find yq , a square roots of x modulo q
4: return y = CRTp,q(yp, yq)

Pr[B wins SQRT] ≥ Pr[A wins FACT]
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Computing Square Roots in Zn =⇒ Factoring n

Input: n
Output: p, q prime such that

n = pq
Complexity:
O((log n)2) + |SQRT|

B(n):
1: pick y0 ∈ {1, . . . , n − 1}
2: if y0 6∈ Z∗n then factor...
3: x ← y2

0 mod n
4: y ← A(n, x) ▷ SQRT
5: if y = y0 or y = −y0 mod n

then abort
6: p ← gcd(y − y0, n)
7: q ← n/p
8: return (p, q)

since there are 4 square
roots, we have Pr[y =
y0 or y = −y0 mod n] = 1

2

in other cases, y − y0 is zero
modulo one of the two
factors but not modulo the
other: gcd(y − y0, n) is the
former factor

Pr[B wins FACT] ≥ 1
2
Pr[A wins SQRT]
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Note

Lemma
For y0, y1 ∈ Zn

y2
0 ≡ y2

1 (mod n)
y0 6≡ y1 (mod n)
y0 6≡ −y1 (mod n)

 =⇒ gcd(y0 − y1, n) 6∈ {1, n}

Proof.
y0 − y1 6≡ 0 =⇒ gcd(y0 − y1, n) 6= n.
y2

0 − y2
1 ≡ 0 =⇒ n|(y0 − y1)(y0 + y1).

If gcd(y0− y1, n) = 1 then n|y0 + y1 which contradicts y0 + y1 6≡ 0.
Hence gcd(y0 − y1, n) 6∈ {1, n}.
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RSA Security: RSA Problems

RSADP (RSA Decryption Problem)

1: RSA.Gen(1λ)→ (n, e, d)
2: pick x ∈ Zn
3: y ← xe mod n
4: A(n, e, y)→ z
5: return 1x=z

RSAKRP (RSA Key Recovery Problem)

1: RSA.Gen(1λ)→ (n, e, d)
2: A(n, e)→ z
3: return 1z=d

OMP (Order Multiple Problem)

1: RSA.Gen(1λ)→ (n, e, d)
2: A(n)→ z
3: return 1φ(n) divides z and z ̸=0

(implicit: n is product of two different large primes
and gcd(e, φ(n)) = 1)

GOP (Group Order Problem)

1: RSA.Gen(1λ)→ (n, e, d)
2: A(n)→ z
3: return 1φ(n)=z

RSAFP (RSA Factorization Problem)

1: RSA.Gen(1λ)→ (n, e, d)
2: A(n)→ (p, q)
3: return 1pq=n,1<p,q<n

RSADP ⇐ RSAKRP ⇐ GOP

⇐ ⇔

OMP ⇒ RSAFP
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RSAKRP =⇒ RSADP

Pr


RSAKRPA :
Gen→ (n, e, d)
A(n, e)→ d ′

return 1d=d ′

↓
1

 ≤ Pr



RSADPB :
Gen→ (n, e, d)
pick x
y ← xe mod n
// B(n, e, y)→ x ′ :
A(n, e)→ d ′

x ′ ← yd ′ mod n
return 1x=x′

↓
1


because x = yd mod n due to correctness
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GOP =⇒ RSAKRP

Pr


GOPA :
Gen→ (n, e, d)
A(n)→ z
return 1φ(n)=z

↓
1

 ≤ Pr



RSAKRPB :
Gen→ (n, e, d)
// B(n, e)→ d ′ :
A(n)→ z
d ′ ← e−1 mod z
return 1d=d ′

↓
1


because d = e−1 mod φ(n)
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RSAKRP =⇒ OMP

Pr


RSAKRPA :
Gen→ (n, e, d)
A(n, e)→ d ′

return 1d=d ′

↓
1

 ≤ Pr



OMPB :
Gen→ (n, e, d)
// B(n)→ z :
A(n, e)→ d ′

z ← ed ′ − 1
return 1φ(n) divides z and z 6=0

↓
1


because e > 1, d ≥ 0, ed ≡ 1 (mod φ(n))
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RSAFP =⇒ GOP

Pr


RSAFPA :
Gen→ (n, e, d)
A(n)→ (p, q) :
return 1pq=n,1<p,q<n

↓
1

 ≤ Pr



GOPB :
Gen→ (n, e, d)
// B(n)→ z :
A(n)→ (p′, q′)
z ← (p′ − 1)× (q′ − 1)
return 1φ(n)=z

↓
1


because φ(n) = (p − 1)× (q − 1)
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GOP =⇒ RSAFP

Pr


GOPA :
Gen→ (n, e, d)
A(n)→ z
return 1φ(n)=z

↓
1

 ≤ Pr



RSAFPB :
Gen→ (n, e, d)
// B(n)→ (p, q) :
A(n)→ z
p, q ← roots in Z of
X 2 − (n − z + 1)X + n = 0
return 1pq=n,1<p,q<n

↓
1


because p + q = n − φ(n) + 1 and p × q = n
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OMP =⇒ RSAFP

Pr


OMPA :
Gen→ (n, e, d)
A(n)→ z :
return 1φ(n) divides z and z 6=0

↓
1

 ≤ Pr



RSAFPB :
Gen→ (n, e, d)
// B(n)→ (p, q) :
A(n)→ z
run “factor using φ(n)”
algo using z
return 1pq=n,1<p,q<n

↓
1


factorization using φ(n) also works with any nonzero multiple of λ(n)
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Factorization using λ(n) Multiple

x t mod n -6= 1
SQ -6= 1

SQ -6= 1 · · · -6= 1
SQ -6= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷

write z = 2st with t odd
pick a random x , replace x by x t mod N
iteratively square x , get the last x which is not 1
if x ≡ −1, try again, otherwise, output gcd(x − 1,N)
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Factorization using λ(n) Multiple

Input: λ(n) (n odd)
Output: a non trivial factor of n
B(n):

1: A(n)→ z
2: write z = 2st with t odd
3: repeat
4: pick a random x in Z∗n
5: x ← x t mod n
6: y ←⊥
7: while x 6= 1 do
8: y ← x
9: x ← x2 mod n

10: end while
11: until y 6=⊥ and y 6≡ −1

(mod n)
12: f ← gcd(y − 1, n)
13: return (f , n/f )

Fact. For x ∈ Zn, if x2 mod n = 1,
x 6= 1, x 6= n − 1 then
1 < gcd(n, x − 1) < n which is a
non-trivial factor of n:

n divides (x − 1)(x + 1)
if gcd(n, x − 1) = n then n
divides x − 1 thus x = 1
which is wrong
if gcd(n, x − 1) = 1 then n
divides x + 1 thus x = n − 1
which is wrong
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RSA Security

key recovery is equivalent to factoring n
decryption is the RSA problem
(not known to be equivalent to factoring)
knowing pk and sk in RSA implies factoring n
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Conclusion

Euler φ function: to compute the order of Z∗n
Chinese Remainder Theorem: parallel Zm and Zn

primality testing: efficient, used to generate prime numbers
RSA cryptosystem: public-key cryptosystem
factoring problem: believed to be hard
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Computational Problems

easy hard (maybe)

gcd
inverse modulo n
exponential
square root mod n when
factorization of n is known
Legendre/Jacobi symbol
checking primality
finding a generator when
group order is known
computing order when
factorization of group order
is known

factoring
discrete logarithm
(sometimes)
square root mod n
computing φ(n), λ(n)
checking quadratic
residuosity
computing order in group
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Must be Known

Euler ϕ function: formula, properties
Chinese Remainder Theorem: how to use it
primality testing: properties, how to use to generate prime
numbers
RSA: why it works, complexity
quadratic residuosity: how to check, when it is easy to extract
square roots
factoring problem: some reductions to other problems
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Train Yourself

Chinese Remainder Theorem:
midterm exam 2018–19 ex2 (RSA with Carmichael numbers)
midterm exam 2013–14 ex1
final exam 2012–13 ex1
midterm exam 2012–13 ex2
midterm exam 2011–12 ex2
midterm exam 2010–11 ex1
midterm exam 2010–11 ex2
midterm exam 2009–10 ex2
midterm exam 2008–09 ex1

square roots, cubic roots:
midterm exam 2013–14 ex2
midterm exam 2009–10 ex1

quadratic residuosity:
midterm exam 2012–13 ex1

prime number generation:
midterm exam 2014–15 ex1

RSA variant:
final exam 2015–16 ex2
midterm exam 2017–18 ex1

arithmetic modulo 99 991: midterm exam 2023–24 ex3
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Roadmap

Galois fields
elliptic curves over Zp

elliptic curves over GF(2k )

using standard curves
Diffie-Hellman over elliptic curves
ElGamal over elliptic curves
pairing-based cryptography

SV 2024–25 Elliptic Curve Cryptography CryptoSec 330 / 1098
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Elliptic Curves over a Prime Field
Elliptic Curve and Factoring
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography
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GF(pk) for Dummies

p: a prime number.
Euclidean division in Zp[x ]: for any polynomials A(x) and P(x)
such that P 6= 0, there exists polynomials R(x) and B(x) such
that A(x) = R(x) + P(x) · B(x) and deg(R) < deg(P).
R(x) = A(x) mod P(x) is the remainder of A(x) in the division by
P(x).
Select a monic (i.e. with leading coefficient 1) irreducible (i.e.
who cannot be expressed as a product of polynomials with
smaller degree) polynomial P(x) of degree k in Zp[x ].
Let GF(pk ) be the set of all polynomials in Zp[x ] of degree at
most k − 1.
Addition: regular polynomial addition modulo p.
Multiplication: regular multiplication in Zp[x ] reduced modulo
P(x).
We can prove that this constructs a field.
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Example: GF(8)

In order to construct GF(23):
consider the ring Z2[x ] of polynomials
take the monic irreducible (mod 2) polynomial P(x) = x3 + x + 1
of degree 3
construct

GF(23) = {0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}

Example: (x + 1) + (x2 + 1) = x2 + x in GF(23).
Example: (x + 1)× (x2 + 1) = x3 + x2 + x + 1 = x2 in GF(23).
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Cerebral GF(pk)

p: a prime number.
Zp[x ] is a Euclidean ring.
Select a monic irreducible polynomial P(x) of degree k in Zp[x ].
P(x) spans a maximal ideal (P(x))
Let GF(pk ) = Zp[x ]/(P(x)) be the quotient of ring Zp[x ] by ideal
(P(x)).
We obtain a field who inherits the addition and multiplication from
the ring structure of Zp[x ].
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Galois Fields

Theorem
We have the following results.

The cardinality of any finite field is a prime power pk .
For any prime power pk , there exists a finite field of cardinality
pk . p is called the characteristic of the field.
Two finite fields of same cardinality are isomorphic, so the finite
field of cardinality pk is essentially unique. We denote it GF(pk )
as Galois field of cardinality pk .
GF(pk ) is isomorphic to a subfield of GF(pk×ℓ).
GF(pk ) can be defined as the quotient of ring of polynomials with
coefficients in Zp by a principal ideal spanned by an irreducible
polynomial of degree k: Zp[x ]/(P(x)).
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Example: GF(5)

GF(5) = Z5 = {0, 1, 2, 3, 4}

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(GF(5),+) ≈ (Z5,+) (GF(5)∗,×) ≈ (Z4,+)
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Example: GF(4)

GF(4) = {0, 1, x , x + 1} 6= Z4

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

(GF(4),+) ≈ (Z2 × Z2,+) (GF(4)∗,×) ≈ (Z3,+)

P(x) = x2 + x + 1 irreducible in Z2[x ], GF(4) = Z2[x ]/(P(x))
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Example: GF(28)
Arithmetics in AES

A byte a = a7 . . . a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte polynomial
0x00 0
0x01 1
0x02 x
0x03 x + 1
0x1b x4 + x3 + x + 1

Addition: bitwise XOR
Multiplication by 0x02: shift and XOR with 0x1b if carry
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Most Important Finite Fields

“prime field”: Zp for a large prime p
“binary field”: GF(2k )

Zp GF(2k )

representation integers from 0 to p − 1 polynomials in x of degree at
most k − 1 with binary coef-
ficients (k -bit strings)
requires the choice of an ir-
reducible polynomial P(x) of
degree k

addition addition modulo p bitwise XOR
multiplication multiplication modulo p ad-hoc algorithms

multiplication by 0x2: shift to
the left and XOR to a con-
stant if carry
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Characteristic 2 Tips

In GF(2k ):
1 + 1 = 0
minus = plus: −a = a
square is linear: (a + b)2 = a2 + b2

power 2i is linear

for k > 1, a2k−1
is the unique square root of a

trace function: Tr(a) = a + a2 + a22
+ · · ·+ a2k−1 ∈ {0, 1}

(traces are roots of z2 = z)
Fact: Tr is linear: Tr(a + b) = Tr(a) + Tr(b)
Fact: for all a in GF(2k ) we have Tr(a2) = Tr(a)
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Elliptic Curves

y2 = x3 + ax + b
(a = −1, b = 2)

P

x

y
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Elliptic Curves - Point Addition

y2 = x3 + ax + b
(a = −1, b = 2)

P

Q

P + Q

x

y
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Elliptic Curves - Point Doubling

y2 = x3 + ax + b
(a = −1, b = 2)

P

2P

x

y
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Elliptic Curves - Point Symmetric

y2 = x3 + ax + b
(a = −1, b = 2)

P

−P

x

y
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Addition in Elliptic Curves
Chord and Tangent Formula

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

we assume that Ea,b(K) is non-singular:
when a point is non-singular we can define the tangent to this
point
singular point⇐⇒ differential of y2 − (x3 + ax + b) vanishes
⇐⇒ y = 0 and x multiple root of x3 + ax + b = 0
curve non-singular⇐⇒ 4a3 + 27b2 6= 0
λ = yQ−yP

xQ−xP
is the chord slope

λ =
3x2

P+a
2yP

is the tangent slope
(λ =∞⇐⇒ yP = 0⇐⇒ P + P = O)
the sum of the 3 roots x of the intersection between Ea,b(K) and
the straight line y = λx + µ is λ2 = xP + xQ + xR
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Group Structure

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

Given P = (xP , yP), we define −P = (xP ,−yP) and −O = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we define
P + Q = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q 6= −P, we let

λ =

{ yQ−yP
xQ−xP

if xP 6= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
In addition, P +O = O + P = P and O +O = O.
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Elliptic Curves are Abelian Groups

by restricting to x , y ∈ K where K is a field (example: Q, R, C,
GF(pk ))

1. Ea,b(K) is closed for the addition
2. the addition is associative in Ea,b(K)

HARD (from the chord and tangent formula)
3. O is neutral for the addition
4. for any P ∈ Ea,b(K) we have −P ∈ Ea,b(K) which is the inverse of

P for addition
5. the addition is commutative

Ea,b(K) is an Abelian group
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Remark on Points of Order 2 (Characteristic > 2)

order-2 points in elliptic curves:

P = (x , y) has order 2 ⇐⇒ P = −P and P 6= O
⇐⇒ y = 0 and x3 + ax + b = 0

So, the number of points of order 2 is the number of roots of
x3 + ax + b in K
order-2 elements in cyclic groups:
being cyclic is equivalent to being isomorphic to some Zn
in Zn, we have one (n even) or no (n odd) element of order 2
conclusion:
the group is not cyclic if x3 + ax + b has two distinct roots in K
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Recap

(for characteristic > 3)
EC are curves (set of points whose coordinate satisfy an
equation)
the curve must be non-singular (∆ 6= 0 for some parameter ∆)
EC can (depending on the field) be defined by the equation
y2 = x3 + ax + b (need to add a point O)
EC have an addition rule, making a group structure
→ can multiply a point by an integer
→ some curves can be isomorphic
→ contrarily to Z∗p, EC are not always cyclic
(but we can work on a cyclic subgroup)
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Roadmap

same formulas, but over Zp

notion of twist: elliptic curves come in pairs
notion of j-invariant: an invariant value by isomorphism
cardinality close to p
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Addition over an Elliptic Curve (Characteristic
p > 3)

(Field K of characteristic p > 3)

Ea,b(K) = {O} ∪ {(x , y) ∈ K2; y2 = x3 + ax + b}

Hypothesis: (discriminant) ∆ = −16(4a3 + 27b2) 6= 0
for P = (xP , yP), we let −P = (xP ,−yP) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q 6= −P we let

λ =

{ yQ−yP
xQ−xP

if xP 6= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.
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Maybe Useful to Know (p > 3) — i

Hypothesis: field K of characteristic p > 3 and ∆ 6= 0
Ea,b and Eu4a,u6b are isomorphic (by (x , y) 7→ (u2x , u3y))

y2 = x3 + ax + b ⇐⇒ (u3y)2 = (u2x)3 + (u4a)(u2x) + (u6b)

and addition is homomorphic:

λ =

{ yQ−yP
xQ−xP
3x2

P+a
2yP

⇐⇒ (uλ) =


(u3yQ)−(u3yP)
(u2xQ)−(u2xP)
3(u2xP)

2+(u4a)
2(u3yP)

xR = λ2 − xP − xQ ⇐⇒ (u2xR) = (uλ)2 − (u2xP)− (u2xQ)

yR = (xP − xR)λ− yP ⇐⇒ (u3yR) = ((u2xP)− (u2xR))(uλ)− (u3yP)

Ea,b and Ev2a,v3b are twist of each other if v is not a square
Remark: they become isomorphic in K[θ]/(θ2 − v): an extension
of K where v becomes a square (v = θ2)
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Maybe Useful to Know (p > 3) — ii

Hypothesis: field K of characteristic p > 3 and ∆ 6= 0
#Ea,b is between q + 1− 2

√
q and q + 1 + 2

√
q where q is the

cardinality of K (Hasse Theorem)
Remark: for two twists, the average of #Ea,b is q + 1
indeed, if v is not a square, if we write a′ = v2a, b′ = v3b,
x ′ = vx , for any x , we have

#{y ; y2 = x3 + ax + b}+#{y ′; y ′2 = x ′3 + a′x ′ + b′} = 2

so #Ea,b +#Ea′,b′ = 2q + 2
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Maybe Useful to Know (p > 3) — iii

Hypothesis: field K of characteristic p > 3 and ∆ 6= 0

j-invariant: j = 1728 4a3

4a3+27b2

same j-invariant ⇐⇒ same a3/b2 ⇐⇒ ∃v a′ = v2a, b′ = v3b
=⇒ isomorphic groups (over K or K[θ]/(θ2 − v))

(converse is true as well)
to find v , write (Bezout) 3α+ 2β = 1 (α = 1, β = −1) then

v =
(

b′
b

)α (
a′
a

)β
we have: v2 =

(
b′
b

)2α (
a′
a

)2β
=
(

a′
a

)3α (
a′
a

)2β
= a′

a and

v3 =
(

b′
b

)3α (
a′
a

)3β
=
(

b′
b

)3α (
b′
b

)2β
= b′

b
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Other Example

E1,3 over GF(7) = Z7 is isomorphic to Z6
y2 = x3 + x + 3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-

6

P

2P

3P
4P

5P

O
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Recap

EC can be defined by the equation y2 = x3 + ax + b (plus a point
O)
twist: pair of non-isomorphic curves which become isomorphic
when defined over a larger field
j-invariant: parameter which is always the same for isomorphic
curves and for twists
the order of a curve is close to the cardinality of the field
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Pollard p − 1 Factorization Algorithm

Input: n s.t. there exists a prime
factor p of n s.t. p − 1 is
smooth (the largest prime
fact r of p − 1 is at most B)

Output: a nontrivial factor of n
Complexity: O(B) arithmetic

operations
1: pick x at random in
{2, . . . , n − 1}

2: if gcd(x , n) 6= 1 then
3: output this gcd and stop
4: end if

5: i ← 1
6: while gcd(x − 1, n) = 1 do
7: x ← x i mod n ▷ x i!

1 mod n
8: i ← i + 1
9: end while

10: if x = 1 then
11: fail
12: else
13: output gcd(x − 1, n) and

stop
14: end if

trick: if p − 1|i! then x i!
1 ≡ 1 (mod p)
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Pollard p − 1 Factorization with n = 18923

initial x = 2347

i = 1 x = 2347 gcd =1
i = 2 x = 1816 gcd =1
i = 3 x = 4072 gcd =1
i = 4 x = 14891 gcd =1
i = 5 x = 18431 gcd =1
i = 6 x = 7247 gcd =1
i = 7 x = 13590 gcd =127

−→ 18923 = 127× 149
(Note that p − 1 = 2× 32 × 7 and q − 1 = 22 × 37)
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Potential Problem

The algorithm is essentially doing:

1: pick x ∈ Z∗p
2: i ← 1
3: while x 6= 1 do
4: x ← x i in Z∗p
5: i ← i + 1
6: end while
7: deduce something about n

computation in Z∗p is done in
Z∗n
x = 1 test is done by
gcd(x − 1, n)

Wish: there is a factor p s.t. Z∗p has a smooth order
(so that #iterations is small)

If not, we would like to “randomize” the group Z∗p
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ECM Factorization

same algorithm as the p − 1 algorithm, but on a “random elliptic
curve” over Zp instead of Z∗p
we use the probability that an elliptic curve over Zp has a smooth
order
Complexity: O

(
e
√

(1+o(1)) log p log log p
)

pretty good to find a small factor p!
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ECM Factorization with n = 44023

pick a = 13 and X = (23482, 9274), deduce b = 21375 from
y2 ≡ x3 + ax + b

X1 = 1.X = (23482, 9274)
X2 = 2.X1 = (18935, 21838)
X3 = 3.X2 = (2.X2) + X2 = (15187, 29168)
X4 = 4.X3 = 2.(2.X3) = (10532, 5412)
X5 = 5.X4 = (2.(2.X4)) + X4 = . . . error

(2.(2.X4)) + X4 = (27556, 42335) + (10532, 5412), but this requires
computing

λ =
42335− 5412
27556− 10532

mod n

and 27556− 10532 = 17024 is not invertible modulo n:
gcd(17024, n) = 133... −→ n = 133 · 331
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ECM Factorization Algorithm

Input: n
Output: a nontrivial factor p of n
Complexity: O(B) arithmetic operations where

B ≈ E
N∈[p−2

√
p,p+2

√
p]
(max{prime factors of N})

1: pick a and X = (x , y) at random in Zn
2: let b such that y2 ≡ x3 + ax + b (mod n)
3: i ← 1
4: repeat
5: i ← i + 1
6: X ← i · X over the curve (modulo n)
7: until division error modulo n
8: if divisor multiple of n then fail
9: output gcd(divisor, n)
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Hardness of the Discrete Logarithm

DL is easy in anomalous curves over Zp

binary curves may be exposed to recent attacks
there are other families of weak curves
in a group of order n, Pollard Rho algorithm solves DL in O(

√
n)

we can consider tradeoffs:
run precomputation of O(n 2

3 ) then compute any DL in O(n 1
3 )

(people tend to use the very same curves...)
in general, DL is harder than in Z∗p with similar size

Note: there are curves with easy DH problem and hard DL which may
be useful (e.g. pairing-based cryptography)
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Using Point Compression (Prime Field Case)

Elliptic curve equation:

y2 = x3 + ax + b

A single x leads to two y which are opposite from each other.
→ we can get y from

x
the parity of y (y and p − y have different parity)

Format “hh hexstring”
hh = 00 point O (following: nothing)
hh = 02 point compression with y even (following: x)
hh = 03 point compression with y odd (following: x)
hh = 04 no compression (following: x and y )
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Manipulating Elliptic Curves in Practice

A representation problem:
bit strings
byte strings
integers
polynomials
field elements
elliptic curve points

see http://www.secg.org/sec1-v2.pdf for an example of
representation standard
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Domain Parameters

a field
either a prime number p
(or a power q of 2 together with an irreducible polynomial over
GF(2) of degree log2 q)

field elements defining an elliptic curve E (coefficients)
a point G in E
the order n of G in E (may be smaller than the order of E)
(for pseudorandom curves) a seed s (to generate a j-invariant)
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ECDSA Parameters Generation
(ECDSA to be seen later)

1 Choose the finite field Fq .

2 Pseudo-randomly generate a c from seed. Take an elliptic curve
defined by some a and b such that the j-invariant is
j = 6912 4c

4c+27 for q prime (i.e. c = a3/b2) and j = 1
c (i.e. c = b)

otherwise.
3 For q prime, check that 4a3 + 27b2 mod q 6= 0. For q a power of

two, check that b 6= 0. If this is not the case, go back to Step 2.
4 Count the number of points on the elliptic curve and isolate a

prime factor n greater than 2160. If this does not work or if
n ≤ 4

√
q, go back to Step 2.

5 Check the MOV and anomalous condition for C. If this does not
hold, go back to Step 2.

6 Pick a random point on the elliptic curve and raise it to the
cofactor of n power in order to get G. If G is the point at infinity,
try again.

Set parameters to (q, representation, a, b, n,G, seed).
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ECDSA Parameters Validation

Parameters: (q, representation, a, b, n,G, seed).
1 Check that q is an odd prime or a power of 2 of appropriate size.

In the latter case, check that the field representation choice is
valid.

2 Check that a, b, xG, yG (where G = (xG, yG)) lie in Fq .
3 Check that seed certifies a and b by generating c again and

checking that a3

b2 = c or b = c depending on the field type.
4 For q prime, check that 4a3 + 27b2 mod q 6= 0. For q a power of

two, check that b 6= 0. Check that G lies in the elliptic curve.
Check that n is a prime greater than both 2160 and 4

√
q. Check

that nG = O, the neutral element. Check the MOV and
anomalous condition.
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ECDSA Parameters Selection: Conclusion

making new parameters is not easy
rather use parameters from standards
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Standard Curves

pseudorandom curves over Zp

y2 = x3 + ax + b
provide seed to generate j

→ Discrete Log is assumed to be hard
ordinary curves over a binary field

y2 + xy = x3 + a2x2 + a6

for pseudorandom curves: provide seed to generate j
for special curves (Koblitz curves): a6 = 1, a2 ∈ {0, 1}
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NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use
Appendix D of FIPS186–4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

pseudorandom over Zp: P192, P224, P256, P384, P521
ordinary curves over binary fields:

pseudorandom: B163, B233, B283, B409, B571
special: K163, K233, K283, K409, K571
(called Koblitz curves or anomalous binary curves (ABC))
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SECG Standard Curves (2010)

SEC2: Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

pseudorandom over Zp: secp192r1, secp224r1, secp256r1,
secp384r1, secp521r1
special over Zp: secp192k1, secp224k1, secp256k1
(called generalized Koblitz curves)
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Other Standards

ANSI X9.62
IEEE P1363
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Example: secp192r1 = P192

secp192r1 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + ax + b}

p = 6277101735386680763835789423207666416083908700390324961279

= ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff

a = p − 3

= 6277101735386680763835789423207666416083908700390324961276

= ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc

b = 2455155546008943817740293915197451784769108058161191238065

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 03 : 602046282375688656758213480587526111916698976636884684818

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

note that p = 2192 − 264 − 1, 2192 − 295 < n < 2192, and n is prime
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Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports

SV 2024–25 Elliptic Curve Cryptography CryptoSec 379 / 1098



Example: Curve25519

Curve25519 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + 486 662x2 + x}

p = 2255 − 19

xG = 9

order(G) = 2252 + 27742317777372353535851937790883648493

Some X25519 function comes with it for ECDH
equation different than previous ones!
optimized implementations
made by no company or government agency
used in SSH, Tor, Signal, Bitcoin, ...
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Elliptic Curve Cryptography

key agreement: ECDH
digital signature scheme: ECDSA
public-key cryptosystem: ECIES
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ECDH: Elliptic Curve Diffie-Hellman

specified in SEC1 (http://www.secg.org/sec1-v2.pdf) and
IEEE1363
used in Bluetooth 2.1

in Bluetooth slide 1049

used in the PKI of Swiss biometric passports
see slide 379

used in EAC for epassports
see EAC slide 1086
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ECDH GF(2m) = Z2[x ]/(f (x))
Participants: U and V

U and V agree on domain parameters T = (p, a, b,G, n, h) or
T = (m, f (x), a, b,G, n, h) + make sure that T is valid
(h is the cofactor 1

n#E(GF(q)) with q = p or (q = 2m))
U resp. V selects his secret key dU resp. dV ∈ Z∗n and compute
his public key QU = dU .G resp. QV = dV .G
U and V exchange their public keys
both check Q ∈ E(GF(p)), Q 6= O, n.Q = O
both compute P = dU .QV = dV .QU

set z = xP

convert the field element z into a byte string Z
use a KDF as agreed to derive a key K

U V

pick dU ∈ Z∗n , QU ← dU .G
QU−−−−−−−−−−−−−−−→ if QU = O or n.QU 6= O, abort

if QV = O or n.QV 6= O, abort
QV←−−−−−−−−−−−−−−− pick dV ∈ Z∗n , QV ← dV .G

Z ← xcoord(dU .QV ) Z ← xcoord(dV .QU )
(Z = xcoord(dU dV .G))
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Checking Subgroup Membership
Lemma
Let G be an element of order n in a group of order hn with neutral
element O. If n is prime and is coprime with h, then

〈G〉 = {Q ∈ group; n.Q = O}

Proof. ⊆ is trivial
for ⊇:

assume that Q ∈ group and nQ = O
the mapping f : Z2

n → group defined by f (u, v) = uG + vQ is a
group homomophism
f injective would imply that Z2

n is isomorphic to f (Z2
n) which is a

subgroup of group
since #Z2

n does not divide #group, this cannot be injective
so, there exists a nonzero (u, v) ∈ Z2

n such that uG + vQ = O
we must have v 6= 0 since G has order n, so v ∈ Z∗n and
Q = (−uv−1 mod n).G
hence, Q ∈ 〈G〉
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Problems without Membership Verification
The Case of Secure Simple Pairing (SSP) in Bluetooth

Device A Device B

pick skA ∈ Z∗q pick skB ∈ Z∗q
pkA ← skA ·G

pkA−−−−−−−−−−−−−−−−−−−−→ pkB ← skB ·G

verify pkB 6= O
pkB←−−−−−−−−−−−−−−−−−−−− verify pkA 6= O

K ← (skA · pkB)x K ← (skB · pkA)x
authenticate

(pkA)x and (pkB)x
using OOB

authenticate K
secure communication

scalar multiplication is done by the double-and-add algorithm, using
point addition
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The Invalid Curve Attack on Bluetooth
Biham-Neumann; Breaking the BT Pairing: Fixed Coordinate Invalid Curve Attack

note: point addition does not depend on the curve equation
note: only the x-coordinates are authenticated
the adversary can replace y to make pk have degree 2
with probability 1

4 ...

Device A Device B

pick skA ∈ Z∗q pick skB ∈ Z∗q
pkA ← skA ·G

pkA−−−−−−−−→ ((pkA)x ,0)−−−−−−−−→ pkB ← skB ·G

verify pkB 6= O
((pkB)x ,0)←−−−−−−−− pkB←−−−−−−−− verify pkA 6= O

KA ← (skA · pkB)x KB ← (skB · pkA)x
authenticate

(pkA)x and (pkB)x
using OOB

auth. KA auth. KB
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Principles of ECIES

proposed by Victor Shoup in 2001
in SEC1, IEEE1363a, ANSI X9.63, ISO/IEC 18033-2
use Diffie-Hellman to exchange a symmetric kE‖kM

use kE to encrypt
use kM for integrity protection

this is a hybrid encryption:
we use public-key cryptosystem to exchange a symmetric key and
symmetric cryptography to transport the message securely
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ECIES (EC Integrated Encryption Scheme)

Generator

K = kG

6Secret key kPublic key K 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

R‖c‖d

r ∈ Z∗n
R = rG

(kE‖kM ) = KDF(rK‖extra1)
c = EnckE (m)
d = MACkM (c‖extra2)

-
R‖c‖d

Decrypt

S = kR
(kE‖kM ) = KDF(S‖extra1)

m = DeckE (c)

d ?
= MACkM (c‖extra2)

-Message
m

�
�

Adversary

select field, elliptic curve
G point of order n

n prime
extra is context-based information (public)
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ECDSA Signature

Generator

6Secret key d Public key Q6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

select field, elliptic curve
G point of order n

n prime

Q = d.G

M

k ∈ Z∗n
r = xcoord(k.G) mod n
s = H(M)+dr

k mod n

M, r , s M, r , s

compare r and

xcoord
(

H(M)
s G + r

s Q
)

mod n

M
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Exercise

identify the algebraic structure (group/ring/field), the corresponding
law(s) and neutral element(s)

Z26...

...is a ring for addition and multiplication modulo 26 and neutral
element 0 and 1

the set of permutations over the alphabet...

...is a group for composition and the identity permutation as a
neutral element

secp192r1...

...is a group for EC point addition law and the point at infinity as a
neutral element

GF(2128)...

...is a field for addition and multiplication of polynomials and the
constant polynomials 0 and 1 as neutral elements
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Pairing of Elliptic Curves

for some pairs of elliptic curves G1 and G2 we can construct a function

e : G1 × G2 → GT

to a group GT (with multiplicative notations) such that
e is bilinear: e(aP, bQ) = e(P,Q)ab for a, b ∈ Z, P ∈ G1, Q ∈ G2
→ e(P + P ′,Q) = e(P,Q)e(P ′,Q)
→ e(P,Q + Q′) = e(P,Q)e(P,Q′)
e is non-degenerate: e(P,Q) 6= 1 for some P ∈ G1 and Q ∈ G2

(pairing is not available for all curves)
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Types of Pairing

Type-1 pairing: we have G1 = G2
(common on supersingular elliptic curves)
Type-2 pairing: we have G1 6= G2 and there exists an efficiently
computable (non-degenerate) homomorphism from G2 to G1

Type-3 pairing: we have G1 6= G2 and there exists no efficiently
computable (non-degenerate) homomorphism between G1 and
G2

Type-4 pairing: we have same as Type-2 with efficient hashing
into G2
(those pairings are usually not efficient)

Type-1 and Type-3 are most common
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Pairing-Friendly Elliptic Curves

q: cardinality of the field
r : (large prime) order of G
such that there exists a small k such that r divides qk − 1
(embedding degree)
µr subgroup of all z ∈ GF(qk ) such that z r = 1
we have Type-1 pairing with G1 = G2 = 〈G〉 and GT = µr
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Pairing of Elliptic Curves

consequences:
this may be bad for DDH-security in G1 = G2 as we can
distinguish (P, xP, yP, xyP) from (P, xP, yP, zP) by checking
e(xP, yP) = e(P, xyP)
we call G1 = G2 a gap group because the computational
Diffie-Hellman problem may remain hard even though the
decisional Diffie-Hellman problem is easy
this may be bad for DL-security in G1 = G2
DL in G1 reduces to DL in GT (MOV): logg(h) = loge(g,g)(e(g, h))
good thing: this may create new cryptographic primitives
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3-Party Diffie-Hellman Key Agreement in a Single
Round

let G generate a subgroup of order p of G1 = G2 such that
e(G,G) 6= 1

Alice picks a ∈ Z∗p and broacasts A = aG
Bob picks b ∈ Z∗p and broacasts B = bG
Charly picks c ∈ Z∗p and broacasts C = cG

all compute K = e(G,G)abc

Alice computes e(B,C)a = K
Bob computes e(C,A)b = K
Charly computes e(A,B)c = K
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Popular Cryptographic Constructions based on
Pairings

Joux 2000: 3-party Diffie-Hellman key agreement in one round
Boneh-Franklin 2001: identity-based encryption

slide 950

Boneh-Lynn-Shacham 2003: a signature scheme (short)
slide 773

Boneh-Boyen 2004: a signature scheme (with no H)
slide 774

Sahai-Water 2004: attribute-based encryption
secret keys have attributes (e.g. membership)
we can encrypt for sets of people who own some given attributes
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Conclusion

elliptic curves are groups which can be used in cryptography
advantage: smaller parameters for the same security
better complexity than RSA
many standards are using elliptic curves
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Must be Known

understand how to add points with the help of the formulas (don’t
learn them!)
understand how to manipulate objects (field elements, points,
integers)
understand point compression
understand the standards

SV 2024–25 Elliptic Curve Cryptography CryptoSec 401 / 1098



Train Yourself

finite fields: midterm 2008–09 ex3
projective coordinates: midterm 2013–14 ex3
discrete logarithm: final exam 2013–14 ex3
mapping a message to a point: midterm exam 2014–15 ex2
elliptic curve factoring method: midterm exam 2015–16 ex2
ECDSA: final exam 2016–17 ex1
pairing: midterm exam 2016 ex3
invalid curve attack: midterm exam 2018–19 ex3
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Roadmap

block ciphers: DES, triple-DES, AES
modes of operations: ECB, CBC, OFB, CTR, XTS
stream ciphers: RC4, A5/1
exhaustive search and tradeoffs
meet-in-the-middle attack
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Cryptographic Primitive (Reminder)

functionality security

components

cryptographic
primitive
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Symmetric Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

Encrypt -
Y

-
Y

Decrypt -Message
X

�
�

Adversary
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Symmetric Encryption (Informal)

functionality
DecryptK (EncryptK (X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption
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Example: Vernam Cipher

components: Alice and Bob, a parameter n
Generator: select K ∈ {0, 1}n uniformly at random
and set it up for Alice and Bob
Encrypt: for X ∈ {0, 1}n, compute Y = X ⊕ K ,
send Y and discard K
Decrypt: for Y ∈ {0, 1}n, compute X = Y ⊕ K and
discard K

functionality: for any X we have DecryptK (EncryptK (X )) = X
security: perfect secrecy (X and Y have independent

distribution)

Warning: use K only once
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Two Categories of Symmetric Encryption

stream ciphers block ciphers
RC4 DES

GSM–A5/1 3DES
Bluetooth–E0 IDEA

CSS BLOWFISH
... RC5

AES
KASUMI
SAFER

CS-Cipher
FOX

...
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DES: the Data Encryption Standard

US Standard from NBS (now NIST), branch of the Department of
Commerce in 1977
secret design by IBM based on a call for proposal
based on LUCIFER by Horst Feistel (from IBM)
design influenced by the NSA
rationales of the design published by Don Coppersmith in 1994

dedicated to hardware implementation
block cipher with 64-bit blocks
key of 56 effective bits

SV 2024–25 Symmetric Encryption CryptoSec 418 / 1098



DES

IP−1

?
64 bits Y

Feistel

?

IP

?

?

64 bits
X

�
K16

�

616× 48 bits

K1
�

K2

...
schedule

?

56 bits

K
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DES−1

IP−1

?
X

Feistel

?

IP

?

?
Y

�
K1

�K16
�
K15

...
schedule′

?

K

SV 2024–25 Symmetric Encryption CryptoSec 420 / 1098



Feistel Scheme

transform function over {0, 1} n
2 into permutations over {0, 1}n

inverse permutations have same structure
alternate round functions and halve swaps
final halve swap omitted
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(Direct) Feistel Scheme

Ψ(F K1 ,F K2 ,F K3)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

n
2 bits n

2 bits
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(Inverse) Feistel Scheme

Ψ−1(F K1 ,F K2 ,F K3) = Ψ(F K3 ,F K2 ,F K1)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K3

F

K2

F

K1
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(Direct + Inverse) Feistel Scheme

⊕
?? ��

⊕
?? ��

⊕
?? ��

a b

b c

c d

F
K1

F
K2

F
K3

⊕
?? ��

⊕
?? ��

⊕
?

?

? ��
?

d e = c

c = e f = b

a = g f = b

F
K3

F
K2

F
K1

e = c ⊕ F K3(d)⊕ F K3(d) = c
f = d ⊕ F K2(e) =
(b ⊕ F K2(c))⊕ F K2(c) = b
g = e ⊕ F K1(f ) = c ⊕ F K1(b) =
(a⊕ F K1(b))⊕ F K1(b) = a
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DES: the Gory Details

skip
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DES Round Function Overview

output input

round key

� P � S � ⊕� E �?32 bits 32 bits

48 bits

E : expansion (32 to 48 bits)
⊕: bitwise XOR to a round key
S: eight 6-bit to 4-bit S-boxes (substitution boxes)
P: permutation
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DES Round Function

P S ⊕ E

ou
tp

ut
32

bi
ts input

32
bits

round key 48 bits

S1

S2

S3

S4

S5

S6

S7

S8

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
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S3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Example: S3(111000) = 0101:

1 1100 0 = 56
1100 = 12

10 = 2
0101 = 5
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DES Key Schedule

schedule(K )

1: K PC1−→ (C,D)
2: for i = 1 to 16 do
3: C ← ROLri(C)
4: D ← ROLri(D)
5: Ki ← PC2(C,D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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DES Inverse Key Schedule

schedule′(K )

1: K PC1−→ (C,D)
2: for i = 16 down to 1 do
3: Ki ← PC2(C,D)
4: C ← RORri(C)
5: D ← RORri(D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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Security Notions

adversary objective: learn confidential information
typically: key recovery
ciphertext only attack: using ciphertexts in transit only
known plaintext attack: same + know (or guess) the
corresponding plaintexts
chosen plaintext attack: force the sender to encrypt some
messages selected by the adversary
chosen ciphertext attack: force the receiver to decrypt some
messages selected by the adversary
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Attacks on DES

weak keys (1977)
optimized exhaustive search (Hellman 1980)
study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
chosen plaintext attack with 247 chosen plaintexts (Biham-Shamir
1992)
known plaintext attack with 243 known plaintexts (Matsui 1994) or
actually a little less 240 (Junod 2001)
optimized exhaustive search within 4 days on a dedicated
hardware (EFF 1998)
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AES: the Advanced Encryption Standard

US Standard from NIST, branch of the Department of Commerce
in 2001
public process based on a call for proposal
standard version of Rijndael
Rijndael was designed by Joan Daemen and Vincent Rijmen in
Belgium

dedicated to software on 8-bit microprocessors
block cipher with 128-bit blocks
key of length 128, 192, or 256

cartoon: www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html
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Rijndael Skeleton

128-bit block −→ 4× 4 square matrix of bytes
Nr = 10, 12 or 14 rounds depending on the key size of 128, 192
or 256 bits

AES encryption(s,W )
1: AddRoundKey(s,W0)
2: for r = 1 to Nr− 1 do
3: SubBytes(s)
4: ShiftRows(s)
5: MixColumns(s)
6: AddRoundKey(s,Wr )
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey(s,WNr)
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One Non-Terminal Round of Rijndael

SubBytes ShiftRows MixColumns AddRoundKey

- S

6

�
�
�

6666M×

⊕- - - - - - - -
6
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SubBytes

SubBytes(s)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← S-box(si,j)
4: end for
5: end for

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

S(s0,0) S(s0,1) S(s0,2) S(s0,3)

S(s1,0) S(s1,1) S(s1,2) S(s1,3)

S(s2,0) S(s2,1) S(s2,2) S(s2,3)

S(s3,0) S(s3,1) S(s3,2) S(s3,3)
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ShiftRows

ShiftRows(s)
1: replace [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0]
2: replace [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1]
3: replace [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2]

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2
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AddRoundKey

AddRoundKey(s, k)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← si,j ⊕ ki,j
4: end for
5: end for

- -

6

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0
⊕k0,0

s0,1
⊕k0,1

s0,2
⊕k0,2

s0,3
⊕k0,3

s1,0
⊕k1,0

s1,1
⊕k1,1

s1,2
⊕k1,2

s1,3
⊕k1,3

s2,0
⊕k2,0

s2,1
⊕k2,1

s2,2
⊕k2,2

s2,3
⊕k2,3

s3,0
⊕k3,0

s3,1
⊕k3,1

s3,2
⊕k3,2

s3,3
⊕k3,3
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Introduction to GF Arithmetics in Rijndael

look at slide 338

we use the following representation rule
byte bit string polynomial

B b7 · · · b2b1b0 b7.x7 + · · ·+ b2.x2 + b1.x + b0

we reduce everything modulo 2
→ monomial coefficients are binary
we reduce everything modulo x8 + x4 + x3 + x + 1
x8 = x4 + x3 + x + 1,
x9 = x8 × x = (x4 + x3 + x + 1)× x = x5 + x4 + x2 + x ,
...
→ polynomials have degree at most 7
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Examples

0x5c + 0x2a = 0x76

byte bit string polynomial
0x5c 01011100 x6 + x4 + x3 + x2

+ 0x2a 00101010 x5 + x3 + x
= x6 + x5 + x4 + 2.x3 + x2 + x
= 0x76 01110110 x6 + x5 + x4 + x2 + x

0x9e × 0x02 = 0x27

byte bit string polynomial
0x9e 10011110 x7 + x4 + x3 + x2 + x

× 0x02 00000010 x
= x8 + x5 + x4 + x3 + x2

= x5 + 2.x4 + 2.x3 + x2 + x + 1
= 0x27 00100111 x5 + x2 + x + 1
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GF Arithmetics

A byte a = a7 . . . a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte bit string polynomial
0x00 00000000 0
0x01 00000001 1
0x02 00000010 x
0x03 00000011 x + 1
0x1b 00011011 x4 + x3 + x + 1

Addition: a simple XOR
Multiplication by 0x01: nothing
Multiplication by 0x02: shift and XOR with 0x1b if carry
Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02
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MixColumns

MixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M × v
4: end for

M =


0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

 .
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MixColumns

- -s.,0 s.,1 s.,2 s.,3 M × s.,0M × s.,1M × s.,2M × s.,3

SV 2024–25 Symmetric Encryption CryptoSec 443 / 1098



InvMixColumns

InvMixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M−1 × v
4: end for

M−1 =


0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

 .
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AES Decryption

AES decryption(s,W )
1: AddRoundKey(s,WNr)
2: for r = Nr− 1 down to 1 do
3: InvSubBytes(s)
4: InvShiftRows(s)
5: AddRoundKey(s,Wr )
6: InvMixColumns(s)
7: end for
8: InvSubBytes(s)
9: InvShiftRows(s)

10: AddRoundKey(s,W0)
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Key Expansion

we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60)
rows (32-bit words) w
we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows
the wi are iteratively loaded:

the first wi are loaded with the key
wi is loaded with wi−Nk ⊕ wi−1

every Nk iterations, the wi is modified before the XOR
for Nk = 8, we add an extra modification
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Key Expansion

KeyExpansion(key,Nk)
1: for i = 0 to Nk− 1 do
2: wi ← keyi
3: end for
4: for i = Nk to 4(Nr + 1)− 1 do
5: t ← wi−1
6: if i mod Nk = 0 then
7: replace [t1, t2, t3, t4] by [t2, t3, t4, t1] in t
8: apply S-box to the four bytes of t
9: XOR x i/Nk−1 (in GF) onto the first byte

of t
10: else if Nk = 8 and i mod Nk = 4 then
11: apply S-box to the four bytes of t
12: end if
13: wi ← wi−Nk ⊕ t
14: end for
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Modes of Operation

transform a block cipher into a symmetric encryption with
variable message length
encrypt and decrypt “on the fly” (online encryption)
(in some sense: transform a block cipher into a stream cipher)
may require an Initialization Vector (IV)
typically: message length must be multiple of the block length
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ECB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?

C

?

?

C

?

?

C

?

?

C

?
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ECB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

C−1

6

6

C−1

6

6

C−1

6

6

C−1

6
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ECB vs CBC

original ECB CBC

en.wikipedia.org
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CBC Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-IV
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CBC Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-IV
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Note on the CBC Mode

Three possibilities for dealing with IV
Using a (non secret) constant IV
example: MRTD (IV= 0)
(not a good idea)
Using a secret IV which is part of the key
example: TLS
(ok if used only once like in TLS)
Using a random IV which is sent in clear with the ciphertext

Property

If yi is corrupted, only xi and xi+1 are badly decrypted.
If yi is lost, only xi is incorrect (and one block is missing).
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OFB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?-

?IV
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OFB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6

-

?IV
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Note on the OFB Mode

IV must be new for every plaintext!
two possibilities:

Use a random one which is sent in clear...
... or use a counter-based IV

Can easily handle message length not multiple of the blocklength
These are not only specific properties of the OFB mode:
properties of stream ciphers
OFB actually transforms a block cipher into a stream cipher
Interesting property: can encrypt incomplete blocks

IV is used as a nonce (number used once)
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CTR Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
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CTR Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-
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Note on the CTR Mode

ti must be new for every block! (a nonce)
Example 1: ti = nonce‖blk counter
with nonce = msg counter or random
Example 2: ti = t1 + (i − 1) where t1 is the last tn plus 1
Example 3: ti = t1 + (i − 1) where t1 is a (unique) nonce
Can easily handle message length not multiple of the blocklength
CTR also transforms a block cipher into a stream cipher
advantage over OFB:
can be parallelized
random restart on any ti

Example from the GCM mode: GCTRK ((nonce‖0311),msg) with

GCTRK (ct,X ) = trunclength(X) (CK (ct)‖CK (ct + 1)‖CK (ct + 2) · · · )⊕ X

(do not encrypt 232 blocks...)
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XTS Mode

used to encrypt a hard disk
hard disks are made of “sectors” of various lengths
lengh may not be a multiple of the block length
requirements:
encryption shall not increase space
encryption shall allow random access with small overhead
uses two keys (K1,K2)

for a block of index j in sector of index i :

yi,j = Enci,j(xi,j) = CK1(xi,j ⊕ ti,j)⊕ ti,j ti,j = αj × CK2(i)

in a GF structure, with a constant α
use ciphertext stealing for the last two blocks
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XTS

i CK2 ×α ×α ×α · · ·

xi,0 xi,1 xi,2 · · ·

⊕ ⊕ ⊕

CK1 CK1 CK1

⊕ ⊕ ⊕

yi,0 yi,1 yi,2 · · ·
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Ciphertext Stealing

used to encrypt two blocks x and x ′ (typically, the last two) with
Enc and Enc′ respectively
Case 1 (easy): if x and x ′ have regular length, encrypt normally
y = Enc(x), y ′ = Enc′(x ′)
Case 2: if x ′ is shorter than usual.

1: split Enc(x) = y ′‖u with y ′ of same length as x ′

2: y = Enc′(x ′‖u)
3: give y and y ′

to decrypt y and y ′:
1: split Dec′(y) = x ′‖u with x ′ of same length as y ′

2: x = Dec(y ′‖u)
3: give x and x ′
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Ciphertext Stealing
x x ′

Enc

y ′ u

x ′ u

Enc′

y

y y ′
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To Be Known About Modes of Operation

ECB should be avoided
CBC requires IV
OFB (stream cipher) requires a nonce
CTR (stream cipher) requires a nonce
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Classical Skeletons for Block Ciphers

Feistel schemes
...and extensions
DES, 3DES, BLOWFISH, KASUMI
Lai-Massey scheme
IDEA, FOX
Substitution-permutation network (SPN)
SAFER, CS-Cipher, AES
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The Symmetric Encryption Zoo
fauna: ARMADILLO BEAR BLOWFISH DRAGON FOX FROG LION
MOSQUITO RABBIT SERPENT SHACAL SHARK TWOFISH

flora: CAMELLIA LILY SEED

pantheon: ANUBIS MARS KHAFRE KHUFU LUCIFER MICKEY
SHANNON TURING

the gastronomics: COCONUT GRANDCRU KFC MILENAGE
PEANUT WALNUT

the elements: CRYPTON ICE ICEBERG RAINBOW SNOW

the originals: ABC ACHTERBAHN AKELARRE CAST DEAL DECIM
EDON FEAL FUBUKI GOST HELIX HIEROCRYPT IDEA KASUMI
KATAN KHAZAD KTANTAN LEX LEVIATHAN LOKI MACGUFFIN
MADRYGA MAGENTA MIR MISTY NIMBUS NOEKEON NUSH PHELIX
PRESENT PY QUAD REDOC RIJNDAEL SAFER SALSA SCREAM
SFINKS SKIPJACK SMS4 SQUARE SOBER SOSEMANUK XTEA
3-WAY YAMB

the uninspired: A5 AES BMGL C2 CJCSG CMEA CS-CIPHER DES
DFC E0 E2 FCSR HPC MMB Q RC2 RC4 RC5 RC6 SC TSC WG
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The Symmetric Encryption Zoo ...in practice

fauna: ARMADILLO BEAR

BLOWFISH

DRAGON FOX FROG LION
MOSQUITO RABBIT SERPENT SHACAL SHARK TWOFISH

flora: CAMELLIA LILY SEED

pantheon: ANUBIS MARS KHAFRE KHUFU LUCIFER MICKEY
SHANNON TURING

the gastronomics: COCONUT GRANDCRU KFC

MILENAGE

PEANUT WALNUT

the elements: CRYPTON ICE ICEBERG RAINBOW SNOW

the originals: ABC ACHTERBAHN AKELARRE CAST DEAL DECIM
EDON FEAL FUBUKI GOST HELIX HIEROCRYPT

IDEA KASUMI

KATAN KHAZAD KTANTAN LEX LEVIATHAN LOKI MACGUFFIN
MADRYGA MAGENTA MIR MISTY NIMBUS NOEKEON NUSH PHELIX
PRESENT PY QUAD REDOC RIJNDAEL

SAFER

SALSA SCREAM
SFINKS SKIPJACK SMS4 SQUARE SOBER SOSEMANUK XTEA
3-WAY YAMB

the uninspired:

A5 AES

BMGL C2 CJCSG CMEA CS-CIPHER

DES

DFC

E0

E2 FCSR HPC MMB Q RC2

RC4

RC5 RC6 SC TSC WG

SV 2024–25 Symmetric Encryption CryptoSec 468 / 1098



Block Ciphers Characteristics

cipher release block key # rounds comment
DES 1977 64 56 16 secretly developed

3DES 1985 64 112,168 48 pragmatic solution
IDEA 1990 64 128 8.5

SAFER K-64 1993 64 64 6
BLOWFISH 1994 64 0–448 16

RC5 1996 2–256 0–255 0–255 64/128/12 recommended
CS-Cipher 1998 64 0–128 8

AES 2001 128 128,192,256 10,12,14 dependent parameters
KASUMI 2002 64 128 8 dedicated

FOX 2003 64,128 0–256 12–255
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5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism
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Stream Ciphers

adapt the Vernam cipher
use a pseudorandom generator to generate a key stream
the PRNG avoids having to store large secret keys
seed the PRNG with a fixed secret key and a nonce: a number
to be used only once
the nonce avoids reuse of the same keystream
variant 1: participants are synchronized to a nonce (e.g. a
counter or the clock value)
Problem: stateful
variant 2: the encrypting nonce is sent in clear with the ciphertext
(asynchronous)
Problem: nonce becomes under the control of the adversary
(at least for decryption)
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Stream Ciphers from a High Level

(= Vernam cipher with a pseudorandom key)

plaintext stream

nonce

key

-

- pseudorandom
generator

-keystream ⊕ - ciphertext stream
6

nonce = number which can be used once
(necessary to avoid re-using a keystream)
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RC4

Designed at MIT in 1987 by Ronald Rivest
Trade secret of RSA Security Inc.
illegally disclosed in 1994
well known to be used in SSL/TLS

dedicated to software on 8-bit microprocessors
stream cipher with bytes streams
key length from 40 bits to 256 (ℓ = 5 to 32 bytes)

SV 2024–25 Symmetric Encryption CryptoSec 473 / 1098



RC4 (Alleged)

?

6

automaton

Key

?
init (KSA)

?
registers i and j
permutation
S[0],S[1], . . . ,S[255]

? (PRGA)

1: i ← i + 1 mod 256
2: j ← j + S[i] mod 256
3: swap S[i] and S[j]
4: b = S[S[i] + S[j] mod 256]

�

?
output byte b
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RC4 Key Schedule (KSA)

1: j ← 0
2: for i = 0 to 255 do
3: S[i]← i
4: end for
5: for i = 0 to 255 do
6: j ← j + S[i] + K [i mod ℓ] mod 256
7: swap S[i] and S[j]
8: end for
9: i ← 0

10: j ← 0
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RC4 in Security Protocols

In SSL/TLS:
key is used only once
state is kept from one message to the other

In WEP:
key is the concatenation of a 3-byte nonce (sent in clear) and a
5-byte or 13-byte key
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Known Weaknesses

some correlations between some output bytes and key bytes
when the nonce is known
→ (passive) key recovery attack in WEP after seeing 22500
packets
output bytes are not uniformly distributed
→ ciphertext-only decryption attacks in TLS if a plaintext is
encrypted several times (e.g. secure http cookies)
speculations that some state agencies can break RC4
RC4 is now prohibited (RFC 7465 and similar recommendations)
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Case Study: WiFI: WEP/WPA/WPA2

case study
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GSM A5/1

Designed at ETSI by the SAGE group
Trade secret of the GSM consortium
reverse engineered

dedicated to lightweight hardware
stream cipher with bit streams
64-bit key and 22-bit counter
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A5/1 from a High Level

plaintext frame

Count

KC
-

-
init 64 bits- automaton -114 bits ⊕ - ciphertext frame

6
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Linear Feedback Shift Register (LFSR)

when CLK = 1, increment t , load Ri with Ri+1 and Rd−1 with a
XOR of some Ri ’s

- - - - - - - - - --

⊕
6
� ⊕

6
� ⊕

6
�

R0
xt

R1
xt+1

R2
xt+2

R3
xt+3

R4
xt+4

R5
xt+5

R6
xt+6

R7
xt+7

R8
xt+8

R9
xt+9

xt

xt+10

at time t , Ri = xt+i

xt+d = ad−1xt+d−1 ⊕ · · · ⊕ a0xt for any t (linear recursion)
adxt+d ⊕ · · · ⊕ a1xt+1 ⊕ a0xt = 0 for any t (ad = 1)
connection polynomial: adxd + · · ·+ a1x + a0
example: x10 + x5 + x2 + x + 1
maximal period⇐⇒ primitive polynomial =⇒ irreducible
polynomial
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A5/1 Automaton

(19)
	

CLK1

(22)
	

CLK2

(23)
	

CLK3

?

6
�⊕�

- ?
⊕

?
⊕ - ?

⊕

�

- ?
⊕

�

- ?
⊕

?
⊕ - ?

⊕

�

t1

t2

t3

asynchronous: CLKi = CLK if ti = majority(t1, t2, t3), 0 otherwise
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A5/1 Initialization

	
CLK1

	
CLK2

	
CLK3

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

- ?
⊕

� ⊕�

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

synchronous: CLK1 = CLK2 = CLK3 = CLK
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A5/1 Initialization

1: set all registers to zero
2: for i = 0 to 63 do
3: R1[0]← R1[0]⊕ KC[i]
4: R2[0]← R2[0]⊕ KC[i]
5: R3[0]← R3[0]⊕ KC[i]
6: clock registers (synchronous)
7: end for
8: for i = 0 to 21 do
9: R1[0]← R1[0]⊕ Count[i]

10: R2[0]← R2[0]⊕ Count[i]
11: R3[0]← R3[0]⊕ Count[i]
12: clock registers (synchronous)
13: end for
14: for i = 0 to 99 do
15: clock registers (asynchronous)
16: end for
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Known Weaknesses

key recovery known plaintext attack
(kind of time-memory tradeoff)
active attacks on GSM (chosen cipher attack)
ciphertext-only key recovery attack
(optimized bruteforce)
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Example: Opening a Safe

For any k , we can ask the safe whether the key K is equal to k

attack - key

k
�	

yes/no
safe

This attack makes online queries to test k
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Key Recovery Game - Online (with no Clue)

“online with a stop-test oracle O”

Game:
1: pick K ∈D K
2: AO → k
3: return 1K=k

O(query):
4: return 1K=query

notation AO: algorithm A who can query oracle O
(independent subroutine)
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Variations

K is uniform
K follows a known distribution D
K follows an unknown distribution D
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Exhaustive Search Algorithm (Uniform Case)
(online, with no clue, D uniform)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: for all i = 1 to N do
2: query ki
3: if answer is yes then
4: yield ki and stop
5: end if
6: end for

E(#iterations) =
N∑

i=1

Pr[K = ki ]i

=
N∑

i=1

1
N

i

=
N + 1

2
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Exhaustive Search Algorithm (Optimal Case)
(online, with no clue, D known)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: take the permutation σ of {1, . . . ,N} sorting

kσ(i) by decreasing order of likelihood
2: for all i = 1 to N do
3: query kσ(i)
4: if answer is yes then
5: yield kσ(i) and stop
6: end if
7: end for

E(#iterations) = min
σ

(
N∑

i=1

Pr[K = kσ(i)]i

)
which is sometimes called the guesswork entropy of D

SV 2024–25 Symmetric Encryption CryptoSec 491 / 1098



Exhaustive Search Algorithm (Any Case)
(online, with no clue)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: pick a random permutation σ of {1, . . . ,N}
2: for all i = 1 to N do
3: query kσ(i)
4: if answer is yes then
5: yield kσ(i) and stop
6: end if
7: end for

E(#iterations) =
N∑

i=1

E(Pr[K = kσ(i)])i

since σ is random we have E(Pr[K = kσ(i)]) = 1
N for all i :

E(#iterations) =
N∑

i=1

1
N

i =
N + 1

2
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Complexity Analysis (All Cases)

key of distribution D in a set of N elements

worst case complexity N iterations
average complexity D uniform N+1

2 iterations
D known smaller
D unknown N+1

2 iterations
memory complexity constant
success probability 1
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Key Recovery Game - With Clue

Online Key Recovery with Clue:
1: pick K ∈D K
2: W ← clue about K
3: AO(W )→ k
4: return 1K=k

O(query):
5: return 1K=query

Offline Key Recovery with Clue:
1: pick K ∈D K
2: W ← clue about K
3: A(W )→ k
4: return 1k=K
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Offline Attack with Clue
A uses W to emulate a stop-test oracle

stop test
�

-
k

y/n
algorithm - key

	
W

K

A

Examples:

witness stop test
known plaintext attack W = (x ,CK (x)) Ck (W1) = W2

ciphertext only attack W = ciphertext C−1
k (W ) meaningful

salted key hash W = (F (K , salt), salt) F (k ,W2) = W1
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Cases for Deterministic Clues

chosen plaintext attack:
get W = CK (x) for some fixed x chosen by the adversary
fixed plaintext attack / deterministic hash:
get W = CK (x0) for some constant x0 (e.g. x0 = 0)
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Cases for Non-Deterministic Clues

no chosen plaintext attack:
known plaintext attack with random W = (x ,CK (x)) pair
ciphertext only attack with redundant plaintexts
randomized key hash:
leak W = (F (K , salt), salt) with salt randomly selected by the
challenger
(salt to be seen on slide 513 )
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Access Control

Enrolment
Enter user ID and password
Register user ID and a clue about password
Access Control
Enter user ID and password
User ID and password are verified using the clue

→ any key passing the test is enough to break
example: clue = password hash
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Password Hash Inversion

attack - k s.t. F (k) = W

	

W = F (K ) (hash)
DB

the adversary has to find one password with correct hash
(the problem is to invert F , i.e. to find a preimage)
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Game: Key Recovery vs Inversion

Offline key recovery:
1: pick K ∈D K
2: W ← F (K )
3: A(W )→ k
4: return 1k=K

Offline inversion:
1: pick K ∈D K
2: W ← F (K )
3: A(W )→ k
4: return 1F (k)=W
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Two Forms of Bruteforce Attack with Clue

key recovery in symmetric encryption
chosen plaintext attack (→ clue)
known plaintext attack (→ clue)
ciphertext only attack (→ clue)

we want to find K given a clue
preimage recovery from a password hash (→ clue)

deterministic hash
salted hash

we want to find any password consistent with a clue
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Inversion by Exhaustive Search

Goal: find any preimage of w (but preimages may not exist!)

Input: an image w
1: shuffle K with a random permutation
2: for all i = 1 to N do
3: if F (ki) = w then
4: yield ki and stop
5: end if
6: end for

If F : K → Y is a uniformly distributed random function, #K = N,
#Y = M:
for any w ∈U Y

EF [Pr[complexity > i]] =
(

1− 1
M

)i
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Complexity of an Inversion Attack

E(complexity) =
N∑

i=0

i Pr[complexity = i] (
∑

rows)

=
N−1∑
i=0

Pr[complexity > i] (
∑

columns)

=
N−1∑
i=0

x i with x = 1− 1
M

=
1− xN

1− x

∼ 1− e−
N
M

1− x
as

N
M
→ +∞

= M
(

1− e−
N
M

)
≈ M for N � M
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Dictionary Inversion Attack (Full Book)

(assume a deterministic function F )

Game:
1: setup F
2: AF

1 → dict
3: pick K ∈D K
4: w ← F (K )
5: AF

2 (dict,w)→ k
6: return 1F (k)=w

AF
1 : (preprocessing)

1: for all candidates k do
2: compute F (k)
3: dict{F (k)} ← k
4: end for
5: return dict

AF
2 (dict,w): (attack)

6: return dict{w}
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Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F )

Game:
1: setup F
2: AF

1 → dict
3: pick K ∈D K
4: w ← F (K )
5: AF

2 (dict,w)→ k
6: return 1F (k)=w

AF
1 : (preprocessing)

1: for M candidates k do
2: compute F (k)
3: dict{F (k)} ← k
4: end for
5: return dict

AF
2 (dict,w): (attack)

6: return dict{w}
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Metrics of Algorithms

for comparing algorithms, we must look at:
precomputation time
memory complexity
time complexity
number of online queries
probability of success
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Complexity Analysis

Precomputation time M
Memory complexity M
Time complexity ≈ 1
Probability of success (with randomly selected dictionary keys)

M/N
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Summary of Single-Target Brute Force Attacks

key search: N = # key space
inversion: N = # output range

strategy preprocessing memory time success proba.
exhaustive search 0 1 N 1
dictionary attack N N 1 1
tradeoffs N N

2
3 N

2
3 cte

partial ex. search 0 1 M M/N
dictionary attack M M 1 M/N
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Application to DES

strategy preprocessing memory time
exhaustive search 0 1 256

dictionary attack 256 256 1
tradeoffs 256 237 237

→ the key of DES is too short!

SV 2024–25 Symmetric Encryption CryptoSec 509 / 1098



Security of Passwords with less than 48 Bits of
Entropy

An 8 i.u.d. random characters password in {a, . . . , z, A, . . . , Z, 0, . . . , 9}
has less than 48 bits of entropy

classical conventional cryptography may require about 300
cycles on a P4 2GHz to check a guess (= 222.6 guesses per
second)
−→ 256d to find a password with a PC
time-memory tradeoffs (complexity N

2
3 + precomputation N)

[cracked a 36-bit entropy password within a few seconds]
−→ 1h to find a password (+ a year of precomputation)
special purpose hardwares
[cracked 56-bit keys within a day]
−→ 5 min to find a password
distributed.net

[cracked 64-bit keys in 2002 after 1757 days]
−→ 40 min to find a password

SV 2024–25 Symmetric Encryption CryptoSec 510 / 1098



Extension: Multi-Target Dictionary Inversion
Attack

(assume a deterministic function F )

Game:
1: setup F
2: AF

1 → dict
3: pick K1, . . . ,KT ∈D K
4: wi ← F (Ki) for i = 1, . . . ,T
5: AF

2 (dict,w1, . . . ,wT )→ (i , k)
6: return 1F (k)=wi

AF
1 : (preprocessing)

1: for M candidates k do
2: compute F (k)
3: dict{F (k)} ← k
4: end for
5: return dict

AF
2 (dict,w1, . . . ,wT ): (attack)

6: for i = 1 to T do
7: if dict{wi} exists then
8: return dict{wi}
9: end if

10: end for
11: return ⊥
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Complexity Analysis

Precomputation time M
Memory complexity M
Time complexity T

Probability of success 1−
(
1− M

N

)T ≈ 1− e−
MT
N

This is quite interesting when M ≈ T ≈
√

N...
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Password Recovery from a Salted Password Hash

Password K Password k

- �

?

W2

W1

-

?

Salt

Hash
W1 = F (K , W2)

Hash
W1 = F (k, W2)

- - =

?

Enrolment Record Control
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Offline Inversion Attack with Salt

Input: a set of possible keys K = {k1, . . . , kN}, a
salted witness W = (W1,W2) (salt is W2)

Challenger interface: input is an element of K,
output is Boolean

1: shuffle K with a random permutation
2: for all i = 1 to N do
3: if F (ki ,W2) = W1 then
4: yield ki and stop
5: end if
6: end for
7: search failed
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The Role of Salt

mitigates dictionary attacks (or dictionaries are bigger)
mitigates tradeoffs
mitigates multitarget attacks
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Double DES

X - DES -Z
DES - Y

6K1 6K2

K = (K1,K2)

this is not much more secure than single DES
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Double Encryption

X - C′ -Z
C′′ - Y

6K1 ∈ K′ 6K2 ∈ K′′

K = (K1,K2)

this is not much more secure than single encryption
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Meet-in-the-Middle Attack

Input: two encryption schemes C′ and C′′ with
two corresponding sets of possible keys K′
and K′′, an (x , y) pair with y = C′′K2

(C′K1
(x))

1: for all k1 ∈ K′ do
2: compute z = C′k1

(x)
3: insert k1 in dict{z}
4: end for
5: for all k2 ∈ K′′ do
6: compute z = C′′−1

k2
(y)

7: for all k1 in dict{z} do
8: yield (k1, k2) as a possible key
9: end for

10: end for

SV 2024–25 Symmetric Encryption CryptoSec 519 / 1098



Complexity Analysis

Memory complexity #K′ (256 for double DES)
Time complexity #K′ +#K′′ (257 for double DES)
Probability of success 1
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Triple DES

X - DES - DES−1 - DES - Y

6K1 6K36K2

K = (K1,K2,K3)

a 3DES chip can do
3-key triple DES: K1, K2, K3

2-key triple DES: K1 = K3, K2

DES: K1 = K2 = K3
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Generic Attacks on Triple DES

2 keys

key length: 112
chosen plaintext (×256):
time complexity 257

memory complexity 257

[Merkle-Hellman 1981]
[exercise 2.5 in exercise book]
known plaintext (×232):
time complexity 288

memory complexity 257

[van Oorschot-Wiener 1990]

3 keys

key length: 168
known plaintext (×3):
time complexity 2113

memory complexity 256

[meet-in-the-middle]
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Time-Memory Tradeoffs — i

Input: a deterministic function F
Parameter: ℓ,m, t
Preprocessing

1: for s = 1 to ℓ do
2: pick a reduction function Rs at random

and define fs : k 7→ Rs(F (k))
3: for i = 1 to m do
4: pick k ′ at random
5: k ← k ′

6: for j = 1 to t do
7: compute k ← fs(k)
8: end for
9: Ts{k} ← k ′

10: end for
11: end for
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Precomputed Tables

k1
1,0

f17→ k1
1,1

f17→ k1
1,2

f17→ k1
1,3

f17→ · · ·
f17→ k1

1,t−1
f17→ k1

1,t (k1
1,t , k1

1,0)

k1
2,0

f17→ k1
2,1

f17→ k1
2,2

f17→ k1
2,3

f17→ · · ·
f17→ k1

2,t−1
f17→ k1

2,t (k1
2,t , k1

2,0)

T1 : k1
3,0

f17→ k1
3,1

f17→ k1
3,2

f17→ k1
3,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

3,t ⇒ (k1
3,t , k1

3,0)

...
...

...
...

...
...

...
...

k1
m,0

f17→ k1
m,1

f17→ k1
m,2

f17→ k1
m,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

m,t (k1
m,t , k1

m,0)

...

kℓ
1,0

fℓ7→ kℓ
1,1

fℓ7→ kℓ
1,2

fℓ7→ kℓ
1,3

fℓ7→ · · ·
fℓ7→ kℓ

1,t−1
fℓ7→ kℓ

1,t (kℓ
1,t , kℓ

1,0)

kℓ
2,0

fℓ7→ kℓ
2,1

fℓ7→ kℓ
2,2

fℓ7→ kℓ
2,3

fℓ7→ · · ·
fℓ7→ kℓ

2,t−1
fℓ7→ kℓ

2,t (kℓ
2,t , kℓ

2,0)

Tℓ : kℓ
3,0

fℓ7→ kℓ
3,1

fℓ7→ kℓ
3,2

fℓ7→ kℓ
3,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

3,t ⇒ (kℓ
3,t , kℓ

3,0)

...
...

...
...

...
...

...
...

kℓ
m,0

fℓ7→ kℓ
m,1

fℓ7→ kℓ
m,2

fℓ7→ kℓ
m,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

m,t (kℓ
m,t , kℓ

m,0)

SV 2024–25 Symmetric Encryption CryptoSec 524 / 1098



Time-Memory Tradeoffs — ii
Attack
Attack input: W = F (K )
1: for s = 1 to ℓ do
2: set i to 0
3: set k to Rs(W )
4: while Ts{k} does not exist and i < t do
5: increment i
6: k ← fs(k)
7: end while
8: if Ts{k} exists then
9: k ′ ← Ts{k}

10: while F (k ′) 6= W and i < t do
11: increment i
12: k ′ ← fs(k ′)
13: end while
14: if F (k ′) = W then
15: yield k ′ as a possible key
16: end if
17: end if
18: end for
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Complexity Analysis

N = # output range of F
Precomputation time ℓ×m × t
Memory complexity ℓ×m
Time complexity ℓ× t
Probability of success can be shown to be greater than 1

2 for
ℓ ≈ m ≈ t ≈ 3

√
N

time and memory complexity of N
2
3

SV 2024–25 Symmetric Encryption CryptoSec 526 / 1098



5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism

SV 2024–25 Symmetric Encryption CryptoSec 527 / 1098



Order of Magnitudes

for exhaustive search on a 128-bit key:
# clock cycles needed to perform a typical cryptographic
operation (encryption of one block): 300
clock rate in 2007: 2GHz
age of the universe: 14BY= 14× 109Y≈ 440× 1015s
# machines to do the exhaustive search within 14BY: 115× 1012
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Moore’s Law
Gordon Moore 1965: # transistors / IC doubles every year
Gordon Moore 1975: # transistors / IC doubles every 2 years
popular version: speed of CPU’s doubles every 18 months
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Better Strategy (of Metaphysical Interest)

remember: slide 67

create the universe then take 14BY of vacations

humankind will create itself, invent computers, and solve the problem
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Energy Bill

minimal energy spent to erase one bit: kT ln 2 [Landauer 1961]
k = 1.38× 10−23J/K (Boltzmann constant)
T : absolute temperature (absolute 0 is −273C)
example: assume we run an exhaustive search with 2128 loops
but we erase 128 bits per loop
assume the computer operates at 3µK (very cold!)
energy bill: 1.2× 109J
if we want to do it within 1s we need a 1 200MW nuclear
powerplant
we can compute without burning energy! [Bennett 1973]
need supraconductors and invertible computation gates

but all computations must be invertible!
exhaustive search must keep lots of garbage in memory
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Fully Reversible Exhaustive Search

define
INC: 〈x , y , k , z, t〉 7→ 〈x , y , k + 1, z, t〉
ENC: 〈x , y , k , z, t〉 7→ 〈x , y , k , z ⊕ Enc(k , x), t〉
CMP: 〈x , y , k , z, t〉 7→ 〈x , y , k , z, t ⊕ k · 1y=z〉

The sequence ENC, CMP, ENC, INC does

〈x , y , k , z, t〉 7→ 〈x , y , k + 1, z, t ⊕ k · 1y=z⊕Enc(k,x)〉

If we do it 2128 times on 〈x , y , 0, 0, 0〉, we obtain the XOR of all
keys such that y = Enc(k , x).
assuming K is unique, we get 〈x , y , 0, 0,K 〉
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Grover Algorithm

if the input domain of F has size N and y has a unique preimage
the Grover algorithm finds F−1(y) in complexity O(

√
N)

F -equivalent evaluations
it only runs on a quantum computer
this may be a motivation to use 256-bit AES
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Block Cipher

Definition

A block cipher is a tuple ({0, 1}k , {0, 1}n,Enc,Dec) with a key
domain {0, 1}k , a block domain {0, 1}n, and two efficient deterministic
algorithms Enc and Dec. It is such that

∀K ∈ {0, 1}k ∀X ∈ {0, 1}n Dec(K ,Enc(K ,X )) = X

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

(operate on bitstrings)

Remark: for all K , X 7→ Enc(K ,X ) is a permutation of {0, 1}n
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Variable-Length Symmetric Encryption

Definition
A (variable-length, length-preserving) symmetric encryption
scheme is a tuple ({0, 1}k ,D,Enc,Dec) with a key domain {0, 1}k , a
plaintext domain D ⊆ {0, 1}∗, and two efficient deterministic
algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D
{

Dec(K ,Enc(K ,X )) = X
|Enc(K ,X )| = |X |

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

→ can be made from block ciphers using a mode of operation
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Nonce-Based Symmetric Encryption

Definition
A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}k ,D,N ,Enc,Dec) with a key
domain {0, 1}k , a plaintext domain D ⊆ {0, 1}∗, a nonce domain N ,
and two efficient deterministic algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D ∀N ∈ N
{

Dec(K ,N,Enc(K ,N,X ))=X
|Enc(K ,N,X )|=|X |

N is supposed to be used only once for encryption
random nonce (beware of random repetitions), counter, sent in clear
or synchronized
→ could be a mode of operation (IV...), a stream cipher
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Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against key recovery under chosen plaintext attacks (CPA) if for
any algorithm A limited to a time complexity t and to q queries, the
advantage Adv is bounded by ε, where

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc → K ′

4: return 1K=K ′

Oracle OEnc(N,X ):
5: if N ∈ Used then return ⊥
6: Used← Used ∪ {N}
7: return Enc(K ,N,X )
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CPCA Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is secure
against key recovery under chosen plaintext/ciphertext attacks
(CPCA) if for any algorithm A limited to a time complexity t and to q
queries, the advantage Adv is bounded by ε, where

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: Used← ∅
3: AOEnc,ODec → K ′

4: return 1K=K ′

Oracle OEnc(N,X ):
5: if N ∈ Used then return ⊥
6: Used← Used ∪ {N}
7: return Enc(K ,N,X )

Oracle ODec(N,Y ):
8: return Dec(K ,N,Y )
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About Nonce Reuse in Decryption

the sender who chooses the nonce can make sure it does not
repeat
example: a counter (stateful)
example: time
example: a random nonce (large enough)
the receiver cannot enforce non-reuse of nonces
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CPCA Security is Stronger than CPA Security

assume we have CPCA security
to prove CPA security, consider a CPA adversary A
we define a CPCA adversary B = A
(same adversary who just never use decryption queries)
B and A have the same advantage
since the one of B is bounded by ε, the one of A as well

CPA-breaking =⇒ CPCA-breaking
CPCA-secure =⇒ CPA-secure
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Not Good Enough Security

Not good enough security: what follows is correct and secure!
Enc(K ,N,X ) = X
Dec(K ,N,Y ) = Y
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Security against Decryption

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against decryption under CPA resp. CPCA if for any
algorithm A limited to a time complexity t and to q queries, the
advantage Adv is bounded by ε.

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: X0
$←− D, N0

$←− N
3: Used← {N0}
4: Y0 ← Enc(K ,N0,X0)
5: AOEnc,ODec(N0,Y0)→ X
6: return 1X=X0

Oracle OEnc(N,X ):
1: if N ∈ Used then return ⊥
2: Used← Used ∪ {N}
3: return Enc(K ,N,X )

Oracle ODec(N,Y ):
4: if (N,Y ) = (N0,Y0) then re-

turn ⊥
5: return Dec(K ,N,Y )
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Example: Vernam-Based Ciphers

Enc(K ,N,X ) = X ⊕ PRNG(K ,N)

CPCA decryption attack:
A(N0,Y0):

1: pick Y ′ of same length as Y0
2: query ODec(N0,Y ′)→ X ′

3: X ← Y0 ⊕ Y ′ ⊕ X ′

4: return X
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Decryption Security is Stronger than Key
Recovery Security

(nonce-less cipher here)
assume decryption security
consider a key recovery adversary A
define a decryption adversary B...

Pr




KR∗A game:
pick K
A··· → K ′

return 1K=K ′

→ 1

 ≤ Pr





OW∗B game:
pick K
pick X0

Y0 ← Enc(K ,X0)
// B···(Y0)→ X :
A··· → K ′

X ← Dec(K ′,Y0)
return 1X=X0


→ 1


≤ ε
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Not Good Enough Security

some parts of the plaintext may be more private than others
how about a cipher letting half of the plaintext in clear and
strongly encrypting the other half?
it would be secure against decryption

Enc(K ,N,X ) = Enc0(K ,N, lefthalf(X ))‖righthalf(X )

Dec(K ,N,Y ) = Dec0(K ,N, lefthalf(Y ))‖righthalf(Y )

Exercise:
If ({0, 1}k ,D0,N ,Enc0,Dec0) is secure, then
({0, 1}k ,D,N ,Enc,Dec) is secure.
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The Ideal Cipher
(assume Enc : {0, 1}k ×N ×D → D)

the “ideal cipher”: taking K random is equivalent to picking a
random length-preserving permutation ΠN over D for every N

Enc(K ,N,X ) = ΠN(X )

Dec(K ,N,Y ) = Π−1
N (Y )

security would mean that we cannot tell the real cipher and the
ideal one apart from a black-box usage

Enc/Dec

RI

A - ≈ � A

�	

Π/Π−1
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Security against Distinguisher

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against distinguishers under CPA resp. CPCA if for
any algorithm A limited to a time complexity t and to q queries, the
advantage Adv is bounded by ε.

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: K $←− {0, 1}k

2: for every N, pick a length-
preserving permutation ΠN
over D

3: Used← ∅
4: AOEnc,ODec → z
5: return z

Oracle OEnc(N,X ):
1: if N ∈ Used then return ⊥
2: Used← Used ∪ {N}
3: if b = 0 then return ΠN(X )
4: return Enc(K ,N,X )

Oracle ODec(N,Y ):
5: if b = 0 then return Π−1

N (Y )
6: return Dec(K ,N,Y )
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Security against Distinguisher (Equivalent Form)
Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against distinguishers under CPA resp. CPCA if for
any algorithm A limited to a time complexity t and to q queries, the
advantage Adv′ is bounded by ε.

Adv′ = Pr[Γ returns 1]− 1
2

Game Γ
1: pick b ∈ {0, 1}
2: K $←− {0, 1}k

3: for every N, pick a length-
preserving permutation ΠN
over D

4: Used← ∅
5: AOEnc,ODec → z
6: return 1z=b

Oracle OEnc(N,X ):
1: if N ∈ Used then return ⊥
2: Used← Used ∪ {N}
3: if b = 0 then return ΠN(X )
4: return Enc(K ,N,X )

Oracle ODec(N,Y ):
5: if b = 0 then return Π−1

N (Y )
6: return Dec(K ,N,Y )
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Equivalence

Adv′ = Pr[Γ→ 1]− 1
2

=
1
2
Pr[Γ→ 1|b = 1] +

1
2
Pr[Γ→ 1|b = 0]− 1

2

=
1
2
Pr[Γ1 → 1] +

1
2
Pr[Γ0 → 0]− 1

2

=
1
2
Pr[Γ1 → 1] +

1
2
(1− Pr[Γ0 → 1])− 1

2

=
1
2
Pr[Γ1 → 1]− 1

2
Pr[Γ0 → 1]

=
1
2

Adv
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Distinguisher Sec is Stronger than Decryption Sec
assume distinguisher security
consider a decryption adversary A
we define a distinguisher B as follows

B :
1: X0

$←− D, N0
$←− N

2: Y0 ← OEnc(N0,X0)

3: run AOEnc,ODec′(N0,Y0)→ X
4: return 1X0=X

ODec′(N,Y ) :
5: if (N,Y ) = (N0,Y0) then

return ⊥
6: return ODec(N,Y )

B

A

ODec′

ODecOEnc

6

?

6
?

*

�

Pr[ΓB1 → 1] = Pr[Areal wins decryption]
Pr[ΓB0 → 1] = Pr[Aideal wins decryption]

Pr[Aideal wins decryption] ≤ q+1
#D−q (believe me...)

AdvB ≤ ε hence AdvA ≤ ε+ q+1
#D−q
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Security Notions

key recovery decryption distinguisher
CPA weakest security

CPCA strongest security

if we can recover the key, we can decrypt
if we can decrypt, we can recognize from the ideal cipher
if we can break without chosen ciphertext, we can also break with
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Conclusion

symmetric encryption: stream ciphers (RC4, A5/1), block
ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CTR,
XTS)
bruteforce inversion within complexity O (#domain)

tradeoffs within complexity O
(
(#domain)

2
3

)
after

precomputation with complexity O (#domain)
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Ciphers to Remember

cipher release block key design
DES 1977 64 56 Feistel scheme

3DES 1985 64 112,168 triple DES
RC4 1987 8 40–256 stream cipher
AES 2001 128 128,192,256 SPN
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Several Types of Symmetric Encryption

fixed message length vs variable message length
block ciphers: use fixed message length
modes of operation: adapt to variable message length
stream ciphers: encrypt messages “on-the-fly”
deterministic vs probabilistic
most common case for symmetric encryption: deterministic

synchronous (stateful) vs asynchronous (stateless)
authenticating or not (not in this chapter)
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Stream Ciphers vs Block Ciphers

stream cipher block cipher

small granularity (encrypt
bits or bytes)
based on the Vernam
cipher, requires a nonce
(number to be used only
once)
very high speed rate, very
cheap on hardware
low confidence on security

large granularity (encrypt
blocks of 64 or 128 bits),
require padding techniques
for messages with arbitrary
length
high rate, nice for software
implementation, can be
adapted to various
platforms (8-bit, 32-bit, or
64-bit microprocessors)
well established security
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Must be Known

types of symmetric encryption
parameters of block ciphers: DES, 3DES, AES
modes of operation: ECB, CBC, OFB, CTR
Feistel scheme
parameters of stream ciphers: RC4
exhaustive search
meet-in-the-middle
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Train Yourself
encryption:
midterm exam 2011–12 ex3
midterm exam 2012–13 ex3
final exam 2013–14 ex1
modes of operation:
midterm exam 2009–10 ex3
midterm exam 2011–12 ex1
Moore’s law:
final exam 2008–09 ex1
multitarget password recovery:
final exam 2014–15 ex3
meet-in-the-middle:
midterm exam 2016–17 ex1
midterm exam 2017–18 ex2
security:
midterm exam 2016–17 ex2
design challenge:
midterm exam 2018–19 ex1
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Roadmap

hash functions: SHA-2, SHA-3
message authentication codes: HMAC, CBCMAC, WC-MAC
other primitives: commitment, key derivation
birthday paradox
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Message Authentication Code

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

Auth - - Verify
-

ok?

-Message
X�

�
Adversary

SV 2024–25 Integrity and Authentication CryptoSec 563 / 1098



Message Authentication Code (Informal)

functionality
VerifyK (AuthK (X )) = (X , ok)

security
cannot forge

Alice and Bob, Generator, MAC, Check
components

MAC
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Hash Function (Informal)

functionality
fixed output length

security
many

Setup, H
components

hash
function
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Playing Rock-Paper-Scissors

Alice

damn, I
lose

“rock”−−−−−−−−−−−−−−−→
“paper”←−−−−−−−−−−−−−−−

Bob

Bob should not see Alice’s move before making his choice
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Playing Rock-Paper-Scissors

Alice

“rock”

I chose−−−−−−−−−−−−−−−→
“paper”←−−−−−−−−−−−−−−−

“scissors”−−−−−−−−−−−−−−−→

Bob

damn, I
lose

Alice should not be able to change her mind after Bob made his
choice
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Commitment to Play Rock-Paper-Scissors

Alice

damn, I
lose

commit(“rock”)−−−−−−−−−−−−−−−→
“paper”←−−−−−−−−−−−−−−−

open to “rock”−−−−−−−−−−−−−−−→

Bob

what’s
inside?

cheat 1: Bob guesses Alice’s play and adapts his own play to win
cheat 2: Alice changes her play after seeing Bob’s play
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Commitment

-x = rock

-
r random

Commit
-c

-
k

(delay) -
k

Open -x = rock
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Using a Commitment Scheme

x = rock y = paper
pick r at random

(c, k)← Commit(x ; r)

commit : c−−−−−−−−−−−−−−−−−−−→ store c
y←−−−−−−−−−−−−−−−−−−−

open :
k−−−−−−−−−−−−−−−−−−−→ open(c, k) = x
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Commitment Scheme (Informal)

functionality
if Commit(X ; r) = (c, k)

then Open(c, k) = X

security
hiding, binding

Alice and Bob, Setup, Commit, Open
components

commitment
scheme

hiding: Bob does not get a clue on X from c
binding: Alice cannot produce c, k , k ′ such that
Open(c, k) 6= Open(c, k ′)
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Application Example: Tossing a Coin

how to toss a coin:

Alice Bob

pick x ∈ {0, 1} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {0, 1}

open−−−−−−−−−−−−−−→ verify
z = x ⊕ y

output: z output: z

z is the outcome of the tossed coin
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Application Example: Playing Dice

how to throw a 6-face die:

Alice Bob

pick x ∈ {1, . . . , 6} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {1, . . . , 6}

open−−−−−−−−−−−−−−→ verify
z = 1 + ((x + y) mod 6)

output: z output: z

z is the outcome of the thrown die
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Examples

a BAD one: Commit(x ; r) = (Encr (x), r)
(not binding)
a BAD one: Commit(x ; r) = (H(x), x)
(not hiding)
a not-too-bad one: Commit(x ; r) = (H(r‖x), (x , r))
(problem: most likely, H was not designed for that)
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Pedersen Commitment (Based on DL)

setup generates two large primes p and q s.t. q|(p − 1), an
element g ∈ Z∗p of order q, a ∈ Z∗q , and h = ga mod p
Domain parameters: 〈p, q, g, h〉

commit Commit(X ; r) = gX hr mod p for r ∈U Zq

unconditionally hiding Commit(X ; r) = gX+ar is uniformly
distributed in 〈g〉 and independent of X

computationally binding commiting to X and opening to X ′ 6= X
leads to solving gX hr ≡ gX ′hr ′ (mod p) hence
a = X ′−X

r−r ′ mod q
This is equivalent to solving the discrete logarithm
problem with the domain parameters
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Pseudorandom Number Generator (PRNG)

Gen-
-

-
nb

state

new state
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PRNG (Informal)

functionality
Gen(state) = (nb, new state)

security
indistinguishable from
truly random

Gen
components

PRNG
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PRNG Examples

stream ciphers: RC4, A5/1...
block ciphers with OFB or CTR mode of operation
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Famous Failure Cases

early version of SSL (Goldberg-Wagner 1996):
initial seed computed from the time in microseconds and the pid
and ppid numbers (not enough entropy)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Debian OpenSSL implementation until 2008:
initial seed computed from the pid (15 bits) (other randomness
removed due to complains by the compiler purify tool)

http://metasploit.com/users/hdm/tools/debian-openssl/
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Possible Threats

bad coins during key generation makes the secret key guessable
bad coins during signing may expose the secret key
example: DSA, ECDSA
stealing an ECDSA key may mean stealing all bitcoins...
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Other Famous Failure Case

DSA (Bleichenbacher 2001): the 160-bit random number was
reduced modulo a 160-bit prime number q so that the final
distribution was biased

0

2158

2159

3 · 2158

2160 mod qq
-
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Pseudorandom Function (PRF)

functionality
FK (·)

security
indistinguishable from
truly random function
(as a black-box)

F
components

PRF
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PRF: PseudoRandom Function

PRF: a deterministic function with a secret looking like random
(when the key is randomly set up)

y = fs(x) secret key

inputoutput

Application:
pseudorandom generator: generation = fs(counter)
key generation: key = fs(nonces, params)
encryption: ct = pt⊕ fs(nonce)
message authentication: tag = fs(message)
peer authentication: response = fs(challenge)
...
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PRF Security Definition
A

(b = 0)

pick F

-x

� y = F (x)
y


many
times

-z

A
(b = 1)

pick s ∈ {0, 1}k

-x

� y = fs(x)
y


many
times

-z

Adv(A) = Pr[z = 1|b = 1]− Pr[z = 1|b = 0]

Definition
The PRF is (q, t , ε)-secure if for all bounded A, Adv(A) is negligible.

(game-based definition: see slide 672 )

q queries, complexity t

less than ε

advantage
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Key Derivation Function (KDF)

functionality
KDF(stuff) = random key

security
min-entropy

KDF
components

KDF

Generate some random key from some secret (password, output from
key agreement protocols) and non-secret objects (salt, domain
parameters, exchange messages)
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KDF Examples

typically: a hash function
PKCS#5/RFC 2898
example:

PBKDF1(password, salt, c, ℓ) = truncℓ(Hc(password‖salt))

where Hc is H iterated c times
NB: ℓ shall not be larger than the H length
HKDF (RFC 5869)

HKDF(salt, input, extra, L) = truncL

(
K1‖K2‖ · · · ‖Kd L

HMAC lengthe
)

PRK = HMACsalt(input)
K1 = HMACPRK(extra‖0)

Ki+1 = HMACPRK(Ki‖extra‖i)
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Cryptographic Hashing

La cigale ayant
chanté tout l’été
se trouva fort
dépourvue quand
la bise fut venue
pas un seul petit
morçeau de mouche
ou de vermisseau
elle alla trouver
famine chez la four-
mie sa voisine ...

- Hash - 928652983652

can hash a string of arbitrary length
produce digests (hashes) of standard length (e.g. 256 bits)
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A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings
of fixed length.
Application: instead of specifying digital signature
algorithms on set of bitstring with arbitrary length, we
specify them with bitstrings of fixed length and use the
hash-and-sign paradigm.

Unique indexing: “uniquely” characterizes a bitstring without
revealing information on it.
Application:

commitment which is binding and hiding.
integrity check

Pseudorandom generator: generate bitstrings from seeds which
are unpredictable.
Application: generation of cryptographic keys from a
seed.
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Integrity Preservation

6c
INTEGRITY

-Message
X

Hash -
X

-
X

Check
-

ok?

-Message
X�

�
Adversary
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Constructing Other Primitives with Hash
Functions

commitment:

Commit(X ; random) = (H(Key),Key = X‖random)

Open(c,X‖random) =

{
X if H(X‖random) = c
⊥ otherwise

PRNG:

(seed‖counter) −→ (seed‖counter + 1) , H(seed‖counter)

KDF:

seed −→ trunc (H(seed‖1)‖H(seed‖2)‖H(seed‖3)‖ · · · )

domain expander for authentication (MAC or signature):

Authenticate(H(X ))
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Security for Hash Functions: Wishlist

Collision resistance: hash function h for which it is hard to find x
and x ′ such that h(x) = h(x ′) and x 6= x ′.

→ digital fingerprint of the bitstring

One-wayness: hash function h for which given y it is hard to find
even one x such that y = h(x).

→ witness for a password

Pseudo-randomness: output “looks like random”
(how to formalize?)

→ pseudo-random generation
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Popular Threat Models for Hash Functions

Collision attack: find x and x ′ s.t. x 6= x ′ and h(x) = h(x ′).
example: substitution in commitment/signature

1st preimage attack: given y find x s.t. y = h(x).
example: password search based on hash

2nd preimage attack: given x find x ′ s.t. x 6= x ′ and h(x) = h(x ′).
example: substitution in the integrity check process
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Bruteforce First Preimage Attack

Input: access to a hash function h, an image y
Output: x such that h(x) = y

1: pick a random ordering of all inputs x1, x2, . . .
2: for all i do
3: compute h(xi)
4: if h(xi) = y then
5: yield x = xi and stop
6: end if
7: end for
8: search failed

complexity: O(|output domain|)
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Bruteforce Second Preimage Attack

Input: access to a hash function h onto a do-
main of size N, an input x

Output: x ′ such that x 6= x ′ and h(x) = h(x ′)
1: compute h(x)
2: pick a random ordering of all inputs x1, x2, . . .
3: for all i such that xi 6= x do
4: compute h(xi)
5: if h(xi) = h(x) then
6: yield x ′ = xi and stop
7: end if
8: end for
9: search failed

complexity: O(|output domain|)
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Cryptographic Hashing
“Message Digest” (MD) devised by Ronald Rivest
“Secure Hash Algorithm” (SHA) standardized by NIST
MD4 in 1990 (128-bit digest)
MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
SHA in 1993 (160-bit digest) (obsolete, sometimes called SHA0)
SHA-1 in 1995 (160-bit digest)
theoretical attack on SHA0 (Chabaud-Joux 1998)
collision found on MD4 (Dobbertin 1996)
preimage attack on MD4 (Dobbertin 1997)
SHA-2 in 2002: SHA256, SHA384, SHA512 (size of digest)
collision found on SHA0 (Joux+ 2004)
collision found on MD5 (Wang+ 2004)
theoretical attack on SHA1 (Wang+ 2005)
SHA-3 in 2015
collision found on SHA1 (Stevens+ 2017)
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Cryptographic Hashing

message

?

SHA2 -256
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Encryption to Hashing

On-line hashing:
the message is padded following the Merkle-Damgård scheme;
each block is processed using an encryption function C in a
feedback mode according to the Davies–Meyer.

initial
value

message

- C -+

6

512
?

- C -+

6

512
?

. . .

. . .

- C -+

6

pad
?

-256 256
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Merkle-Damgård’s Extension

pad = 1
1

0 . . . 0 length
64

initial
value

message

- -- C′

512
?

C′

512
?

. . .

. . .

- C′

pad
?

-256 256

Note: maximal length is 264 − 1 bits

SHA1 :
264−1⋃
ℓ=0

{0, 1}ℓ −→ {0, 1}256
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Merkle-Damgård Theorem

Theorem (Merkle-Damgård 1989)

We construct a cryptographic hash function h from a compression
function C′ by using the Merkle-Damgård scheme. If the compression
function C′ is collision-resistant, then the hash function h is
collision-resistant as well.

Proof. Assume a colision h(X ) = h(X ′)
Case 1: messages of different length
Case 2: messages of same length
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Proof of Merkle-Damgård Theorem - Case 1

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

pad ′

pad

X ′
1 X ′

2

X1 X2

X ′n︷ ︸︸ ︷

Xm︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hm,Xm) = C′(H ′n,X
′
n)
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Proof of Merkle-Damgård Theorem - Case 2

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

X ′
1 X ′

2

X1 X2

X ′n︷ ︸︸ ︷

Xn︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hi ,Xi) = C′(H ′i ,X
′
i )

where i is the last index such that Hi 6= H ′i or Xi 6= X ′i
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Davies–Meyer Scheme

chaining value
IV

- encrypt - + - chaining value
digest

6

?

message block

+ is a group law
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Bitwise Boolean Functions in SHA1

f1(b, c, d) = if b then c else d
= (b AND c) OR (NOT(b) AND d)

f2(b, c, d) = b XOR c XOR d
f3(b, c, d) = majority(b, c, d)

= (b AND c) OR (c AND d) OR (d AND b)
f4(b, c, d) = b XOR c XOR d
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Implementation of SHA-1 Compression

Input: an initial hash a, b, c, d , e,
a message block x0, . . . , x15

Output: a hash a, b, c, d , e
1: for i = 16 to 79 do
2:

xi ← ROTL1 (xi−3 XOR xi−8 XOR xi−14

XOR xi−16)

3: end for
4: for i = 1 to 4 do
5: for j = 0 to 19 do
6: t ← ROTL5(a) +

fi(b, c, d) + e + x20(i−1)+j + ki

7: e← d
8: d ← c
9: c ← ROTL30(b)

10: b ← a
11: a← t
12: end for
13: end for
14: a← a + ainitial
15: b ← b + binitial
16: c ← c + cinitial
17: d ← d + dinitial
18: e← e + einitial
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SHA-3 based on Keccak

(Keccak has many possible instances, SHA-3 only kept four)
designed by Bertoni, Daemen, Peeters, and Van Assche
(STMicroelectronics and NXP Semiconductors, Belgium)
based on a sponge construction
uses a permutation Keccak-f [b] (or just f ) with
b = 1 600 = 25× 26 (could use b = 25× 2ℓ with 0 ≤ ℓ ≤ 6)
operates on states bitstrings s represented as 3-dimensional
5× 5× 2ℓ arrays a of bits

ax,y,z = s[2ℓ(5y + x) + z]

in what follows, x , y , z are taken modulo their dimension
f is a sequence of nr = 12 + 2ℓ rounds

R = ι ◦ χ ◦ π ◦ ρ ◦ θ
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One Round of f — i

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

θ is a linear diffusion layer using the parity of columns

θ(a)x,y,z = ax,y,z ⊕
4⊕

j=0

ax−1,j,z ⊕
4⊕

j=0

ax+1,j,z−1

ρ permutes some lanes

ρ(a)x,y,z = ax,y,z− (t+1)(t+2)
2

with
(

x
y

)
=

(
0 1
2 3

)t ( 1
0

)
for t = 0, . . . , 23 (+ use ρ(a)0,0,z = a0,0,z)
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One Round of f — ii

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

π permutes the slices

π(a)X ,Y ,z = ax,y,z with
(

X
Y

)
=

(
1 3
1 0

)(
x
y

)
χ has degree two

χ(a)x,y,z = ax,y,z ⊕ (ax+1,y,z ⊕ 1)ax+2,y,z

ι adds a constant for x = y = 0

ι(a)x,y,z =

{
a0,0,z ⊕ RC[ir ]z if x = y = 0
ax,y,z otherwise

where ir is the round index
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The Sponge

c

r

6
?

6

?
0

0

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-

6

f

-

-

6

f

-

-

6

f

6
message‖10‖10∗1 truncated

6

. . .absorb squeeze. . .

algo r c d
SHA3-224 1 152 448 224
SHA3-256 1 088 512 256
SHA3-384 832 768 384
SHA3-512 576 1 024 512

r + c = b: state s is split into two values of r and c bits
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Hash Functions to Remember

algorithm release digest comment
MD5 1991 128 broken
SHA1 1995 160 broken
SHA2 2001 224, 256, 384, 512
SHA3 2015 224, 256, 384, 512
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Case Study: Block Chains

case study
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6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses
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MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

Auth - - Verify
-

ok?

-Message
X�

�
Adversary
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MAC Primitive

functionality
VerifyK (AuthK (X )) = (X , ok)

security
unforgeability

Alice and Bob, Gen, Auth, Verify
components

MAC

Typically:
Auth: compute c = MACK (X ) and send (X , c)

Verify: parse (X , c) and check c = MACK (X )
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Security

adversary objective: forge new messages
typically: key recovery
known message attack (previous picture): using authenticated
messages in transit only
chosen message attack: force the sender to authenticate some
messages selected by the adversary
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Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of t bytes for a message X with a key K using a
Merkle-Damgård hash function with block size B bytes, digest size L
bytes. (t = L by default.) E.g. H = SHA256, B = 64, L = 32.

1 If K has more than B bytes, we first replace K by H(K ).
(Having a key of such a long size does not increase the security.)

2 We append zero bytes to the right of K until it has exactly B
bytes.

3 We compute

H((K ⊕ opad)‖H((K ⊕ ipad)‖X ))

where ipad and opad are two fixed bitstrings of B bytes. The ipad
consists of B bytes equal to 0x36 in hexadecimal. The opad
consists of B bytes equal to 0x5c in hexadecimal.

4 We truncate the result to its t leftmost bytes. We obtain
HMACK (X ).
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HMAC [RFC 2104]

MAC
?

trunc
?

H
?

?

H
?

?
⊕ipad
?

?

message

?
⊕opad
?

key‖0 · · · 0
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Examples

algo hash B L t

TLS
MD5 MD5 64 16 16
SHA SHA1 64 20 20
SHA256 SHA256 64 32 32
SHA384 SHA384 128 48 48

SSH
hmac md5 MD5 64 16 16
hmac md5 96 MD5 64 16 12
hmac sha1 SHA1 64 20 20
hmac sha 96 SHA1 64 20 12
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HMAC Security

(Bellare 2006) If the compression function is a PRF, then HMAC
is a PRF
(Kim et al. 2006) Distinguishing attack between a random
function and HMAC with HAVAL, MD4, SHA-0, or a reduced
version of MD5 or SHA-1
(Wang et al. 2009) Distinguishing attack between a random
function and HMAC with MD5 (needs 297 queries)
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CBCMAC - (A Bad MAC)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

MAC

= last ciphertext block of CBC encryption (IV = 0)
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Property of CBCMAC

x1

CK

⊕

x2

CK

· · ·

· · ·

· · ·

⊕

xn

CK

CBCMAC(x1,...,xn)

B

⊕

CK

CBCMAC(x1,...,xn,B)

CBCMAC(X‖B) = CK (CBCMAC(X )⊕ B)

SV 2024–25 Integrity and Authentication CryptoSec 623 / 1098



A MAC Forgery

X1 = random MAC(X1) = c
X2 = random MAC(X2) = c′

X3 = X1‖B MAC(X3) = CK (c ⊕ B)

X4 = X2‖B′ MAC(X4) = CK (c′ ⊕ B′)
B′ = B ⊕ c ⊕ c′ MAC(X4) = MAC(X3)

X1

CBCMAC

c

B

⊕

CK

CK (c ⊕ B)

X2

CBCMAC

c′

B′

⊕

CK

CK (c′ ⊕ B′)

=

=
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Other Attack with 1 Known Message

X1 = B1‖ · · · ‖Bn arbitrary
c = MAC(X1)

X2 = X1‖B′‖B2‖ · · · ‖Bn with B′ = c ⊕ B1

forgery: c = MAC(X2)

B1

CK

B2, . . . ,Bn

c

B′

⊕

CK

B2, . . . ,Bn

c′

=

=

c = c′
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Result on CBCMAC

insecure when used alone as a MAC
secure when restricted to messages of same fixed length
might be secure if encrypted (next constructions)
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EMAC (Encrypted MAC) - (CBCMAC Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?
MACbeware of collision attacks: slide 685
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ISO/IEC 9797 - (Another CBCMAC Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?

trunc

?
MACslightly better resistance to collision attacks
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CMAC [RFC4493] - (Best CBCMAC Variant)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn(‖pad)

trunc

?
MAC

� kcase

CK : AES with 128-bit key K
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CMAC

(previously called OMAC1)
case 1: xn was not padded
case 2: the message length is not multiple of the block length
pad it with a bit 1 and as many bits 0 as required to reach this
length
L = CK (0) (encryption of the zero block)
k1 is L shifted to the left by one bit XOR a constant if any carry
k2 is k1 shifted to the left by one bit XOR a constant if any carry
constant:
0x000000000000001b for 64-bit blocks and
0x00000000000000000000000000000087 for 128-bit blocks
actually, this is the GF multiplication by the variable x
(Iwata-Kurosawa 2003)
if C is a pseudorandom permutation then CMAC is unforgeable
(existential forgeries under chosen message attack)
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PMAC

parameter: t , the MAC length
input: K and the message split into blocks x1, . . . , xn

(last block can be incomplete)
1:

Σ =
n−1⊕
i=1

CK

(
xi ⊕ 2i · CK (0)

)
⊕ xn ⊕ 2n · CK (0)

2: if last block complete: Σ← Σ⊕ 2−1 · CK (0) return the first t bits
of CK (Σ)

2i · x : multiplication of x by 2i in GF (like for OMAC)
(i.e. i times a shift with XOR if carry)
(Black-Rogaway 2002)
if C is a pseudorandom permutation then PMAC is unforgeable
(existential forgeries under chosen message attack)
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PMAC

CK

?

?
⊕-

CK

?

?
⊕-

CK

?

?
⊕-2 · L 22 · L 23 · L

- - -
?
⊕

?
⊕

-
?
⊕

?
- ⊕

?

x1 x2 x3 · · ·

· · ·

· · ·

xn(‖pad)

CK

trunc
?

MAC

�
{

2−1 · L
or 0

L = CK (0)
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WC-MAC
High-level idea: MAC(x) = Enc(h(x)) for x ∈ D with Vernam cipher

K : uniformly at random in K
K1,K2, . . .: independent and uniformly distributed over {0, 1}m

(hK )K∈UK: ε-XOR-universal family of hash functions from D to
{0, 1}m

i : index (used only once: kind of nonce)
MACK ,K1,K2,...(i , x) = hK (x)⊕ Ki

x - h -

?

K

⊕
?

Ki

-

Theorem (Wegman-Carter 1981)

No chosen message attack can forge a new authenticated message
with a probability of success greater than ε.

SV 2024–25 Integrity and Authentication CryptoSec 633 / 1098



Universal Hash Function

High-level idea:
for x and y fixed, the distribution of hK (x)⊕ hK (y) is almost flat

Definition (Krawczyk 1994)

Let (hK )K∈UK be a family of hash functions from D to {0, 1}m defined
by a random key K which is chosen uniformly at random in a key
space K.
This family is ε-XOR-universal if for any a and x 6= y in D, we have

Pr[hK (x)⊕ hK (y) = a] ≤ ε.

Note: 1 =
∑

a Pr[hK (x)⊕ hK (y) = a] ≤ 2mε so ε ≥ 2−m
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WC-MAC - Proof — i

A - x , j , c

x1, . . . , xd

�	

c1, . . . , cd

MACK ,K1,...,Kd

forgery⇐⇒
x 6∈ {x1, . . . , xd} and
hK (x)⊕ Kj = c

Proof.
At the end, the attacker collects d triplets (xi , i , ci) for i = 1, . . . , d and
forges (x , j , c). Let pj = Pr[success|j]. If ∀j pj ≤ ε then
Pr[success] ≤ ε.

For any j 6∈ [1, d ], Kj is uniformly distributed and independent from
c1, . . . , cd , so the probability that c is a valid MAC of (x , j) is pj = 2−m.
(Note that 2−m ≤ ε.)
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WC-MAC - Proof — ii

We have View =
∧d

i=1 hK (xi)⊕ Ki = ci .
For any j ∈ [1, d ], let View′ =

∧
i∈[1,d ]\{j} hK (xi)⊕ Ki = ci

The success probability is

pj = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj ,View′, j]

Due to the distribution of K1, . . . ,Kj−1,Kj+1, . . . ,Kd , we can see that
View′ is useless in the probability.

pj = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj , j]
= Pr[hK (x)⊕ hK (xj) = c ⊕ cj |hK (xj)⊕ Kj = cj , j]

(Bayes) =
Pr[Kj=hK (xj )⊕cj |hK (x)⊕hK (xj )=c⊕cj ,j]

Pr[Kj=hK (xj )⊕cj |j]
×Pr[hK (x)⊕hK (xj )=c⊕cj ]

= Pr[hK (x)⊕ hK (xj) = c ⊕ cj ] ≤ ε

since Kj is independent from K .
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Example of Universal Hashing (Krawczyk 1994)
(LFSR-based Toeplitz hash function)

Given m and n, we define a family of hash functions hK from
D = {0, 1}n to {0, 1}m

K is the set of all K = (p, s) where p(x) =
∑m

j=0 pjx j is an
irreducible polynomial of degree m over GF(2) and an
s = (s0, . . . , sm−1) is an m-bit string.
K defines an LFSR with connection polynomial p(x) and initial
state s

st+m =
m−1⊕
j=0

pjst+j hK (x0, . . . , xn−1) =
⊕

0≤t<n
xt=1

(st , . . . , st+m−1)

=
⊕

0≤t<n

xt × (st , . . . , st+m−1)

For any m and n, the family of all hK defined from {0, 1}≤n to
{0, 1}m is n21−m︸ ︷︷ ︸

ε

-XOR-universal
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Example

p(x) = 1 + x + x4, s = (1, 0, 0, 0)
compute

hK (1, 1, 0, 1, 0)

� � �

-⊕
�

1 0 0 0

=

⊕
1

0 0 0 1

⊕
1

0 0 0 0

⊕
0

0 1 0 0

⊕

1 0 0 1

1

0 0 0 0

1 1 0 1

0

hK (1, 1, 0, 1, 0) = (1, 1, 0, 1)
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WC-MAC using a Stream Cipher

N ← nonce
MACK ,K ′(N, x) = hK (x)⊕ KeystreamK ′,N

idea: “encrypt hK (x) using a stream cipher”

CAUTION: using the same N twice could be a disaster!
(e.g. reveal information about K then allow easy forgery attacks)
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Example (Taken From GCM Mode)

(mac) GMACK (IV,A)
1: set H = CK (0128)
2: set S = GHASHH(A‖0v‖length(A)‖0128)
3: set T = trunc(GCTRK ((IV‖0311),S)) (encrypt S)
4: return T

(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X ) =
trunclength(X) (CK (ct)‖CK (ct + 1)‖CK (ct + 2) · · · )⊕ X

(problem with nonce reuse: this leaks GHASHH(X )⊕GHASHH(X ′)
which leaks H then allow forgeries; see final exam 2016–17...)

GHASHH(X )⊕GHASHH(Y ) = a⇐⇒ P(H) = a for a polynomial P
defined by X ⊕ Y
P(H) = a has up to m roots so GHASH is m2−128-XOR-universal
over D: messages of up to m blocks
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Variant: Poly1305 [RFC7539]

one-time encryption
one-time authenticator

Poly1305r ,s(m1, . . . ,mℓ) = (m1+2128)r ℓ+· · ·+(mℓ+2128)r+s mod (2130 − 5︸ ︷︷ ︸
prime

)

where (r , s) is a key to be used only once and mi ∈ {0, . . . , 2128 − 1}

example: (r , s) = EncK (nonce)
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Authenticated Modes of Operation

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary
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Roadmap

home-made constructions
encrypt-then-MAC
MAC-then-encrypt
encrypt-and-MAC

authenticated modes of operation
CCM
GCM
AES-GCM-SIV
CHACHA20-POLY1305
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Encrypt-then-MAC

Message

?
Enc

?

?
Cipher Key

- MAC

?

?

Extra

?
MAC Key

6�
�

Adversary

- MAC- =

6

?
Extra

?
MAC Key

Dec

6

6

Message

?
Cipher Key

example: IPSEC
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MAC-then-Encrypt

Message

- MAC

?

?

Extra

?
MAC Key

?
Enc

6�
�

Adversary-Cipher Key Dec
6

Message

� Cipher Key

- MAC - =

6

?

Extra

?
MAC Key

example: TLS (< 1.3)
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Encrypt-and-MAC

Message

?
Enc

?

?
Cipher Key

?
MAC

?

?

Extra

-MAC Key

6�
�

Adversary

?
MAC- =

6
-Extra

?
MAC Key

Dec

6

6

Message

?
Cipher Key

example: SSH
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Some Tricky Additional Things

as soon as padding occurs, some combination may be weak
some problems when adversary can get advantage of a return
channel
many standards weak, fixed by implementations
example (2003): MAC-then-Pad-then-Encrypt in TLS using block
ciphers is weak
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TLS using Block Ciphers

Text - MAC -
PAD

- CBC - DEC - - VER - Text

�bad record mac

�decryption failed

S E C R E T A

C C E S S

block 1

block 28 # $

* = k % ! block 32 2 2
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Padding Oracle Attack: Encryption

Client Adversary

P A S S W O R D

x & @ 3 P $ + c

7 7 7 7 7 7 7 7

9 w @ G = u P +

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

Enc -

?
Enc -⊕-

?
Enc -⊕-

We would like to decrypt 9w@G=uP+
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Padding Oracle Attack: Decryption

Adversary Server

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 w @ G = u P +

P A S S W O R D

6?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

Dec -

?
Dec -⊕-

?
Dec -⊕-

f 4 = S . o w t

) g $ K 9 s X d

decryption failed

t⊕D=d
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CCM (Counter with CBC-MAC)

Roughly speaking:
1: select a nonce N (way to select and synchronize are free)
2: let T = CBCMAC(message) using N
3: encrypt T‖message in CTR mode using N

More precisely, the CCM mode is defined by
a block cipher which accepts 16-Byte blocks
an even parameter M between 4 and 16 (size of the CBCMAC in
bytes)
a parameter L between 2 and 8 (size of the length field in bytes)
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CCM

⊕
?

truncM

T

?

CBC-MAC

??

extra a

message X pad nonce N

?
-

?

CTR

truncM (CK (A0))�
trunc|x|(CK (A1)‖ · · · ‖CK (An))
�⊕

� -

key K

? ?
head body
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CCM Processing

pad X with enough zero bytes to reach the block boundary
split X‖pad as B1‖ · · · ‖Bn

make B0 = byte1‖N‖length(X ) where byte1 encodes M and L
compute the CBCMAC of B0‖B1‖ · · · ‖Bn, truncate it to M bytes,
and get T
make Ai = byte2‖N‖i where byte2 encodes L
encrypt T‖X by

Y = (T ⊕ truncM(CK (A0))) ‖
(
X ⊕ trunc|X |(CK (A1)‖ · · · ‖CK (An))

)
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Processing with an Extra Data

If we wish to send X together with a protocol data a which also needs
to be authenticated (e.g. a sequence number, and IP address...)

add a special bit in byte1 which tells that a is used
if a has a length between 1 and 65279 bytes, encode this length
on two bytes, make length(a)‖a‖pad′ where pad′ consists of
enough zero bytes to reach the block boundary
insert it between B0 and B1 before the CBCMAC computation

SV 2024–25 Integrity and Authentication CryptoSec 654 / 1098



GCM Mode

(authenticated encryption) GCMAEK (IV,P,A) with plaintext P
and extra data A

1: set H = CK (0128)
2: set J0 = IV‖0311 (IV concatenated with a 32-bit counter)
3: set C = GCTRK (J0 + 1,P)
4: concatenate A and C with 0 bits to reach a length multiple of

128 and get A‖0v and C‖0u

5: set S = GHASHH(A‖0v‖C‖0u‖length(A)‖length(C))
6: set T = trunc(GCTRK (J0,S))
7: return (C,T )

(MAC) GMACK (IV,A) = GCMAEK (IV, ∅,A)
(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X ) =
trunclength(X) (CK (ct)‖CK (ct + 1)‖CK (ct + 2) · · · )⊕ X
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GCM

?

⊕
?

message P IV

?
CTR �key K

�

?
h

GHASH

?
H = CK (0)

-
- - ⊕extra A

?GCTRK (J0, S)

trunc

?
body C tail T

+ encryption on-the-fly (in stream mode)
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Misuse Attack on GCM

nonce misuse is dramatic for GCM:
get GCMAEK (IV

′,Pi , ∅) = (Ci ,Ti) for i = 1, 2 with Pi of one block
deduce GHASHH(C1‖x)⊕GHASHH(C2‖x) = T1 ⊕ T2 with
x = (length 0)‖(length 128)
so H2(C1 ⊕ C2) + H(x ⊕ x) = T1 ⊕ T2

deduce that H is the root of H2(C1 ⊕ C2) = T1 ⊕ T2
(it is the only root as squaring is bijective)

after that, we can make a forgery for (IV,P,A)):
get GCMAEK (IV,P ′,A′) = (C′,T ′) for arbitrary A′ and P ′ of
same length as A and P
deduce GCMAEK (IV,P,A) =
(C′ ⊕ P ⊕ P ′,T ′ ⊕GHASHH([A,C])⊕GHASHH([A′,C′]))
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GCM

Advantage:
secure
fast
ubiquitous (part of TLS 1.3)
NIST standard

Disadvantage
nonce IV is short (96 bits)
after 232 messages, Pr[collision] ∼ 2−32

limited to 236 bytes in CTR mode (64GB)
J0 = IV‖0311
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Variant: AES-GCM-SIV (RFC 8452)
nonce plaintext

Polyval

⊕

AES

CTR

⊕

ciphertexttag

KDFkey

- Polyval ≈ GHASH
- misuse-resistant
- not on-the-fly encryption (needs 2 passes)
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The CHACHA20-POLY1305 AEAD
input: key K (256-bit), nonce N (96-bit), a plaintext P, associated data AD

1: generate otkey using K and N (ad-hoc Chaha20-based PRNG)
2: run ChaCha20 with K and N, and counter set to 1
3: ciphertext← P ⊕ keystream
4: run Poly1305 with otkey and the message resulting from

AD‖padding1‖ciphertext‖padding2‖length(AD)‖length(ciphertext)

output: ciphertext, tag

ChaCha20: stream cipher

key, nonce, counter 7→ keystream

Poly1305: authenticator

one-time key,message 7→ tag
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The CHACHA20-POLY1305 AEAD

ChaCha20

PRNG

N K

⊕

Poly1305

plaintext

AD

ciphertext

tag
otkey
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Authenticated Modes to Remember

mode comment
CCM CTR + CBCMAC
GCM CTR + WC-MAC

GCM-SIV CTR + WC-MAC
ChaCha20-Poly1305 stream cipher + WC-MAC
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Hash Function

Definition
A hash function is a tuple (D, {0, 1}τ , h) with a message domain
D ⊆ {0, 1}∗, an output domain {0, 1}τ , and one efficient deterministic
algorithm h implementing a function

h : D −→ {0, 1}τ
X 7−→ h(X )

SV 2024–25 Integrity and Authentication CryptoSec 664 / 1098



One-Wayness

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-one-way if for any probabilistic
algorithm A limited to a time complexity∗ t , the advantage Adv is
bounded by ε, where

Adv = Pr[game returns 1]

Game
1: x $←− D ▷ assume D is finite or specify a distribution
2: y ← h(x)
3: A(y)→ x ′

4: return 1h(x′)=y

∗ including the size of the code (as for all security definitions, actually)
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Large-Code Inversion Attack

1: if y0 = 0 then
2: if y1 = 0 then
3: · · ·
4: return 2948 ▷ preimage of 00 · · ·
5: else
6: · · ·
7: return 8374 ▷ preimage of 01 · · ·
8: end if
9: else

10: if y1 = 0 then
11: · · ·
12: return 8635 ▷ preimage of 10 · · ·
13: else
14: · · ·
15: return 2533 ▷ preimage of 11 · · ·
16: end if
17: end if
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Security Against Collision Attack (Bad Definition)

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-secure against collision
attacks if for any probabilistic algorithm A limited to a time complexity
t , the advantage Adv is bounded by ε, where

Adv = Pr[game returns 1]

Game
1: A → x , x ′

2: return 1h(x)=h(x′),x 6=x′

Following this definition, no hash function with #D > 2τ is secure:
collision exist, so A can just print one!

Making a correct definition is beyond the scope of this course
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Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple ({0, 1}k ,D, {0, 1}τ ,MAC)
with a key domain {0, 1}k , a message domain D ⊆ {0, 1}∗, an output
domain {0, 1}τ , and one efficient deterministic algorithm MAC
implementing a function

MAC : {0, 1}k ×D −→ {0, 1}τ
(K ,X ) 7−→ MACK (X )

(we could define a variant with nonces)
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Security against Key Recovery

Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,MAC) is
(q, t , ε)-secure against key recovery under chosen message
attacks if for any probabilistic algorithm A limited to a time complexity
t and to q queries, the advantage Adv is bounded by ε, where

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: AOMac → K ′

3: return 1K=K ′

Oracle OMac(X ):
4: return MAC(K ,X )

(+ similar notion with known message attacks)
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Security against Forgery

Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,MAC) is
(q, t , ε)-secure against forgery under chosen message attacks if
for any probabilistic algorithm A limited to a time complexity t and to
q queries, the advantage Adv is bounded by ε, where

Adv = Pr[game returns 1]

Game
1: K $←− {0, 1}k

2: Queried← ∅
3: AOMac → (X , t)
4: if X ∈ Queried then return 0
5: return 1MAC(K ,X)=t

Oracle OMac(X ):
6: Queried← Queried ∪ {X}
7: return MAC(K ,X )

(+ similar notion with known message attacks)
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Forgery Security is Stronger than Key Recovery
Security

(q, t + t0, ε)-secure against forgeries =⇒ (q, t , ε)-secure against key
recoveries, where t0 is constant

Proof: let A be a (q, t) key recovery adversary
We want to prove Pr[A succeeds] ≤ ε

we define B:
1: run AO → K ′

2: pick a fesh X arbitrarily
3: compute t = MAC(K ′,X )
4: return (X , t)

if Steps 2–3 take time t0, B is a (q, t + t0, ε) forgery attack
Pr[A succeeds] ≤ Pr[B succeeds]
due to unforgeability, Pr[B succeeds] ≤ ε
so, Pr[A succeeds] ≤ ε

key recovery-breaking =⇒ forge
forgery-secure =⇒ key recovery-secure
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Security against Distinguisher (PRF)

Definition

A message authentication code ({0, 1}k ,D, {0, 1}τ ,MAC) is a
(q, t , ε)-pseudorandom function (PRF) if for any probabilistic
algorithm A limited to a time complexity t and to q queries, the
advantage Adv is bounded by ε, where

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: K $←− {0, 1}k

2: pick F : D → {0, 1}τ
3: AO → z
4: return z

Oracle O(X ):
5: if b = 0 then return F (X )
6: return MAC(K ,X )

(see slide 586 )
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PRF-Security is Stronger than Unforgeability
(q + 1, t + t0, ε)-PRF =⇒ (q, t , ε+ 2−τ )-secure against forgeries,
where t0 is constant

Proof: let A be a (q, t)-forger. We want to prove
Pr[A succeeds] ≤ ε+ 2−τ

we construct a distinguisher D:
1: run AO → (X , t)
2: if X was queried by A, output 0 and stop
3: query X to O and get t ′

4: output 1t=t′

with O = MAC(K , .), we have Pr[DMAC(K ,.) → 1] = Pr[A wins]
with O = F (·), we have Pr[DF (·) → 1] ≤ 2−τ

so,

Pr[A wins] ≤ Pr[DMAC(K ,.) → 1]− Pr[DF (·) → 1] + 2−τ ≤ ε+ 2−τ

therefore, PRF-security implies unforgeability
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PRF vs MAC

PRF aims at being indistinguishable
MAC aims at being unforgeable (unguessable)
secure PRF =⇒ secure MAC
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Security Notions

key recovery forgery PRF
CMA stronger security
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Case Study: Mobile Telephony

case study
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Birthday Paradox
Theorem
If we pick independent random numbers in {1, 2, . . . ,N} with uniform
distribution, n times, we get at least one number twice with probability
p = 1− N!

Nn(N−n)! .

If N → +∞ and n = o(N), we have p = 1− e−
n2
2N +o(1).

If n ∼ θ
√

N, then
p −→

N→+∞
1− e−

θ2
2 .

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

θ = 1
2

θ = 1 θ = 2 θ = 3
n

N = 365

1− e−
n2
2N

p
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Birthday Paradox - Informal Proof

p ≈ 1−
(

1− 1
N

)( n
2 )

≈ 1−
(

1− 1
N

) n2
2

= 1− e
n2
2 ln(1− 1

N )

≈ 1− e−
n2
2N

= 1− e−
θ2
2
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Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

n! ∼
n→+∞

√
2πne−nnn

We have

1− p =
N!

Nn(N − n)!

∼
(

1− n
N

)−N+n
e−n

= exp
[
−n + (−N + n) log

(
1− n

N

)]
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Birthday Paradox - Proof — ii

We now use log(1− ε) = −ε− ε2

2 + o(ε2) as ε→ 0

1− p ∼ exp
[
−n + (−N + n) log

(
1− n

N

)]
∼ exp

[
− n2

2N
+ o(1)

]
Finally, 1− p → e−

θ2
2 when n ∼ θ

√
N
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Collision Search I

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x 6= x ′ and
h(x) = h(x ′)

1: for θ
√

N many different x do
2: compute y = h(x)
3: if T{y} defined then
4: yield (x ,T{y}) and stop
5: end if
6: set T{y} = x
7: end for
8: search failed
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Collision Search II

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x 6= x ′ and
h(x) = h(x ′)

1: loop
2: pick a (new) random x
3: compute y = h(x)
4: if T{y} defined then
5: yield (x ,T{y}) and stop
6: end if
7: set T{y} = x
8: end loop

we can show that the expected number of iterations is
√

π
2 ×
√

N
(Buffon’s needles...)
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Collision Search Complexity

strategy memory time success proba.

collision search I θ
√

N θ
√

N 1− e−
θ2
2

collision search II
√

π
2 ×
√

N
√

π
2 ×
√

N 1

example for SHA-2: N = 2256, complexity ∼ 2128

Note: for collision search I, this is a worst-case complexity

SV 2024–25 Integrity and Authentication CryptoSec 684 / 1098



Example: Birthday Attack on EMAC
First get

√
2MAC length many messages until we get two messages X1

and X2 such that MAC(X1) = MAC(X2) by using the birthday paradox.
Deduce CBCMAC(X1) = C−1

K2
(c) = CBCMAC(X2)

Pick B arbitrarily. Query MAC(X1‖B) = c′

Deduce MAC(X2‖B) = c′

X1

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

X2

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

=

=

=
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Variant: Collision between Two Lists

Theorem
If x1, . . . , xm and y1, . . . , yn are independent and uniformly distrbuted
in {1, . . . ,N}, the probability there exist i and j such that xi = yj is

p = 1− e−
mn
N +o(mn

N )

Proof.

1− p ≈
(

1− 1
N

)mn

= emn log(1− 1
N )

= e−
mn
N +o(mn

N )
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Example: Birthday Attack on PMAC
1: select a block sequence x arbitrarily
2: for 2

blocklength
2 pairwise different incomplete blocks Bi , get

ti = MAC(x‖Bi)

3: for 2
blocklength

2 pairwise different complete blocks B′i , get
t ′j = MAC(x‖B′j )

4: look for a collision ti = t ′j
5: deduce (Bi‖pad)⊕ B′j = 2−1 · L
6: (when truncation is used) check if the obtained L is correct
7: make forgeries using L ▷ exercise: how?

CK

?

?
⊕-

CK

?

?
⊕-2 · L 22 · L

- ?
⊕
?

x Bi (‖pad)

CK

?

�
{

2−1 · L
or 0

L = CK (0)
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(Almost) Memoryless Collision Search
The Rho (ρ) Effect

x0

6
x1

6
x2

6
x3

6
x4

6
x5

6
x6

�
x7 �

x8 *
x9 -x10

j x11

R x12

U x13

?x14

�
x15	

x16�
x17

�
x18

Yx19

I
x20

K

xi+1 = F (xi)

ρ shape (due to finite set)
tail λ = 5
loop τ = 16
collision F (xλ−1) = F (xλ+τ−1)

Lemma
If F is a random function over a set
of cardinality N, we have
E(λ) = E(τ) =

√
πN/8.
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Floyd Cycle Finding Algorithm (1967)
Tortoise and the Hare

Output: a collision for F
Complexity: O(

√
N) F mappings

1: set x0 at random
2: a← x0 (tortoise)
3: b ← x0 (hare)
4: repeat
5: a← F (a)
6: b ← F (F (b))
7: until a = b
8: a← x0
9: if a = b then fail

10: while a 6= b do
11: aold ← a
12: bold ← b
13: a← F (a)
14: b ← F (b)
15: end while
16: output aold, bold

whenever x2i = xi we must
have τ |i
we find i = τ × dmax(λ,1)

τ e
exact complexity is 3i + 2λ
computations F
which is on average

5E(λ) +
3
2

E(τ)

= 6.5
√
π/8×

√
N

as E(i) = E(λ) + 1
2 E(τ)

(fail if λ = 0)
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Why it Works

let xi = F (xi−1)

after iteration i of the repeat-until loop, we have a = xi and
b = x2i
a = b is equivalent to (i ≥ λ and τ |i)
there exists a minimum i = i0 = τ × dλτ e satisfying this condition
after iteration i of the while-endwhile loop, we have a = xi and
b = xi0+i
a = b is equivalent to i ≥ λ
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Example
A Random Function

x 7→ uv 7→ first byte of SHA256("3.1415927-uv") mod 128
where uv is x in hexadecimal

#! /bin/bash

string="3.1415927"

for i in {0..127}

do

j=‘printf "$string-%02x" $i | sha256sum‘

j=‘echo $j | tr "abcdef" "ABCDEF"‘

j=‘echo $j | sed "s/^\(..\).*$/ibase=16;obase=2;\1/g" | bc‘

j=‘echo $j | sed "s/.$//g"‘

j=‘echo $j | sed "s/^/ibase=2;obase=A;/g" | bc‘

echo "$i -> $j"

done

Note:
√

128π
8 ≈ 7
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Cycle Detection Algorithms

Floyd (1967)
Gosper (1972)
Brent (1980)
Sedgewick-Szymanski-Yao (1982)
Quisquater-Delescaille (1989)
van Oorschot-Wiener (1999)
Nivasch (2004)
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Breaking Symmetric Cryptography

we know generic attacks are unavoidable
we do not know how to prove security
empirical security: assume (hope) there is no better attack then
known ones
security =⇒ generic attacks are untractable
security parameter for encryption/authentication: key length
Caveat: hash length must be twice the security parameter due to
the birthday paradox
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Summary of Generic Attacks against Symmetric
Encryption

if we have a n-bit key, (N = 2n)

strategy preprocessing memory time success proba.
exhaustive search 0 1 2n 1
dictionary attack 2n 2n 1 1
tradeoffs 2n 2

2
3 n 2

2
3 n cte

Want a security of 2s?
select n ≥ s

SV 2024–25 Integrity and Authentication CryptoSec 696 / 1098



Summary of Generic Attacks against MAC

if we have a n-bit key (N = 2n) and a τ -bit tag,

strategy preprocessing memory time success proba.
exhaustive search 0 1 2n 1
random guess 0 1 1 2−τ

dictionary attack 2n 2n 1 1
tradeoffs 2n 2

2
3 n 2

2
3 n cte

Want a security of 2s?
select n ≥ s
select τ ≥ s
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Summary of Generic Attacks against Hash
Functions

if we hash onto n bits, (N = 2n)

attack complexity
preimage attack 2n

collision attack 2
n
2

Want a security of 2s?
want security against inversion only: select n ≥ s
want security against collisions: select n ≥ 2s
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Risks When Underestimating Collision Attacks

some people think that “academic” collisions are of no threat as
they are no real documents
they are random-looking but we can cast them in real-life format
postscript, jpg, pdf, ...: media format looks like programming
we can cast a collision

prefix

collisionblock1

suffix

prefix

collisionblock2

suffix

1: b ← read(addr)

2: if b = 0 then go to addr0

3: go to addr1

[addr0] “season greetings”
[addr1] “pay 1 000 000”

addr

=

=

demonstrated to forge a rogue certificate authority
[Stevens-Lenstra-Benne de Weger: Chosen-Prefix Collisions for MD5 and Colliding X.509

Certificates for Different Identities; EUROCRYPT 2007]

demonstrated with two arbitrary images with SHA-1
[Albertini: Exploiting Hash Collisions;BlackAlps 2017]

SV 2024–25 Integrity and Authentication CryptoSec 699 / 1098



6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses

SV 2024–25 Integrity and Authentication CryptoSec 700 / 1098



Cryptanalytic Advances

security is often empirical
→ dedicated attacks
heuristic security against attack methods
→ arguments may be wrong, other attack methods can be
discovered
all eggs in the same basket (lack of crypto-diversity)
→ more exposure, attacks more devastating
the quantum threat
→ quantum computers to factor, compute discrete logarithms, or
even half security parameters [Grover 1996]
side channel attacks
wrong proofs, wrong models
security interference: secure + secure may be insecure
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Conclusion

MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
hash functions: SHA-2, SHA-3
commitment
bruteforce collision within complexity O

(√
#range

)
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Dedicated Primitives and Reductions

Hash functions

Block Ciphers

?

DM + MD schemes

MAC

Stream Ciphers

?

WC MAC

-OFB, CTR modes

-
HMAC

q

CBCMAC
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Must be Known

Merkle-Damgård and Davies-Meyer schemes
parameters of hash functions: SHA-2, SHA-3
MAC: (principles of) HMAC, CBCMAC
existence of authenticated encryption modes: CCM, GCM
collision search based on the birthday paradox
security from key length
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Train Yourself

hash functions:
final exam 2008–09 ex3
collisions:
final exam 2013–14 ex2
final exam 2012–13 ex2
final exam 2010–11 ex1
final exam 2016–17 ex4
final exam 2017–18 ex1
final exam 2018–19 ex2 (CBC mode)
GCM issue:
final exam 2016–17 ex3
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Roadmap

Diffie-Hellman: new directions in cryptography
RSA standards for encryption and signature
the ElGamal signature dynasty
post-quantum crypto
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Diffie-Hellman
“New Directions in Cryptography” (1976)

[Merkle, Hellman, Diffie]

notion of “trapdoor permutation” (no instance)
building a public-key cryptosystem from it
building a digital signature scheme from it
key agreement protocol
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Merkle
“Secure Communications over Insecure Channels” (1978)

Alice Bob
generate c, s1, s2

generate r1, . . . , rN

ni = g(s1, i)
ki = g(s2, ni)

yi = Cri (ni , ki , c)
c||y1||...||yN−−−−−−−−−−−−−−−→ pick i , solve (yi , c)

get ni , ki

ki = g(s2, ni)
ni←−−−−−−−−−−−−−−−

output: ki output: ki

Complexity for Alice: N
Complexity for Bob: S (solving a puzzle)
Complexity for an attacker: N × S
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(yi) has c inside



Trapdoor Permutation

we use an encryption Perm that is easy to compute in one way
...but hard in the other (to compute InvPerm)
...except using a trapdoor K
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Trapdoor Permutation

functionality
Gen→ (param,K )

InvPermK (Permparam(X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Perm, InvPerm
components

trapdoor
permutation
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Reversibility in Symmetric Encryption

encryption

?

plaintext

6
ciphertext

R

decryption

6
plaintext

?

ciphertext

�
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Hard-To-Invert Computation

- -x gx
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Big Picture

confidential transmission authenticated transmission

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Auth - - Verify

-
ok?

-Message
�

�
Adversary

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary
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Digital Signature Primitive

functionality
Gen→ (pk, sk)

Verpk(Sigsk(X ; r)) = X

security
signature is non-repudiable

Alice and Bob, Gen, Sig, Ver
components

digital
signature
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Application: Certificates

Client Server-� insecure -�

?

�Authority
pkA pk

AUTHENTICATION AUTHENTICATION

?

certificate

certificate = signature(“I certify that public key pk belongs to S”)
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Static versus Ephemeral Diffie-Hellman

Ephemeral DH: X and Y are fresh (and destroyed after protocol
completes)
Static DH: X and Y are used like public keys
Semi-static DH: one key is fixed (public key), the other is fresh
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Ephemeral Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−−→

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy ) K ← X y

erase x erase y

secureK←−−−−−−−−−−−−→

SV 2024–25 Public-Key Cryptography CryptoSec 727 / 1098



Semi-Static Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice Bob
secret key: x

public key: X = gx

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy ) K ← X y

erase y

secureK←−−−−−−−−−−−−→
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Static Diffie-Hellman Key Agreement

Assume a group generated by some g

Alice Bob
secret key: x secret key: y

public key: X = gx public key: Y = gy

K ← Y x (K = gxy ) K ← X y

secureK←−−−−−−−−−−−−→
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Forward Secrecy

forward secrecy: communication is still private if long term
secret keys are disclosed
example: ephemeral Diffie-Hellman (no long term secret)
no forward secrecy: communication might be decrypted if long
term secret keys leak in the future
example: static or semi-static Diffie-Hellman
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Case Study: Signal

case study
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Diffie-Hellman Cryptography

Diffie-Hellman
6

problem to instanciate

* RSA

j ElGamal

trapdoor permutation: operation in Zn which can be inverted with
the factorization of n
probabilistic encryption: encryption returns gx along with
symEncKDF(Y x )(message) for Y x = DH(g, gx ,Y )
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Rivest-Shamir-Adleman (RSA)
(1978)

[Shamir, Rivest, Adleman]

concrete trapdoor permutation
−→ public-key cryptosystem
−→ signature scheme
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Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Why “Plain” RSA

plain RSA
= textbook RSA
= vanilla RSA
= raw RSA
= RSA for mathematicians

in practice, things are a little more complicated because
messages are not elements of ZN

RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b))
which are quite dangerous
RSA engineering leads us to security concerns
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PKCS#1v1.5

(Modulus of k bytes, message M of at most k − 11 bytes.)
Encryption:

1 generate a pseudorandom
string PS of non-zero bytes so
that M‖PS is of k − 3 bytes

2 construct string
00‖02‖PS‖00‖M of k bytes

3 convert it into an integer
4 perform the plain RSA

encryption
5 convert the result into a string

of k bytes

Decryption:
1 convert the ciphertext into an

integer, reject it if it is greater
than the modulus

2 perform the plain RSA
decryption and obtain another
integer

3 convert back the integer into a
byte string

4 check that the string has the
00‖02‖PS‖00‖M format for
some byte strings PS and M
where PS has no zero bytes

5 output M
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PKCS#1v1.5 Encryption

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message
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RSA-OAEP Encryption

(H(L) is a constant)

ciphertext
?

Enc
?

00 maskedSeed maskedDB
?

⊕� MGF�

?

⊕-MGF-

?

?

seed
H(L) 0 · · · 01 M

?

message
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RSA-OAEP Decryption

(H(L) is a constant)

ciphertext
6

Dec

6

00 maskedSeed maskedDB

6
⊕� MGF�

6
⊕-MGF-

6 6
seed

H(L) 0 · · · 01 M

6
message
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Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation
function MGF1 which is based on a hash function. The MGF1ℓ(x)
string simply consists of the ℓ leading bytes of

H(x‖00000000)‖H(x‖00000001)‖H(x‖00000002)‖ · · ·

in which x is concatenated to a four-byte counter.
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Signature with Message Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

Sign -Signature
σ

-
σ Extract

-
ok?

-Message
X�

�
Adversary
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Trapdoor Permutation to Signature with Message
Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

InvPerm
(Sign)

-Signature
σ

-
σ

Perm
(Extract)

-Message
X

�
�

Adversary
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Plain RSA Signature

Set up: find two random different prime numbers p and q of
size ℓ

2 bits. Set N = pq. Pick a random e until
gcd(e, (p − 1)(q − 1)) = 1. (Sometimes we pick special
constant e like e = 17 or e = 216 + 1.) Set
d = e−1 mod ((p − 1)(q − 1)).

Secret key: sk = (d ,N).
Public key: pk = (e,N).

Message: an element y ∈ ZN .
Signature generation: x = yd mod N.
Extraction: y = xe mod N.

(Signature with message recovery)
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Plain RSA Signature

Generator

6Secret key d, N Public key e, N6AUTHENTICATION
INTEGRITY

-Message
y Sign -Signature

yd mod N
-

x Extract -
xe mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Trapdoor Permutation to Signature

-Message
X

Hash

?
X

-d
InvPerm

6σX , σ
-

X

?

Perm

U

Hash

�
d d

σ
?
X

Compare -
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary
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More Generally: Hash-and-Sign Paradigm

-Message
X

Hash

?
X

-d
Sign

6σX , σ
-

X

?

Verify Hash�d

σ
?
X

-
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary
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PKCS#1v1.5

We are given a modulus N of k bytes.
1 hash the message (for instance with SHA-1) and get a message

digest.
2 encode the message digest and the identifier of the hash

algorithm into a string D.
3 pad it with a zero byte to the left, then with many FF bytes in

order to reach a length of k − 2 bytes, then with a 01 byte. We
obtain k − 1 bytes.

4 This byte string 00‖01‖FF · · ·FF‖00‖D is converted into an
integer.

5 compute the plain RSA signature.
6 convert the result into a string of k bytes.
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Signature Verification

1 convert the signature into an integer. Reject it if it is greater than
the modulus.

2 perform the plain RSA extraction and obtain another integer.
3 convert back the integer into a byte string.
4 check that the string has the 00‖01‖FF . . .FF‖00‖D format for a

byte string D.
5 decode the data D and obtain the message digest and the hash

algorithm. Check that the hash algorithm is acceptable.
6 hash the message and check the message digest.
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PKCS#1v1.5 Signature

signature
?

Sign
?

00 01 FF· · · FF 00 D
?

H
?

message

RSA signature without message recovery
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RSA-PSS

signature
?

Sign
?

bcmaskedDB H
?

⊕� MGF�

?

H
?

?

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message
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RSA-PSS Verification

signature
6

Extract

6

bcmaskedDB H

6
⊕� MGF�

6

H
= - 0/1

?

6

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message
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Case Study: TLS

case study
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ElGamal Cryptosystem Generalized (Reminder)

Alice Bob
input: m ∈ 〈g〉 secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m
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ElGamal Cryptosystem More Generalized

Alice Bob
input: m ∈ 〈g〉 secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = EncK (m)
v−−−−−−−−−−−−→ m = DecK (v)

output: m
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From ElGamal to ECIES

Alice Bob
input: m ∈ 〈g〉 secret key: x

public key: K = kG

K←−−−−−−−−−−−−

pick r at random
R = rG R−−−−−−−−−−−−→

(kE‖kM) = KDF(rK ) (kE‖kM) = KDF(kR)

c = EnckE (m)
c−−−−−−−−−−−−→ m = DeckE (c)

d = MACkM (c)
d−−−−−−−−−−−−→ d ?

= MACkM (c)

output: m
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ECIES (EC Integrated Encryption Scheme)

Generator

K = kG

6Secret key kPublic key K 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

R‖c‖d

r ∈ Z∗n
R = rG

(kE‖kM ) = KDF(rK‖extra1)
c = EnckE (m)
d = MACkM (c‖extra2)

-
R‖c‖d

Decrypt

S = kR
(kE‖kM ) = KDF(S‖extra1)

m = DeckE (c)

d ?
= MACkM (c‖extra2)

-Message
m

�
�

Adversary

select field, elliptic curve
G point of order n

n prime
extra is context-based information (public)
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ElGamal Signature

Public parameters: a large prime number p, a generator g of Z∗p.
Set up: generate a random x ∈ Zp−1 and compute

y = gx mod p.
Secret key: sk = x .
Public key: pk = y .

Message digest: h = H(M) ∈ Zp−1.
Signature generation: pick a random k ∈ Z∗p−1, compute

r = gk mod p and s = h−xr
k mod p − 1, the signature is

σ = (r , s).
Verification: check that y r r s ≡ gh (mod p) and 0 ≤ r < p.
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ElGamal Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗p−1
r = gk mod p
s = H(M)−xr

k mod p − 1

Sign -
M, r , s

-
M, r , s

0 ≤ r < p
y r r s ≡ gH(M) (mod p)

Verify
-

ok?

-Message
M�

�
Adversary

p prime
g generator of Z∗p
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Drawbacks of ElGamal Signatures

signatures are pretty long
security issues related to subgroups
lack of security proof for arbitrary public parameter
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Major Drawbacks of ElGamal-Like Signatures

leaking or reusing the ephemeral k
reveals the long-term secret x

leaking k : as p, M, r , and s are known, get x from

s =
H(M)− xr

k
mod (p − 1)

reusing k : as p, (M1, r1, s1), (M2, r2, s2) are known, get x from

s1

s2
=

H(M1)− xr1

H(M2)− xr2

this happened in the software install protection of Sony PS2
this does not happen with RSA
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The ElGamal Dynasty

1984 ElGamal signatures
1989 Schnorr signatures: introduced p and q
1995 DSA: US signatures
1995 Nyberg-Rueppel signatures
1997 Pointcheval-Vaudenay signatures
1998 KCDSA: Korean signatures
1998 ECDSA
...
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Generating the Public Parameters

pick a prime number q
take a random p = aq + 1 until it is prime
take a random number in Z∗p, raise it to the power a modulo p,
and get g
if g = 1, try again (otherwise, it must be of order q in Z∗p)
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DSA Signature (DSS)

Public parameters (p, q, g): pick a 160-bit prime number q, a large
prime number p = aq + 1, h of Z∗p raised to the power a,
g = ha mod p such that g 6= 1 (an element of order q).

Set up: pick x ∈ Zq and compute y = gx mod p.
Secret key: sk = x .
Public key: pk = y .

Signature generation: pick a random k ∈ Z∗q , compute
r = (gk mod p) mod q, and s = H(M)+xr

k mod q, the
signature is σ = (r , s).

Verification: check that r =
(

g
H(M)

s mod qy
r
s mod q mod p

)
mod q.
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DSA Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗q
r = gk mod p mod q
s = H(M)+xr

k mod q

Sign -
M, r , s

-
M, r , s

compare r and

g
H(M)

s y
r
s mod p mod q

Verify
-

ok?

-Message
M�

�
Adversary

q prime
p = aq + 1 prime
g = randoma mod p > 1
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Benefits

signatures are shorter
no proper subgroup (only {1} and the group itself)
some form of provable security
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ECDSA

Public parameters: we use a field of cardinality q (either a power of
2, or a large prime), an elliptic curve C defined by two
field elements a and b, a prime number n larger than
2160, and an element G of C of order n. (The elliptic
curve equation over GF(q) is y2 + xy = x3 + ax2 + b in
the characteristic two case and y2 = x3 + ax + b in the
prime field case.) Public parameters are subject to
many security criteria.

Set up: pick an integer d in [1, n − 1], compute Q = dG. Output
(pk, sk) = (Q, d).
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ECDSA

Signature generation: pick k in [1, n − 1] at random and compute

(x1, y1) = kG
r = x1 mod n

s =
H(M) + dr

k
mod n

(x1 is a standard way to convert a field element x1 into
an integer.) If r = 0 or s = 0, try again. Output the
signature σ = (r , s)

Verification: check that Q 6= O, Q ∈ C, and nQ = O. Check that r
and s are in [1, n − 1] and that r = x1 mod n for
(x1, y1) = u1G + u2Q, u1 = H(M)

s mod n, and
u2 = r

s mod n.
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ECDSA Signature

Generator

6Secret key d Public key Q6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

select field, elliptic curve
G point of order n

n prime

Q = d.G

M

k ∈ Z∗n
r = (k.G)1 mod n
s = H(M)+dr

k mod n

M, r , s M, r , s

compare r and(
H(M)

s G + r
s Q

)
1
mod n

M
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Example of Parameters and Key

secp192r1:

q = 6277101735386680763835789423207666416083908700390324961279

a = ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(the leading “03” is for point compression)

d = 651056770906015076056810763456358567190100156695615665659

Q = 02 62b12d60 690cdcf3 30babab6 e69763b4 71f994dd 702d16a5

(the leading “02” is for point compression)
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Benefits of ECDSA (Compared to DSA)

public key is shorter
computation is lighter
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Boneh-Lynn-Shacham (BLS) Signature

Generator

6Secret key x Public key v6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

g ∈ G generator
G, GT groups of prime order p

e : G × G → GT pairing
H hashes into G

v = gx , x ∈ Zp

M

σ = H(M)x

M, σ M, σ

e(g, σ) ?
= e(v , H(M))

M

slide 398
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(Simple) Boneh-Boyen Signature (no H)

Generator

6Secret key (g1, x) Public key
(g2, gx

2 , e(g1, g2))

6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

p prime
G1, G2, GT groups of order p
e : G1 × G2 → GT pairing

g1, g2 generators, x ∈ Z∗p

M

σ = g
1

x+M
1

M, σ M, σ

e(σ, gx
2 gM

2 )
?
= e(g1, g2)

M

slide 398
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Case Study: NFC Creditcard Payment

case study
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Popular Algorithms

symmetric encryption: AES (→ key length)
hash function: SHA3 (→ hash length)
MAC/PRF: HMAC-SHA2 (→ key length, tag length)
authentication encryption: AES-CCM, AES-GCM

be careful with the nonce
key agreement: DH, ECDH (→ public parameters)
cryptosystem: RSA (→ modulus length), EC crypto (→ pp)
signature: RSA (→ modulus length), ECDSA (→ pp)

be careful with the randomness

be careful with the key length
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Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact
If we can factor N = pq then from an RSA public key, we can
compute the secret key.

To have RSA cryptography secure, the factoring problem must be
hard
Parameter for the factoring problem: modulus length
→ NFS
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Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact
If we can compute the discrete logarithm x of gx then from g, gx , gy

we can compute gxy .

To have DH cryptography secure then the discrete logarithm problem
must be hard for the proposed parameters:

prime order of the generated subgroup
overall structure type:

multiplicative group of a finite field→ GNFS
elliptic curve

random over prime field → generic algorithms
random over binary field
special

SV 2024–25 Public-Key Cryptography CryptoSec 779 / 1098



Meta-comparison of Cryptographic Strengths

symmetric encryption/MAC: bit-security
RSA: check tables
hash with collision resistance: digest of twice bit-security
hash without collision resistance: digest of bit-security
discrete logarithm/DH in a group: twice bit-security
caveat: if subgroup of Z∗p, p must be of size like for RSA×2

method sym. RSA DL EC hash
Lenstra-Verheul 82 1613 145 1613 154 163
Lenstra updated 78 1245 156 1245 156 156
ECRYPT II 80 1248 160 1248 160 160
NIST 112 2048 224 2048 224 224
FNISA 100 2048 200 2048 200 200
BSI – 1976 224 2048 224 224

(http://www.keylength.com by Quisquater)
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Impact of Quantum Computers

cryptosystem key size security algorithm #qbits time
AES-GCM 128 128 Grover 2953 2.6× 1012Y
AES-GCM 192 192 Grover 4449 2.0× 1022Y
AES-GCM 256 256 Grover 6681 2.3× 1032Y
RSA 1024 80 Shor 2050 3.6H
RSA 2048 112 Shor 4098 28.6H
RSA 4096 128 Shor 8194 229H
ECC 256 128 Shor 2330 10.5H
ECC 384 192 Shor 3484 37.7H
ECC 521 256 Shor 4719 55H

https://nas.nationalacademis.org/read/25196/chapter/6#98
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PKC

Definition
A public-key cryptosystem is a tuple (Gen,M,Enc,Dec) with a
plaintext domainM⊆ {0, 1}∗ and three efficient algorithms Gen,
Enc, and Dec. The algorithm Dec is deterministic and outputs either
something inM or an error ⊥. It is such that

∀pt ∈M Pr[Dec(sk,Enc(pk, pt)) = pt] = 1

where (pk, sk) is generated from running Gen. The probability is over
the randomness used in Gen and Enc.
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How to Define Security?

the adversary holds the public key so he can encrypt whatever
he wants without using any external oracle
so, for predictible plaintext, if encryption is deterministic, it is easy
to recognize from the ciphertext
example: the encryption of a salary, the encryption of “yes” or
“no”
we should add randomness in the encryption and make the
encryption of arbitrary messages hard to distinguish
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IND-CPA Security

Definition
A PKC (Gen,M,Enc,Dec) is (t , ε)-secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive process (A1,A2)
limited to a time complexity t , the advantage Adv is bounded by ε,
where

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: Gen $−→ (pk, sk)
2: A1(pk)→ (pt0, pt1, st)
3: if |pt0| 6= |pt1| then return 0

4: Enc(ptb)
$−→ ct

5: A2(st, ct)→ z
6: return z
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Problem with Deterministic Cryptosystems

problem: if Enc is deterministic, then PKC is insecure!
plain RSA is not IND-CPA secure
modern PKC are probabilistic
example: plain ElGamal cryptosystem is IND-CPA secure
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IND-CCA Security

Definition
A PKC (Gen,M,Enc,Dec) is (t , ε)-secure under chosen ciphertext
attacks (IND-CCA-secure) if for any interactive process (A1,A2)
limited to a time complexity t , the advantage Adv is bounded by ε,
where

Adv = Pr[Γ1 returns 1]− Pr[Γ0 returns 1]

Game Γb

1: Gen $−→ (pk, sk)
2: AODec1

1 (pk)→ (pt0, pt1, st)
3: if |pt0| 6= |pt1| then return 0

4: Enc(ptb)
$−→ ct∗

5: AODec2
2 (st, ct∗)→ z

6: return z

Oracle ODec1(ct)
7: return Dec(sk, ct)

Oracle ODec2(ct)
8: if ct = ct∗ then return ⊥
9: return Dec(sk, ct)
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Basic Constructions

plain ElGamal is not IND-CCA secure
A1(pk)

1: pick pt0 and pt1 arbitrarily
2: st← pt1
3: return (pt0, pt1, st)

A2(st, ct∗)
4: st→ pt1
5: ct∗ → (u, v)
6: ct← (u, 2v)
7: ODec2(ct)→ pt
8: return 1pt=2pt1

RSA-OAEP and ECIES are IND-CCA secure
(under some conditions)
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Fujisaki-Okamoto Transform

γ-spread and OWCPA-secure PKC (Gen0,Enc0,Dec0)

one-time secure cipher (e.g. one-time pad)
random oracles G and H

→ construct a PKC which is INDCCA-secure
(many variants possible)

Gen → (pk = pk0, sk = (sk0, pk0))

Encpk(pt; coins) →

Enc0,pk0
(coins;H(coins, ct2)︸ ︷︷ ︸

new coins

),

ct2︷ ︸︸ ︷
pt⊕G(coins)


Decsk(ct1, ct2):

1: Dec0,sk0(ct1)→ coins
2: if ct1 6= Enc0,pk0

(coins;H(coins, ct2)) then return ⊥
3: return ct2 ⊕G(coins)
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Fujisaki-Okamoto KEM

random oracles G and H
→ construct a KEM which is INDCCA-secure

Gen→ (pk = pk0, sk = (sk0, pk0))

Encpk(; coins):
1: (K , r)← H(coins)
2: ct← Enc0,pk0

(coins; r)
3: return (K , ct)

Decsk(ct):
4: Dec0,sk0(ct)→ coins
5: Encpk0

(; coins)→ (K , ct′)
6: if ct 6= ct′ then return ⊥
7: return K
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Key and Data Encapsulation Mechanisms
Hybrid Encryption

DEM: same as symmetric encryption
KEM: public-key algorithm producing an encrypted
(encapsulated) key
≈ generate a random symmetric key and encrypt it using
public-key encryption
hybrid encryption: symmetric + asymmetric
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KEM Primitive

functionality
if KemEncpk → (K ,C)

then KemDecsk(C) = K

security
key is confidential

Generator, KemEnc, KemDec
components

KEM
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KEM

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

� Key
K

KemEnc -
C

-
C

KemDec -Key
K

�
�

Adversary
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KEM + DEM Hybrid Encryption

Generator

KemDecKemEnc

6 6KK

- -�
�

6 AUTHENTICATION
INTEGRITY

6Public Key Secret Key

-Message
DemEnc -

C

-

C

DemDec
-

ok?

-Message
�

�
Adversary
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DEM Example
Shoup: Using Hash Functions as a Hedge against Chosen Ciphertext Attack (2000)

EncK (pt) = (pt⊕G(K ),MACG′(K )(pt))

encrypt and MAC
one-time encryption (Vernam-based) +
one-time authenticator (WC-based)
example: Poly1305
could use an AE too (one-time: constant nonce ok)

CHACHA20-POLY1305 (encrypt-then-MAC)
AES-GCM
AES-CCM (MAC-then-encrypt)
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HPKE (Hybrib Public Key Encryption)
RFC9180

common interface for many algorithms (KDF, AEAD, KEM)
DHKEM (DH-Based KEM)

Gen:
1: pick sk
2: pk← sk ·G
3: return (pk, sk)

DH(a,B):
[next slide]

Enc(pk):
4: pick x
5: ct← x ·G
6: Z ← DH(x , pk)
7: K ←

H(Z , ct, pk)
8: return (K , ct)

Dec(sk, ct):
9: pk← sk ·G

10: Z ← DH(sk, ct)
11: K ←

H(Z , ct, pk)
12: return K

an authenticated version of DHKEM (next slide)
KDF: HKDF-SHA256, HKDF-SHA384 HKDF-SHA512
KEM: DHKEM on P256, P384, P521, X25519, X448 with KDF
AEAD: AES-128-GCM, AES-256-GCM, ChaCha20Poly1305
HPKE is a KEM + AEAD
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Authenticated DHKEM

include a static-DH key T for implicit authentication

Gen:
1: pick sk
2: pk← sk ·G
3: return (pk, sk)

Enc(pkR , skS):
4: pick x
5: ct← x ·G
6: pkS ← skS ·G
7: Z ← DH(x , pkR)
8: T ← DH(skS, pkR)
9: K ← H(Z ,T , ct, pkR , pkS)

10: return (K , ct)

DH(a,B):
11: if B 6∈ group then return ⊥
12: if B = 0 then return ⊥
13: return rep(a · B)

Dec(skR , pkS, ct):
14: pkR ← skR ·G
15: Z ← DH(skR , ct)
16: T ← DH(skR , pkS)
17: K ← H(Z ,T , ct, pkR , pkS)
18: return K
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Signature Scheme

Definition
A digital signature scheme is a tuple (Gen,D,Sig,Ver) with a
message domain D ⊆ {0, 1}∗ and three efficient algorithms Gen, Sig,
and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1
(accept). It is such that

∀X ∈ D Pr[Ver(pk,X ,Sig(sk,X )) = 1] = 1

where (pk, sk) is generated from running Gen. The probability is over
the randomness used in Gen and Sig.
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EF-CMA Security

Definition
A digital signature scheme (Gen,D,Sig,Ver) is (q, t , ε)-secure
against existential forgery under chosen message attacks
(EF-CMA) if for any probabilistic algorithm A limited to a time
complexity t and to q queries, the advantage Adv is bounded by ε.

Adv = Pr[game returns 1]

Game
1: Gen $−→ (pk, sk)
2: Queries← ∅
3: AOSig(pk)→ (X , σ)
4: if X ∈ Queries then return 0
5: return 1Ver(pk,X ,σ)

Oracle OSig(X ):
6: σ ← Sig(sk,X )
7: Queries← Queries ∪ {X}
8: return σ
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Examples

ElGamal signature is EF-CMA secure (under some conditions)
RSA-PSS is EF-CMA secure (under some conditions)
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Other Public-Key Cryptosystems

RSA
Rabin
Paillier
ElGamal
ECC
HECC
NTRU
lattice-based
McEliece
TCHo
...

based on factoring

based on dis-
crete logarithm

“post-quantum”
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On Real Quantum Computers

1998: 2 qbits
2000: 4, 5, 7 qbits
2006: 12 qbits
2011: 14 qbits
2017: 17, 49 qbits
2019: 54 qbits (quantum supremacy reached)
2020: 65 qbits
??
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The Impact on Crypto
The Sky is Falling

symmetric crypto: block ciphers, hash functions, MAC
→ may need to double sizes (we have time)
public-key crypto: cryptosystems, signatures
→ discrete log and factoring become easy

encryption: “harvest now, decrypt later” attack
signature: forge a binding signature with a date in past
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When to Worry?
Cybersecurity in an Era with Quantum Computers: Will we be Ready? [Mosca 2013]

x : how long information must remain secure
y : how long until pq-crypto is available
z: how long until quantum computers really exist

Theorem
If x + y > z then worry.

time

z

y
x

last encryption with non-pq crypto

decrypted!

for signatures: replace x by the time a signature should remain
binding (could be mitigated with a reliable timestamp)
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NIST PQC Agenda

∼2012: NIST begins PQC project
2015: NIST workshop on cybersecurity in a pq world
2016: NIST plan: requirements and evaluation criteria
2017: submission deadline to NIST PQC Round #1
2018: 1st NIST PQC workshop
2019: NIST selects algorithms to go to Round #2
2019: 2nd NIST PQC workshop
2020: NIST selects algorithms to go to Round #3
2021: 3rd NIST PQC workshop
2022: NIST selects algorithms + Round #4
2023: draft standard
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NIST PQC Round #1 Submission

Signature KEM/Encryption

5

lattice-based

2

code-based

7

multivariate 3

symmetric/hash-based

2

other

21

lattice-based

17

code-based

2

multivariate

5

other

source: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/PQCrypto-April2018_Moody.pdf
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NIST PQC 2022 Selected Algorithms

Signature KEM/Encryption
S

el
ec

te
d CRYSTALS-DILITHIUM lattice CRYSTALS-KYBER lattice

FALCON lattice
SPHINCS+ hash

Next:
KYBER becomes ML-KEM in FIPS 203 (Module-Lattice)
DILITHIUM becomes ML-DSA in FIPS 204 (Module-Lattice)
SPINCS+ becomes SLH-DSA in FIPS 205 (Stateless Hash)
FALCON becomes FN-DSE (later)
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Next Steps

4th round for KEM/Encryption
Classic McEliece
BIKE
HQC
SIKE

new cancidates for signature (other than lattice-based)
hybrids (postquantum+classical)
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Hybrid KEM

KEM = KEM1&KEM2

Gen:
1: Gen1 → (pk1, sk1)
2: Gen2 → (pk2, sk2)
3: pk← (pk1, pk2)
4: sk← (sk1, sk2)
5: return (pk, sk)

Enc(pk):
6: pk→ (pk1, pk2)
7: Enc1(pk1)→

(K1, ct1)
8: Enc2(pk2)→

(K2, ct2)
9: K ← f (pk,K1,K2)

10: ct← (ct1, ct2)
11: return (K , ct)

Dec(sk, ct):
12: sk→ (sk1, sk2)
13: ct→ (ct1, ct2)
14: Dec1(pk1, ct1)→ K1

15: Dec2(pk2, ct2)→ K2

16: K ← f (pk,K1,K2)
17: return K

IETF draft for TLS: K = K1‖K2
example: SecP256r1Kyber768Draft00 (ML-KEM-768&P256)
X-Wing with DH: K = SHA3-256(K1,K2, ctDH, pkDH)
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Lattices
lattice: discrete subgroup of Rm

specified by a basis:

L(a⃗1, . . . , a⃗n) =

{
n∑

i=1

si a⃗i ; s1, . . . , sn ∈ Z

}
=
{

As⃗; s⃗ ∈ Zn}
rank n (if the a⃗i are independent), dimension m
fundamental domain (“L-tiles” of Rm)

F (a⃗1, . . . , a⃗n) =

{
n∑

i=1

si a⃗i ; ∀i 0 ≤ si < 1

}
determinent/volume (m = n)

det(L) = vol(F ) = |det(A)|

“regular” number of lattice vectors of norm up to r is ∼ vol(Br )
det(L)

lim
r→+∞

vol(Br )

#{x⃗ ∈ L; ‖x⃗‖ ≤ r}
= det(L)
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Lattice-Based Problems

CVP (closest vector problem)
given b⃗, find x⃗ ∈ L(a⃗1, . . . , a⃗n) making ‖b⃗ − x⃗‖ small
SVP (smallest vector problem)
find short (nonzero) vectors x⃗ ∈ L(a⃗1, . . . , a⃗n)

γ-SVP: (SVP approximation with gap γ)
find a nonzero lattive vector x⃗ such that ‖x⃗‖ ≤ γminy⃗∈L−{0} ‖y⃗‖
→ easy for γ > 2n log log n

log n (LLL algorithm)
→ used for γ ∼ n
→ NP-hard for γ < n

c
log log n
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Learning with Error

LWE (learning with error):
given access to a (a⃗, 〈a⃗, s⃗〉+ small mod q) generator, it is hard to
recover s⃗
typical LWE variant:
given a random A and y⃗ = As⃗ + e⃗ mod q with e⃗ small, it is hard to
recover s⃗
typical distribution for e⃗: Gaussian of scale σ ∼ √q

density probability of e⃗: 1
σn e−π

∥⃗e∥2

σ2

E(‖e⃗‖2) =
n∑

i=1

1
σ

∫ +∞

ei=−∞
e2

i .e
−π

e2
i

σ2 dei =
nσ2

2π
= O(nq)
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Primal Attack on LWE
reduction to SVP (then use the BKZ algorithm):

y⃗ = As⃗ + e⃗ mod q ⇐⇒

 e⃗
s⃗
1

 ∈ span(B)

with

B =

 qI −A y⃗
0 I 0
0 0 1

 I =

 1 0
. . .

0 1


since  qI −A y⃗

0 I 0
0 0 1

×
 ∗s⃗

1

 =

 e⃗
s⃗
1


the lattice has “volume” det(B) = qn and√
‖e⃗‖2 + ‖s⃗‖2 + 1 = O(√nq) is unusually short (for n� q) so it must

be the shortest vector
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Module Lattices

“interpret vectors as polynomials and define multiplication”

example:
L = Zq[z]/(zn + 1)
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The Regev Public-Key Cryptosystem

Generator

6Secret key s⃗Public key A, b⃗ 6 AUTHENTICATION
INTEGRITY

-Message
x ∈ {0, 1}

pick v⃗ ∈ {0, 1}m

c1 = v⃗ t A mod q
c2 = x

⌊ q
2

⌋
+ v⃗ t b⃗ mod q

Encrypt -Ciphertext
(c1, c2)

-
(c1, c2)

d = c2 − c1s⃗ mod q
x′ s.t. d − x′

⌊ q
2

⌋
small

Decrypt -Message

x′
�

�
Adversary

s⃗ ∈ Zn
q

A ∈ Zm×n
q

ei ← χ i = 1, . . . , m
b⃗ = A⃗s + e⃗ mod q

6
?

q prime, ε > 0
n2 ≤ q ≤ 2n2, m = (1 + ε)(n + 1) log2 q
α = 1√

n log2
2 n

χ: Ei ∼ N (0, αq), ei = bEie

lattice A.Zn + q.Zm = span

 A
q 0

. . .
0 q


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Meta (PQ) Cryptosystem

Generator

6Secret key skPublic key A, B 6 AUTHENTICATION
INTEGRITY

-Message
pt

pick sparse t, e, f
U = t × A + e
V = t × B + f + encode(pt)

Encrypt -Ciphertext
(U, V )

-
(U, V )

W = V − U × sk
pt = decode(W )

Decrypt -Message
pt

�
�

Adversary

pick A
pick sparse sk, d
B = A× sk + d

6
?

algebras with norm
decode(W ) = arg minpt ‖W − encode(pt)‖
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Examples
FrodoPKE-640: q = 215, m̄ = n̄ = 8, n = 640, ℓ = 2

sk,B, d ∈ Zn×n̄
q A ∈ Zn2

q t ,U, e ∈ Zm̄×n
q V , f ,W , δ ∈ Zm̄×n̄

q

‖X‖ = max
i,j

∣∣∣((Xi,j +
q
2

)
mod q

)
− q

2

∣∣∣
(encode(pt))i,j = q2−ℓ

ℓ∑
k=1

2k−1ptℓ((i−1)n̄+(j−1))+k

NewHope512CPA-PKE: q = 12 289, n = 512

sk,A,B, d , t , e, f ,U,V ,W , δ ∈ Zq[z]/(zn + 1)

∥∥∥∥∥
n−1∑
i=0

Xiz i

∥∥∥∥∥ = max
i

∣∣∣((Xi +
q
2

)
mod q

)
− q

2

∣∣∣
encode(pt) =

q
2

n∑
i=1

(z i−1 + z i+255)pti
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Crystals-Kyber

q = 3329, n = 256

sk,A,B, d , t , e, f ,U,V ,W , δ ∈ Zq[z]/(zn + 1)

Fourier-like transform: there is an isomorphism

P(z) ∈ Zq[z]/(zn + 1)↔ (P(ζ0),P(ζ1), . . . ,P(ζn−1))

when zn + 1 = (z − ζ0) · · · (z − ζn−1)
good news: it is easier to multiply!
bad news: the roots of zn + 1 are in GF(q2)

encoding/decoding technical
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Facts about the Kyber Field
The Number Theoretic Transform (NTT)

n = 256, q = 3329 = 13n + 1, ζ = 17
ζ is a root of z128 + 1
zn + 1 =

∏127
k=0(z

2 − ζ2k+1)

Zq[z]/(zn + 1) is isomorphic to
∏127

k=0 Zq[z]/(z2 − ζ2k+1) if the
factorization of zn + 1
1-to-1 correspondence between P(z) ∈ Zq[z]/(zn + 1) and
P̂ =

(
P(z) mod (z2 − ζ2k+1)

)
0≤k<128

in the NTT domain, additions and multiplications are
coordinate-wise
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Kyber K-PKE

name security n q k η1 η2 du dv

ML-KEM-512 128 256 3329 2 3 2 10 4
ML-KEM-512 192 256 3329 3 2 2 10 4
ML-KEM-1024 256 256 3329 4 2 2 11 5

Gen:
1: pick Â in NTT domain (k × k )
2: s, e← Samplek (η1)
3: ŝ ← NTT(s)
4: ê← NTT(e)
5: t̂ ← Â× ŝ + ê
6: pk← (̂t , Â)
7: sk← ŝ
8: return (pk, sk)

Sampled (η):
9: pick x⃗1, . . . , x⃗η ← {0, 1}d

10: pick y⃗1, . . . , y⃗η ← {0, 1}d

11: return
∑

x⃗ −
∑

y⃗

expected value: 0
variance: η/2
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Kyber K-PKE

Enc(pk, pt):
1: pk→ (̂t , Â)
2: r ← Sample(η1)
3: e1 ← Samplek (η2)
4: e2 ← Sample1(η2)
5: r̂ ← NTT(r)
6: u ← NTT−1(Ât × r̂) + e1
7: µ← Decompress1(pt)
8: v ← NTT−1(̂t t × r̂) + e2 + µ
9: c1 ← Compressdu

(u)
10: c2 ← Compressdv

(v)
11: return (c1, c2)

Dec(sk, c1, c2):
12: u ← Decompressdu

(c1)
13: v ← Decompressdv

(c2)
14: sk→ ŝ
15: w ← v −NTT−1(ŝt ×NTT(u))
16: pt← Compress1(w)
17: return pt

Compressd (x):
18: yi ← d(2d/q)xc for all i
19: return y

Decompressd (y):
20: xi ← d(q/2d )yc for all i
21: return x

Decompressd ◦ Compressd rounds to multiples of 2d
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K-PKE (Unoptimized)

Generator

6Secret key sPublic key A, t 6 AUTHENTICATION
INTEGRITY

-Message
pt

pick sparse r , e1, e2
c1 = Rounddu (A× r + e1)
c2 = Rounddv (t × r + e2 + d(q/2)ptc)

Encrypt -Ciphertext
(c1, c2)

-
(c1, c2)

w = c2 − s × c1
pt = d(2/q)wc)

Decrypt -Message
pt

�
�

Adversary

pick A
pick sparse s, e
t = A× s + e

6
?
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FO Variant for IND-CCA KEM (in ML-KEM)

Gen:
1: Gen0 → (pk0, sk0)
2: pk← pk0
3: pick z
4: h← H(ek)
5: sk← (sk0, pk, h, z)
6: return (pk, sk)

Enc(pk):
7: pick coins
8: (pt, r)← G(coins‖H(pk))
9: ct← Enc0,pk(coins; r)

10: return (pt, ct)

Dec(sk, ct):
11: sk→ (sk0, pk, h, z)
12: coins← Dec0,sk0(ct)
13: (pt, r)← G(coins‖h)
14: p̄t← J(z‖ct)
15: ct′ ← Enc0,pk(coins; r)
16: if ct 6= ct′ then pt← p̄t
17: return pt
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7 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography
Lattice-Based Cryptography
Hash-Based Cryptography
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Lamport (One-Time) Signature Scheme

Parameter: n, the hash length
Secret key: (ski,b)i=1,...,n,b=0,1

Public key: (OW(ski,b))i=1,...,n,b=0,1

Signature of m: (ski,H(m)i )i=1,...,n

Verification: OW(σi) = pki,H(m)i
for i = 1, . . . , n

possible improvement for a shorter secret key:
ski,b = PRFseed(i , b) and keep seed
possible improvement for a shorter public key: hash the public
keys
main drawback: large signature size, one-time pk use
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Lamport (One-Time) Signature Scheme - Example

n = 4
Secret key: seed
Public key: pk = H(all ki,b) with

ki,b = OW(PRFseed(i , b)) i = 1, . . . , n, b = 0, 1

Signature of m with H(m) = 0101:

σ1 = PRFseed(1, 0) , k1,1 σ2 = PRFseed(2, 1) , k2,0

σ3 = PRFseed(3, 0) , k3,1 σ4 = PRFseed(4, 1) , k4,0

Verification:

k1,0 = OW(σ1) k2,1 = OW(σ2)

k3,0 = OW(σ3) k4,1 = OW(σ4)

verify pk = H(all ki,b)

SV 2024–25 Public-Key Cryptography CryptoSec 828 / 1098



Winternitz (One-Time) Signature Scheme
Parameters: power-of-2 w , hash length n log2 w ,
n′ = n + log n

log w + 1
Secret key: (ski)i=1,...,n′

Public key: (OWw (ski))i=1,...,n′

Signature of m:
1: parse H(m) = j1| · · · |jn with ji ∈ {0, . . . ,w − 1},
2: parse

∑n
i=1(w − 1− ji) = [jn+1| · · · |jn′ ],

▷ j1, . . . , jn′ satisfies a checksum:(
n∑

i=1

ji

)
+ [jn+1| · · · |jn′ ] = n(w − 1)

3: σ ← (OWji (ski))i=1,...,n′

Verification:
1: compute j1| · · · |jn′ as above
2: check OWw−ji (σi) = pki for i = 1, . . . , n′

possible improvement: all pki in a Merkle tree or an accumulator
possible improvement: ski from seed
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Attack with No Checksum

Secret key: (ski)i=1,...,n

Public key: (OWw (ski))i=1,...,n

Signature of m:
1: parse m = j1| · · · |jn with ji ∈ {0, . . . ,w − 1},
2: σ ← (OWji (ski))i=1,...,n

Verification:
1: compute j1| · · · |jn as above
2: check OWw−ji (σi) = pki for i = 1, . . . , n

given (m, σ) we can forge the signature σ′ of any m′ = j ′1| · · · |j ′n
such that j ′i ≥ ji for i = 1, . . . , n:

σ′i = OWj′i −ji (σi)

idea: hash the message so that
∧

i j ′i ≥ ji occurs with negligible
probability
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FORS (Few-Times) Signature Scheme

Parameters: k , t
Secret key: (ski,j)i=1,...,k,j=1,...,t

Public key: (OW(ski,j))i,j

Signature of m:
1: parse H(m) = j1| · · · |jk with ji ∈ {1, . . . , t},
2: σ ← (ski,ji )i=1,...,k

Verification:
1: compute j1| · · · |jk as above
2: check OW(σi) = pki,ji for i = 1, . . . , k

tricky selection of parameters to make it secure
same possible improvements
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Trying to Attack FORS

Secret key: (ski,j)i=1,...,k,j=1,...,t

Public key: (OW(ski,j))i,j

Signature of m:
1: parse H(m) = j1| · · · |jk with ji ∈ {1, . . . , t},
2: σ ← (ski,ji )i=1,...,k

collect q signatures

Sign(j11‖ · · · ‖j1k ) = sk1,j11
, . . . , skk,j1k

...
Sign(jq1 ‖ · · · ‖j

q
k ) = sk1,jq1

, . . . , skk,jqk

hash a new message until
∧

i ji ∈ {j1i , . . . , j
q
i }

complexity is
(

t
q

)k

idea: make sure that q remains small (“few-times signature”)
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Sphincs+: a Hash-Based Signature Scheme

Secret key: seed
Public key: key + root of a Merkle tree, with leaves being roots
of FORS trees (generated from secret seed)
Signature of m:

1: pick a random R
2: parse H(R, key,m) as a digest and the address of a FORS

tree
3: sign the digest using this FORS tree
4: σ ← (R,FORS.signature,Merkle)

Verification:
1: parse H(R, key,m) as a digest and the address of a FORS

tree
2: verify FORS signature of digest with this FORS tree
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Conclusion (on Chapters 2,3,4,7)

two families: RSA (factoring-based) and DH (discrete log-based)
does not replace symmetric cryptography: used for key
exchange only
more compact data using elliptic curves
new: digital signatures
PQ-crypto
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Must be Known

the big picture with the 4 primitives
Diffie-Hellman key agreement protocol
ElGamal cryptosystem
RSA
PKCS#1
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Train Yourself

RSA encryption: midterm exam 2008–09 ex2
RSA signature: final exam 2010–11 ex2
PKC construction: final exam 2009–10 ex3
signature construction: final exam 2008–09 ex2
trapdoor in DSA: final exam 2014–15 ex1
DSA with related randomness: final exam 2014–15 ex2
bad DL-based signature: final exam 2015–16 ex1
Pedersen commitment: final exam 2012–13 ex5
Learning Parity with Noise: final exam 2017–18 ex2
Mersenne cryptosystem: final exam 2018–19 ex1
PKC vs KEM vs KA: final exam 2018–19 ex3
hash-based signature: final exam 2022–23 ex2
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Roadmap

access control: challenge-response, strong authentication
password-based cryptography
secure communication channels
setup by narrowband channel
setup by a trusted third party: Kerberos, PKI
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8 Trust Establishment
Access Control
Password-Based Cryptography
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Application: Access Control

many scenarios:
access to a computer
access to a door: “Sésame”
access to a mailbox
access to a service through the Internet

access control = peer authentication
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Password Authentication Protocol (Step 1)

PROBLEM: authenticate a client to a server
HYPOTHESIS 1: channel to server keeps confidentiality
example:

physical access
secure channel from semi-authenticated setup
(client authenticates the server e.g. using TLS)
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Password Authentication Protocol — i

server keeps a database of (ID, password) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = password

Problem: if adversary has access to database he can get the
password
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Password Authentication Protocol — ii

server keeps a database of (ID,OW(password)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = OW(password)

Problem: multi-target invertion attacks
(specially when password have low entropy)
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Password Authentication Protocol — iii

server keeps a database of (ID, salt,OW(password, salt)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID, salt,w)
check w = OW(password, salt)

advantages:
avoid multi-target bruteforce attacks from database

(does not avoid single-target exhaustive search from database)
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Password Access Control Using Salt

Password Password

- �

?

-

?

Salt

Hash Hash

- - =

?

Enrolment Record Control
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Example: UNIX Password Access Protocol

User Work station
login?←−−−−−−−−−−−−−−−−−−−

type ID ID−−−−−−−−−−−−−−−−−−−→
password?←−−−−−−−−−−−−−−−−−−−

type pwd
pwd−−−−−−−−−−−−−−−−−−−→

check using a
database storing
(ID, salt,OW(pwd, salt))
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UNIX Passwords

clock

6

6
salt (12)

6 6 6

0 -≈DES -≈DES - · · · -≈DES -/etc/passwd

? ? ?

pwd (56) ID

?
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Examples

UNIX password authentication
Basic Access Control in HTTP [RFC2617]
IMAP4rev1 [RFC2060]
tequila authentication at EPFL
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tequila@epfl

Client Server

Tequila

1: request

2: server s,attributes

3: marker m

4: redirect,marker m

5: marker m

6: prompt,server s

7: answer

8: redirect,marker m

9: request,marker m

10: check,marker m

11: ok

12: service

problem: not sure the prompt comes from tequila
privacy: Tequila warns if a sensitive attribute is requested by Server
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Pros and Cons

Pros
the server does not keep the password (only a digest)
the client need not run any calculation (nice for human clients!)

Cons
does not work through a channel without confidentiality
protection: the password can be compromised
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Password Authentication Protocol (Step 2)

PROBLEM: authenticate a client to a server
HYPOTHESIS 2: adversary is passive
example: unencrypted semi-authenticated channel (client
authenticates the server e.g. using TLS but they are not allowed
to use encryption)
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Passive vs Active Adversary

passive adversary: only listen to communications and tries to
get credential to later pass access control
active adversary: can interfere with client or server
communications e.g. man-in-the-middle
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Challenge/Response Protocol

server keeps a database of (ID, secret) entries
adversary is passive

Client Server

ID−−−−−−−−−−−−−−→ get entry (ID, secret)
challenge c←−−−−−−−−−−−−−− pick c at random

r = PRFsecret(c)
response r−−−−−−−−−−−−−−→ check r = PRFsecret(c)
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Challenge/Response Protocol

Secret Secret

- �

?

Challenge

Response

?

random

PRF PRF

- =

?

Client Server
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Pros and Cons

Pros
resistance to passive adversary (if secret has large entropy)

Cons
the server must keep the secret and strongly protect the
database
vulnerable to relay attacks
vulnerable to passive offline attacks (if secret has low entropy)
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Examples

GSM
Digest Access Control in HTTP [RFC2617]
Bluetooth peer authentication
access control to UBS account (later in this chapter)
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Case Study: Bluetooth

case study
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S/Key - OTP [RFC2289]
possible hash function H: md4, md5, sha1

Client Server

choose w w−−−−−−−−−−−−−−→ s at random
store p1, . . . , pN

s,p1,...,pN←−−−−−−−−−−−−−− pi ← HN+1−i(w , s)

i ← 1 i ← 1, p ← p0
...

request−−−−−−−−−−−−−−→
recompute or from list

otp-〈H〉 i s←−−−−−−−−−−−−−−
y ← pi

y−−−−−−−−−−−−−−→ check H(y) = p
... p ← y , i ← i + 1

w must have a large entropy
challenges must be authenticated
responses shall be protected against delays in delivery
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HMAC-Based One-Time Password (HOTP)
[RFC4226]

HOTP generator (client) and HOTP validator (server)

HOTP(K ,C) = DT(HMAC(K ,C)) mod 10d

uses HMAC-SHA1 (output of 20 bytes)
C (8 bytes) counter synchronized between client and server
K shared secret
DT: read 4 consecutive bytes of the input starting from the one of
index equal to the last four bits of the input
T number of unsuccessful attempts before the server blocks
s: size of a look-ahead window (to resynchronize the counter)
d : digit length of HOTP values in decimal
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Time-Based One-Time Password (TOTP)
[RFC6238]

set C to a function of the cuttent time
C = time−t0

X (typically: X = 30sec)
can use SHA2
application: Google Authenticator, Microsoft Authenticator
used for 2-factor authentication
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Human Factor against Password Access Control

weak passwords: short, trivial (in dictionaries, first name)
long passwords are hard to remember
people are lazy (or don’t want to be bothered)
write passwords on post’it, bypass security protocols, ...
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Alternate Authentication Means

from what you know: password,always available (unless forgotten)/must address the human factor
from what you possess: secure token (smart card, dongle,
secureID, key lock),tamper proof, can perform cryptographic operations/can be stolen, lost, forgotten
from what you are: biometrics,always available/fuzzy, not very secure, threat to humankind, impossible to
change

strong authentication = authentication using at least two methods
(2-way authentication)
example: smart card + PIN code
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Example of Critical Application: UBS E-Banking

[E-banking from a browser]
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Requirements for e-Banking

strong bidirectional authentication
confidentiality of communication
integrity of communication
non-repudiation of transaction
resilience to clients in hostile environment
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Example: (Old) UBS E-Banking

card reader
with display
and key-
board

smart card

web interface
� challenge

-
response

6
challenge

?
response

1 type contract number
2 insert smart card
3 switch calculator on
4 type PIN code
5 read challenge, type it on calculator keyboard
6 read response, type it on browser interface

smart card + external reader (calculator)
challenge-response protocol
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Example: (New) UBS E-Banking

UBS app installed on smartphone (tedious setup)
biometric access to app
scan QR code and report to UBS
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Password-based Access Control Protocol

Alice Bob
password: w password: w

random tape: rA random tape: rB

-
�

-
�

-
�

output: ok (or abort)
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Password vs Secret Keys

secret keys are stored by computers (can be pretty long)
passwords are also kept in human memories
typically: password have less than 48 bits of entropy
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Online Dictionary Attack: a Generic Attack

generic
1: repeat
2: make a new guess ŵ following a dictionary
3: simulate Alice with password input ŵ to interact with Bob
4: until Bob accepts
5: print ŵ

a protocol is secure if this attack is the best one

SV 2024–25 Trust Establishment CryptoSec 874 / 1098



Online and Offline Passwords Recovery

online offline
method try to connect us-

ing a guess for
the password until
it works

get a witness look
for a guess which is
consistent with the
witness

countermeasure
increasing
delay before
new attempt
blocked after
xx trials

password with
large entropy
use salt
(mitigate
multi-target)
leak no
witness
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(Bad) Example: Challenge/Response Protocol

Alice (ID) Bob
password: w password: w

request−−−−−−−−−−−−−−→
chall←−−−−−−−−−−−−−− pick chall

res = PRFw (chall) res−−−−−−−−−−−−−−→ check res = PRFw (chall)

output: ok

subject to offline exhaustive search
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Password-Based Authenticated Key Agreement
Alice Bob

password: w password: w
random tape: rA random tape: rB

-
�

-
�

-
�

output: KA output: KB

functionality: KA = KB = K
security

active adversary learns (almost) nothing about w
if party ends on K the active adversary has no clue about K
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A New Primitive

functionality
ProtoA(w)↔ProtoB(w)
↓ ↓
K = K

security
confidentiality of w ,K

Alice and Bob, ProtoA, ProtoB

components

PAKE
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Key Agreement: a (Bad) Idea

Alice Bob
password: w password: w

pick xA, yA ← gxA
yA‖MACw (yA)−−−−−−−−−−−−−−−−−−−→ check MAC

check MAC
yB‖MACw (yB)←−−−−−−−−−−−−−−−−−−− pick xB, yB ← gxB

zA ← yxA
B zB ← yxB

A
(z = gxAxB )

output: zA output: zB

subject to offline exhaustive search
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Key Agreement: Another (Bad) Idea

Alice Bob
password: w password: w

RSA.Gen→ (N, e, d) N,e−−−−−−−−−−→ pick K

K̂ ← Decw (ĉ)d mod N c←−−−−−−−−−− c ← Encw (K e mod N)

output: K̂ output: K

if K is later revealed, offline exhaustive search possible
partition attack: eliminate all ŵ such that Decŵ (c) ≥ N
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SPAKE2
Abdalla, Pointcheval [CT-RSA 2005]

Alice Bob
password: w password: w

pick x ∈ Z∗q , X ← gx pick y ∈ Z∗q , Y ← gy

X ∗ ← Xgw
2

X∗−−−−→ Y ∗ ← Ygw
3

KA ← (Y ∗/gw
3 )x Y∗←−−−− KB ← (X ∗/gw

2 )y

K ′A ← KDF(A,B,X ∗,Y ∗,w ,KA) K ′B ← KDF(A,B,X ∗,Y ∗,w ,KB)

output: K ′A output: K ′B
(public parameters: q prime, g, g2, g3 generators of the same order-q group)
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References on Password-Based Cryptography

C. Boyd, A. Mathuria.
Protocols for Authentication and Key Establishment.
Information Security and Cryptography, Springer Verlag, 2003.
S. M. Bellovin, M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks.
In IEEE symposium on Research in Security and Privacy, IEEE
Computer Society Press, pp. 72–84, 1992.
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Case Study: The Biometric Passport

case study

SV 2024–25 Trust Establishment CryptoSec 883 / 1098



8 Trust Establishment
Access Control
Password-Based Cryptography
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography

SV 2024–25 Trust Establishment CryptoSec 884 / 1098



The Cryptographic Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X
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Enforcing Confidentiality by Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary
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Enforcing Integrity by Hash Function

-Message

Hash

?

-
INTEGRITY

Digest

-

Hash

?

Message

?
Compare -

ok?

�
�

Adversary
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Enforcing Authenticity + Integrity by MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary
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Authentication and Integrity

Message integrity: we make sure that the received message is
equal to the sent one
Message authentication: we make sure about who sent the
message
good authentication means often enforce integrity
at the same time
symmetric encryption is sometimes used for message
authentication but this is a BAD practice
e.g. Enc(message‖redundancy)
but there are some not enforcing integrity
example: problem in GSM/WEP/Bluetooth/... (see slide 966)
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A+I+C by Symmetric Cryptography

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary
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Security Property of Communication Channels

Message
X

- -
X

�
�

Adversary

Confidentiality, Authentication, Integrity
Freshness: the received X was not received before (no replay)
Liveliness: a sent message X is eventually delivered (no loss)
Timeliness: (> liveliness) time of delivery is upper bounded
Deniability: no evidence of sending a message leaks
Non-repudiation: sender cannot deny his sent messages
Forward secrecy: secrecy even when states leak in the future
Postcompromise security: healed secrecy even after leakage
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From Packet Security to Session Security

-
�

-

-
�

-

�
�

Adversary

Key establishment: set up A/I/C key material for message
security
Session integrity: the sequence of protocol messages is
eventually the same at both ends
(messages in transit cannot be swapped)
Privacy: many different notions at this time!
(anonymity: cannot identify sender or receiver)
(unlinkability: cannot link that two messages by same sender)
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Enforcing Session Integrity

Assuming that channels enforce A+I+C and that key establishment is
secure, session integrity splits in two problems

Sequentiality: whenever a participant has seen a message
sequence starting with X1, . . . ,Xt , Xt coming in, then the other
participant has seen a message sequence whose first t
messages are X1, . . . ,Xt,: easy to protect: just number the messages and apply A+I
protection on message numbers
Termination fairness: making sure that the last message on
both ends is the same one/: no cheap way to enforce it if liveliness is not guaranteed
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Sequentiality using A + I Message Security

common method:
common method: authenticate a sequence number in packets
and check that received packets have consecutive sequence
numbers
old TLS example: Y = Enc(X‖MAC(seq‖X ))
where seq is implicit
modern TLS example: Y = AE.Enc(seq︸︷︷︸

ad

,X )

where seq is implicit
(authenticated encryption with associated data)
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Fair Termination Problems

example: contract signing
Alice and Bob have signed a contract and want to be sure that
they both consider the contract as valid
there must be one critical message in the protocol such that
one participant thinks his counterpart has a valid contract
the other does not think the transaction is valid
this reduces to synchronizing on an exit status bit
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Summary for Secure Channel (so far)

level property toolkit
packet A+I MAC

confidentiality symmetric encryption
A+I+C integrated modes
freshness (comes with sequentiality)
liveliness (must live without)

session key establishment setup protocols (next)
sequentiality various protocol options
termination ?

all privacy ?
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Problem

Q: How to setup a secure channel over an insecure

channel?

A: hfr n frpher punaary
ROT13
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Virtual Channels by Combination of Channels

66

-� [assumptions]

-Message
X

-
Y

-
Y

-
X

Message�
�

Adversary
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Secure Channel from A+I+C Channel: PSK

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

PSK: PreShared Key
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Next Step: Strongly Secure Channel From Weakly
Secure Channel

Q: How to relax security properties at setup?

A: hfr choyvp-xrl pelcgbtencul
ROT13
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... with A+I Channel: Key Agreement Protocol

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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The Diffie-Hellman Key Agreement Protocol

Assume a group 〈g〉 generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X 6∈ 〈g〉 − {1}, abort

if Y 6∈ 〈g〉 − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y )
(K = KDF(gxy ))
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Key Transfer by Public-Key Encryption

Alice Bob

pk←−−−−−−−−−−−− (pk, sk)← Gen
pick K

Y ← Encpk(K )
Y−−−−−−−−−−−−→ K ← Decsk(Y )
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Passive vs Active Adversaries

passive adversary: just listen to communications and tries to
decrypt communications (e.g. by recovering the key)
The Diffie-Hellman protocol resists to passive adversaries
active adversary: can interfere with communication (modify
messages, insert messages, replay messages)
e.g. man-in-the-middle attack
The Diffie-Hellman protocol requires A+I channel to protect
against it
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Approaches to Build an Initial Authenticated
Channel

using really secure initial channel
setup cable, Near Field Comm. (see Bluetooth simple pairing)
by user monitoring
caution: humans are not so reliable for security (e.g. Bluetooth)
→ password-based, SAS-based
using a trusted third party
examples: secure token, key server, certificate authority
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Summary

we need specific means to A+I-securely transmit a public key
we agree on a master key using public key cryptography
we use conventional cryptography to set up secure channels

we derive several symmetric keys using key derivation functions
we use symmetric encryption and MAC

we must live with the fear that termination may be unfair
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Secure Communication Step 1
Conventional Cryptography

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Step 2
Public-Key Cryptography

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Step 3
Password-Based Cryptography

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication

with confidential channel without confidential channel

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

?
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Secure Communication Step 4
Cryptography Based on Short Authenticated Strings

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Security from Human-Monitored Short String
Authentication

Alice Bob-� insecure -�

? ?

AUTHENTICATION
INTEGRITY

communication over a cheap/efficient but insecure channel
security set up with the help of a short authenticated string (SAS)
authentication based on human monitoring
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Message Authentication Protocols
Alice Bob

input: m

-
�

-
�

-
�

-
�

output: m̂

functionality: m̂ = m
security: if m̂ 6= ⊥, then Alice has run the protocol with m = m̂
application: semi-A key agreement
(m is a symmetric key for secure channel so that Bob knows he
is talking to Alice)
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Message Cross-Authentication Protocols

Alice Bob
input: mA input: mB

-
�

-
�

-
�

-
�

output: mB output: mA

two message authentication protocols at the same time
application: authenticated key agreement
(mA and mB are Diffie-Hellman public keys)

SV 2024–25 Trust Establishment CryptoSec 916 / 1098



Application I: Personal Area Network Setup

Device 1 Device 2

Operator

request, m, c -�
d

-

SAS
�

SAS

U
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Application II: Voice over IP
Existing Standard: ZRTP

Alan Jon

zfone1 zfone2

?

verified

6
SAS1: sgmf

(voice recognition)

6

SAS2: y71o
?

verified

-
�
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Application III: Peer-to-Peer PGP Channel Setup
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Application IV: Disaster Recovery

on the road, after a key loss (computer crash, stolen laptop)
−→ set up of a security association
PKI collapse (company bankrupt, main key sold, act of God)
−→ set up of a security association
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Semi-Authenticated Non-Interactive: Application
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Folklore
Protocol Balfanz-Smetters-Stewart-Chi Wong 2002

Alice Bob
input: m

m−−−−−−−−−−−−−−−−−−−−−−→
h← H(m)

authenticate(h)−−−−−−−−−−−−−−−−−−−−−−→ check h = H(m̂)

output: m̂

, efficient, provably security assuming collision resistance/ this requires SAS of at least 256 bits
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A Collision Attack

if SAS is so short that we can find collisions H(m) = H(m′), m 6= m′,
make Alice run the protocol with m (chosen input attack) but change
the message to Bob to m′

Alice Eve Bob
input: m

mL99

m−−−−−→ m′−−−−−→

h← H(m)
authenticate(h)−−−−−−−−−−−−−−−−−−−−→ check h = H(m′)

output: m′
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Pasini-Vaudenay 2006: SAS-Based NIMAP

Alice Bob
input: m

c ← commit(m; r)
m‖r−−−−−−−−−−−−−−→ ĉ ← commit(m̂, r̂)

SAS← H(c)
authenticate(SAS)−−−−−−−−−−−−−−→ check SAS = H(ĉ)

output: m̂

, provable security, efficient, can work with SAS of 128 bits (the least possible for NIMAP)
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Semi-Authenticated Interactive
Vaudenay 2005

Alice Bob
input: m

pick RA ∈U {0, 1}k pick RB ∈U {0, 1}k

c ← commit(m,RA; r)
m‖c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−

RA‖r−−−−−−−−−−−−−−→ ĉ ?
= commit(m̂, R̂A; r̂)

SAS← RA ⊕ R̂B
authenticate(SAS)−−−−−−−−−−−−−−→ check SAS = R̂A ⊕ RB

output: m̂

, provable security, efficient, can work with SAS of 20 bits
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Authenticated Interactive
Zimmermann 1995: PGPfone

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

commit to (yA)−−−−−−−−−−−−−−−→
yB←−−−−−−−−−−−−−−−

zA ← ŷxA
B

open commitment−−−−−−−−−−−−−−−→ zB ← ŷxB
A

SAS← truncH(yA‖ŷB)
authenticate(SAS)−−−−−−−−−−−−−−−→ SAS ?

= truncH(ŷA‖yB)

check SAS is the same
authenticate(SAS)←−−−−−−−−−−−−−−−

output: zA output: zB
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Attack on a Variant Without Commitment

Alice Bob

pick xA pick x̂A, ŷA ← g x̂A pick xB

yA ← gxA
yA−−−→

ŷA−−−→ yB ← gxB

pick x̂B , ŷB ← g x̂B s.t.
yB←−−−

ŷB←−−− h(yA‖ŷB) = h(ŷA‖yB)

zA ← ŷxA
B zA ← y x̂B

A , zB ← y x̂A
B zB ← ŷxB

A

SAS← h(yA‖ŷB)
authenticate(SAS)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SAS ?

= h(ŷA‖yB)

check SAS
authenticate(SAS)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

output: zA zA, zB output: zB
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References on SAS-Based Cryptography
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Several Trusted 3rd Party Approach

soft 3rd party: user monitoring
password-based, SAS-based
pervasive 3rd party: secure token
smart cards, secureID, trusted computing platform
key server: Kerberos
symmetric cryptography only, for corporate network
certificate authority: PKI
for global network
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Example: Kerberos

Client

KClient,Ksession

Server

KServer,Ksession

Authority

KClient,KServer

request

�

timed ticket+Ksession

�
ticket -

timed ticket+Ksession encrypted with KClient

ticket encrypted with KServer
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Kerberos

Hypotheses:
there is an online (trusted) authentication server (AS)
AS shares KC with client IC
AS shared KS with server IS

Goal: to help IC and IS to share a session key K (and to help
careless users to get privacy)
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Server-Aided Authentication (Bad Protocol)

AS Client Server

request IC to IS←−−−−−−−−−−−−−−

pick K
CKC

(K ),CKS
(K )

−−−−−−−−−−−−−−→
CKS

(K ),IC−−−−−−−−−−−−−−→

Problem: there is no authentication: an attacker can replace IC or IS
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Attack

AS Adv. Server

request IA to IS←−−−−−−−−−−−−−−

pick K
CKA (K ),CKS

(K )
−−−−−−−−−−−−−−→

CKS
(K ),IC−−−−−−−−−−−−−−→

Server thinks he is talking to IC !
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Attack

AS (Adv.) Client Adv.
↓

request IC to IA←−−−−−−−−−−−−−−

pick K
CKC

(K ),CKA
(K )

−−−−−−−−−−−−−−→
CKA (K ),IC−−−−−−−−−−−−−−→

Client thinks he is talking to IS!
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Needham-Schroeder Authentication (Still Bad)

AS Client Server

request IC to IS ,N1←−−−−−−−−−−−−−− pick N1

pick K
CKC

(K ,IS ,N1,CKS
(K ,IC))−−−−−−−−−−−−−−→

CKS
(K ,IC)−−−−−−−−−−−−−−→

CK (N2)←−−−−−−−−−−−−−− pick N2
CK (N2+1)−−−−−−−−−−−−−−→

Problem: replay attack by impersonating C after K gets compromised
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Basic Kerberos Protocol

AS Client Server

request IC to IS ,N←−−−−−−−−−−−−−−−−−−− pick N

pick K
CKC

(K ,IS ,N,T ,L),CKS
(K ,IC ,T ,L)

−−−−−−−−−−−−−−−−−−−→
CKS

(K ,IC ,T ,L),CK (IC ,T )
−−−−−−−−−−−−−−→

CK (T+1)←−−−−−−−−−−−−−−

T : clock value; L: validity period
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The Certificate Authority Model

Client Server-� insecure -�

?

�Authority
pkCA pk

AUTHENTICATION AUTHENTICATION

?

certificate
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Critical Secure Channels

Authority

+
pkCA

Client 3

� pkCA

Client 2

k
pkCA

Client 1

k

pk3

Server 3

� pk2

Server 2

+

pk1

Server 1
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Semi-A Key Exchange Using Certificates

Client Server

Authority

pkCA

�

pk

K

certificate

Urequest, . . . -
�

-
Encpk(K )

K , pk K
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Semi-Authenticated Channel

one participant authenticates the other
(typical for client-server communication)

client receives the authenticated (static) key of the server
client and server run a key establishment protocol
secure A+I+C channel is set up

client knows he is talking to the correct server
server has no clue to which client he is talking to
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A Typical TLS 1.3 Session

Client Server

ClientHello:accepted cipher suites, start KEAC−−−−−−−−−−−−−−−−−−−−−−−−−−→ select cipher suite
ServerHello:cipher suite, certificate, end KEAS←−−−−−−−−−−−−−−−−−−−−−−−−−−

secret finish−−−−−−−−−−−−−−−−−−−−−−−−−−→ secret

(open tunnel)

[authentication?]←−−−−−−−−−−−−−−−−−−−−−−−−−−
[login, password]−−−−−−−−−−−−−−−−−−−−−−−−−−→ check
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An X.509 Certificate Example: Overall Structure

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 674866 (0xa4c32)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=ZA, ST=Western Cape, L=Cape Town,

O=Thawte Consulting cc, OU=Certification Services Division,

CN=Thawte Server CA/Email=server-certs@thawte.com

Validity

Not Before: Jun 2 13:10:11 2003 GMT

Not After : Jun 11 10:21:15 2005 GMT

...

X509v3 extensions:

X509v3 Extended Key Usage: TLS Web Server Authentication

X509v3 Basic Constraints: critical CA:FALSE

Signature Algorithm: md5WithRSAEncryption

8d:7b:78:60:88:c4:13:4e:94:0d:bc:3b:1b:1c:b6:c9:bc:b1:

0b:ed:7d:eb:6f:08:3a:ba:6d:21:36:93:38:36:66:7b:a7:bc:

c0:3f:c4:e0:cf:b4:02:58:be:a6:b9:1d:45:a2:c4:58:38:07:

e4:63:1a:d9:b9:8d:27:7c:93:67:31:82:6f:a3:3c:86:0c:e0:

10:71:de:f2:e9:74:af:ac:76:b4:5b:8e:48:57:9d:8f:12:f6:

72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:

73:ed:e8:64:b0:ae:9e:e2:36:d7:0c:77:92:cc:c7:c0:e0:8a:

54:24
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An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern,

O=Switch - Teleinformatikdienste fuer Lehre und Forschung,

CN=nic.switch.ch

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90:

65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f:

3c:d9:12:6b:8c:57:95:e1:57:e8:48:a6:7f:dd:15:

8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f:

a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f:

58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2:

0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5:

4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:

47:18:9e:47:37:bb:18:f6:87

Exponent: 65537 (0x10001)
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Two Approaches to Revocations

certificate revocation lists (CRL):
regularly, or under emergency cases, revocation lists are
released by CA
clients should always check for new CRLs (at the nearest
repository) and go through the list before treating any certificate
drawback: high bandwidth
online certificate status protocol (OCSP):
clients should send certificates to the CA for approval
drawback: subject to DoS attacks
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Several 3rd-Party Based Trust Infrastructure

Kerberos
symmetric-crypto with key escrow
PKI
advantage: widely available
identity-based cryptography: have public keys implicit from
identities and time
advantage: time-based revocation with small period
certificateless encryption: combine the two models
advantage: requires no key escrow
certificate-based encryption: certificate is private, required for
decryption
≈ equivalent to certificaless encryption (name is confusing)
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Public-Key Infrastructure

Sender Receiver

Authority

Generator

�

Public Key

6Secret Key

-�
�

Adversary

-

Certificate

6

Sign

Setup

6Master Key

�

INTEGRITY
AUTHENTICATION

CA Public Key

-Message
Encrypt

�

Decrypt -Message

�
�

Adversary
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Identity-Based Encryption

Sender Receiver

Authority

6

Identity+Time

Extract

Setup

?

6

Identity+Time

Master Key

6

�

INTEGRITY
AUTHENTICATION

Parameters

Secret Key

-Message
Encrypt - - Decrypt -Message�

�
Adversary
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Certificateless Encryption

Sender Receiver

Authority

Generator

?
Secret key 2

��
�

Adversary

Public key

?

6

Identity+Time

Extract

Setup

?

6

Identity+Time

Master key

-

�

�

INTEGRITY
AUTHENTICATION

6

Parameters

Secret key 1

-Message
Encrypt - - Decrypt -Message�

�
Adversary
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Boneh-Franklin Identity-Based Encryption

Sender Receiver

Authority

6

ID

Extract
QID = H1(ID)
dID = sQID

Setup
pick s ∈ Z∗q
Kpub = sP

construct q, P, e : q prime, P generator, e pairing
construct H1, H2

?

6

ID

Master Key s

6

�

AUTHENTICATION+INTEGRITY
Parameters q, P, e, H1, H2, Kpub

Secret Key dID

-Message m
Encrypt

QID = H1(ID)
pick r ∈ Z∗q

u = rP
v = m ⊕ H2(e(QID, Kpub)

r )

-(u, v) -(u, v)

m = v ⊕ H2(e(dID, u))

Decrypt -Message m�
�

Adversary
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8 Trust Establishment
Access Control
Password-Based Cryptography
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Chain of Trust in the PKI Model

authority software manufacturer retailer environment human

CA must issue correct certificate
sofware must include correct CA public keys
harware must execute what it is supposed to
retailer must not add malicious software
environment must not bypass secure software
human user must care invalid certificates
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Chain of Trust in Real Life

software companies add CA’s on commercial basis
some CA’s are corruptable
worms may corrupt CA lists
users pay no attention to browser warnings

consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue
−→ education, psychology, ergonomy, technology

SV 2024–25 Trust Establishment CryptoSec 953 / 1098



Several Approaches to Certificate Verification

TLS: trust model based on a PKI
verify a certificate every time the public key is used
clients hold a list of CA public keys and retrieve server certificates
SSH: trust model based on cache
verify that a public key has not changed since the last time
clients keep in cache the public key of servers
(first connection may be insecure)
PGP: trust model monitored by users
use a public key ring set up by the user
users set up their confidence level in obtained public keys
a “web of trust” can be used to check a public key
(to check who has put a higher confidence level to this key)
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More References

Gentry. Certificate-Based Encryption and the Certificate
Revocation Problem. EUROCRYPT 2003, LNCS 2656.
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Metacryptography
Can we Trust Crypto?

2nd law of thermodynamics:
no matter the real strength of crypto designs, security decreases
with time (Moore’s law or cryptanalysis)
wrong hypotheses:
e.g. we might figure out that factoring is easy
−→ need for crypto-diversity
academic system failure:
crypto results are done under pressure: too many conferences,
too many papers, too many beans to get
−→ many results are wrong
−→ need for automatic proof verification
threat model definition issues:
some models are complicated and later happen to be irrelevant
security does not add: secure + secure may be insecure
−→ need for good composability models
quantum threat
−→ need for post-quantum cryptography
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Conclusion

secure communication is essentially solved as long as birth
and death are secure

birth: need for means to authenticate public keys
death: no solution, just behave as if we would never die

crypto offers many different models
PKI, password-based, ID-based, certificateless, SAS-based

correct solution must be determined on a case-by-case basis
trust establishment is not a pure-crypto issue

need to address the human factor
need to deal with trust management:

logistic, software engineering network security
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Must be Known

techniques for access control
password-based cryptography
secure channels
SAS-based cryptography
Kerberos
public-key cryptography and man-in-the-middle attacks
PKI, certificate validation model
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Train Yourself

secure channel:
final exam 2012–13 ex3
final exam 2009–10 ex2
mass surveillance:
final exam 2016–17 ex2
bad EKE variant:
final exam 2014–15 ex4
SAS-based crypto:
final exam 2017–18 ex3
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Roadmap

WiFi
blockchains
mobile telephony
Signal
NFC creditcard payment
Bluetooth
Biometric passport
TLS
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IEEE 802.11 in a Nutshell

j

Y

wireless local area network (WLAN)
since 1997
secure communication by wired equivalent privacy (WEP)
station authentication by Shared Key Authentication (SKA)
since 2003: interim Wi-Fi Protected Access (WPA)
due to security issues
since 2004: added WPA2 (complete change)
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WEP Security Goals

privacy as if communication was through a wired connection
protect against unauthorized access

use up to 4 (common) pre-shared key to be manually set
→ key not frequently changed
→ key not too long (40 or 104 bits)
→ key stored at many places
entirely based on RC4 stream cipher
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WEP Encryption

plaintext frame

IV

key

-

-
KSA init. state- PRGA -key frm ⊕ - ciphertext frame

- append ICV (CRC32)

6

- IV

→ self-synchronizing stream cipher (24-bit IV sent in clear)
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(Terrible) Integrity Protection using CRC32

Enckey(IV, pt) = [pt‖CRC32(pt)]⊕ keyframe(key, IV)

packets are easily malleable (Borisov-Goldberg-Wagner 2001):

Enckey(IV, pt)⊕ [∆‖CRC32(∆)]

= [pt‖CRC32(pt)]⊕ [∆‖CRC32(∆)]⊕ keyframe(key, IV)
= [pt⊕∆‖CRC32(pt)⊕ CRC32(∆)]⊕ keyframe(key, IV)
= [pt⊕∆‖CRC32(pt⊕∆)]⊕ keyframe(key, IV)
= Enckey(IV, pt⊕∆)
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WEP Issues

collision on IV’s
a 24-bit IV repeats itself, sooner or later
use linearity of CRC32
if modification injected, make it coherent with CRC32 encoding
dedicated attack on WEP/RC4 encryption
Fluhrer-Mantin-Shamir 2001 and follow up’s
passive ciphertext only attack
(with some bytes of each frame known)
after sniffing 20 000 packets, probability to recover the key is 1

2
Sepehrdad-Vaudenay-Vuagnoux 2012

SV 2024–25 Case Studies CryptoSec 968 / 1098



WEP (In)security

security is snake oil:

confidentiality /
message authentication /
message integrity /
message freshness no protection
key establishment (pre-shared)
message sequentiality no protection
privacy /

an example not to follow

SV 2024–25 Case Studies CryptoSec 969 / 1098



WPA: a Dirty Quick Fix

WPA-TKIP (Temporal Key Integrity Protocol):
make the RC4 key change for every packet (based on a master
key)
message integrity (with MICHAEL, a broken MAC...)
check IV increases to protect against nonce repetition
set up master key using EAP (Extensible Authentication
Protocol)

PSK (Pre-Shared Key)
one of the possible authentication protocols from 802.1x using an
authentication server (e.g. RADIUS)
TLS (+ two certificates), TTLS (one certificate, one password),
PEAP, SIM (using GSM), AKA (using UMTS), FAST (Cisco)
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WPA2

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode)
128 or 256 bit key

severe mistake:
there is an option in the handshake to reset the key to a
previously used one
(to save computation, to ask to resend a lost packet, ...)
but this resets the nonce counter as well...
exploit by Vanhoef and Piessens in 2016:
KRACK (Key Reinstallation Attack)
patched implementations disabled this
but have a less reliable connectivity...
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back to chapter
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Bitcoins

virtual currency
launched in 2009 by an anonymous guy
(pseudo Satoshi Nakamoto)
completely decentralized, there is no authority
anyone creates its own account
broadcast transactions on a public ledger

SV 2024–25 Case Studies CryptoSec 974 / 1098



A Bitcoin Transaction

“I, pk, holder of UTXO link1, . . . , linkn pay x1 to pk1, ..., xm to pkm”
[signature]

UTXO = unspent transaction output
requirement: x1 + · · ·+ xm equals sum of given UTXO
then, amounts from [link1], ..., [linkn] to pk become spent and
amounts from transaction become new UTXO with a link
problem: how to make sure that UTXO is really unspent
equivalent problem: how to make everybody “see” the same list
of transactions
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Block Chain

a block from the block chain:
hash of the previous block (except for the genesis block)
list of transactions from the last period
proof-of-work (PoW) based on the above

scheme for miners (every 10 minutes):
take the longest valid block chain
collect all broadcast valid transactions with respect to this chain
make a new block and PoW
broadcast it
the first transaction (the coinbase transaction) rewards the miner
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Bitcoin Block

block header (80B)

H0–3 = H(H0–1‖H2–3)

H0–1 = H(H0‖H1) H2–3 = H(H2‖H3)

H0 = H(tx0) H1 = H(tx1) H2 = H(tx2) H3 = H(tx3)

tx0 tx1 tx2 tx3

SV 2024–25 Case Studies CryptoSec 977 / 1098



Bitcoin Blockchain

block 1 header block 2 header
ver (4B)

prev hash (32B)

merkle root (32B)

time (4B)

nBits (4B)

nonce (4B)

ver (4B)

prev hash (32B)

merkle root (32B)

time (4B)

nBits (4B)

nonce (4B)

(80)
hash

prev hash = SHA256

SHA256

prev block︸ ︷︷ ︸
80B


︸ ︷︷ ︸

32B


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Proof-of-Work

block shall contains for PoW value such that

SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016
it is constantly calibrated
nonce is only 32-bit long but more data is used in PoW:

another nonce in the coinbase tx
timestamp (in msec)
new transactions
their order
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Merkle Authentication Tree (Hash Tree)

H0–7

H0–3 H4–7

H0–1 H2–3 H4–5 H6–7

H0 H1 H2 H3 H4 H5 H6 H7

tx0 tx1 tx2 tx3 tx4 tx5 tx6 tx7

Assuming H0–7 is authenticated, to authenticate tx2, just give
H3,H0–1,H4–7.
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back to chapter
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GSM Architecture

principle 1: authentication of mobile system
principle 2: privacy protection in the wireless link

challenge-response protocol based on Ki
encryption key for a limited period of time (derived from Ki)
identity IMSI replaced by a pseudonym TMSI as soon as possible
Ki never leaves the security module (SIM card) or home security
database (HLR)
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GSM Slang

GSM: Global System for Mobile telecommunications
MS: Mobile Station
SIM: Subscriber Identity Module (part of MS)
HLR: Home Location Register
VLR: Visitor Location Register
IMSI: International Mobile Subscriber Identity (stored in SIM)
Ki: subscriber Integrity Key (securely stored in SIM)
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GSM Protocol

SIM Telephone Radio Network Operator

A5

?

-

Plaintext

A8

A3

-� Ciphertext
A5

?

�

Plaintext

-Response
Compare � A3

A8

Random

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?
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GSM Peer Authentication

A3/8(Ki,RAND) = (SRES,KC)

SIM MS (wireless) VLR (secure) HLR
(Ki) IMSI−−−−−−−−−−→ IMSI−−−−−−−−−−−−−→ (Ki)

RAND←−−−−−−−−−− RAND←−−−−−−−−−− store
n×(RAND,SRES,KC)←−−−−−−−−−−−−−

SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check
CKC(TMSI)←−−−−−−−−−−

...
TMSI−−−−−−−−−−→

RAND←−−−−−−−−−− RAND←−−−−−−−−−−
SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check
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Security of Peer Authentication

Ki never leaves the SIM card or the secure database of the
operator (assuming SIM card is tamper proof and HLR is secure)
assuming that A3/8 are secure PRF then authentication to
network is secure
A3/8 not standard: chosen by operator
problem with weak A3/8 (e.g. COMP128)

security: ,
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GSM Encryption

several standard algorithms: A5/0, A5/1, A5/2, A5/3
cipher imposed by network
new KC for each session
synchronized frame counter (see A5/1 on slide 479)
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Security of Privacy protections

blinding the identity: telephone identifies itself in clear at the first
time then using a pseudonym given by the local network
not effective at all:

challenges can be replayed to trace mobile telephones
fake network can force identification in clear (re-synchronization
protocol)

security of A5/0 (no encryption) void
security of A5/2 weak
security of A5/1 not high
security of A5/3 high
fake network can force to weak encryption (they all use the same
key)
replaying a challenge will force reusing a key in one-time pad
message integrity protection is ineffective (covered in WEP)

security: /
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Improvements in 3G Mobile Telephony

challenges are authenticated (fake network cannot forge them)
integrity protection (MAC)
protection against challenge-replay attacks
uses a block cipher KASUMI instead of the stream cipher A5/1
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The UMTS Crypto Menagery

communication: f8 (encryption) and f9 (MAC) based on KASUMI
signaling communication: f6 (encryption) and f7 (MAC) based on
AES
challenge pseudorandom generator: f0
MILENAGE (key establishment): f1, f1*, f2, f3, f4, f5, f5*
f1 and f5: challenge computation for synchronized entities
f1* and f5*: challenge computation for re-synchronization
f2: response to challenge (replaces A3)
f3: key derivation for encryption (replaces A8)
f4: key derivation for MAC
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MILENAGE Protocol

USIM Telephone Radio Network Operator

f8-f9

?

-

Plaintext

?
OK?

f3-f4

f2

f1-f5

-� Ciphertext
f8-f9

?

�

Plaintext

-Response
Compare �

Nonce

�
f1-f5

f2

f3-f4

Rnd

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?
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MILENAGE Challenges

Challenge
?
⊕

f1

?

f5

�

Nonce

?

?

Key

? ?

Rnd

?

? ?

challenge authenticated based on f1
freshness protection based on a nonce
nonce may be counter-based (USIM and operator synchronized)
privacy protection: the nonce is encrypted by f5
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MILENAGE Challenge Verification

Challenge

6
⊕

f1

?

6
=

f5

�

check

6
?

Key

? ?? ?

1 extract Rnd
2 decrypt Nonce by computing f5(Key,Rnd)
3 check authentication (f1)
4 check Nonce is correct
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Security Misses

network is not authenticated (network only proves he received
authorization from operator)
→ attack by fake network rerouting through expensive networks
of unencrypted network
no encryption awareness
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Mobile Telephony (In)security

2G 3G
confidentiality / ,
message authentication / ,
message integrity / ,
challenge freshness / ,
mobile authentication , ,
network authentication / /
key establishment / ,
frame sequentiality , ,
privacy / ,
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Other Standards

DECT: wireless telephone (connected to fixed base line)
DSAA: DECT standard Authentication Algorithm
DSC: DECT standard Cipher
standard is not public (but published and broken!)
EDGE (used to be GPRS)
GEA: GPRS Encryption Algorithm
standard is not public
cdmaOne (also called IS-95 or CDMA)
no SIM card
CAVE: Cellular Authentication and Voice Encryption
ORYX: encryption algorithm (stream cipher)
CMEA: Cellular Message Encryption Algorithm
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Signal

used in WhatsApp
secure messaging (confidentiality, authenticity, integrity of
messages)
forward and future secrecy (confidentiality preserved even
though secrets leak)
deniability (no transferable proof of message authorship leaks)
asynchronous (can be done offline)
detect replay/reorder/deletion attacks
allow decryption of out-of-order messages
don’t leak metadata
X3DH + Double Ratchet
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X3DH: Initial Key Agreement
(keys are in Curve25519)

Alice Server Bob

IKA: identity key IKB : identity key
SPKB : signed prekey

[OPKB ]: one-time prekey
σB ← Sign(SPKB)

register
IKB ,SPKB ,σB ,[OPKi

B ]
←−−−−−−−−−−−−− i = 1, . . .

Bob?−−−−−−−−−−−−−→ (σB signed with IKB )

IKB ,SPKB ,σB ,[OPKi
B ]

←−−−−−−−−−−−−− [erase OPHi
B ]

EKA: ephemeral key
DH1← DH(IKA, SPKB)
DH2← DH(EKA, IKB)
DH3← DH(EKA, SPKB)

[DH4← DH(EKA, OPKi
B)] OPK avoids replay attacks making SK reused

SK← KDF(DH1‖DH2‖DH3‖[DH4])
erase EKA
AD← IKA‖IKB
state: SK, AD
send first message with AD

IKA,EKA,used prekeys of Bob,first message
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

· · · · · ·
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Ratchet

A ratchet is a mechanical device which can only move forward.

forward secrecy: protects past sessions against future
compromises of long-term secret keys
future secrecy: protects future sessions against compromises
of ephemeral secret keys
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Double Ratchet

DH: a ratchet for every time the direction of exchange changes
ratchet message indicates the new ephemeral key to use in DH
good forward and future secrecy
symmetric-key ratchet: two ratchets (one for each direction)
no real future secrecy
plausible deniability
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Diffie-Hellman Ratchet

Alice Bob

SK (SK)
↓ ↓

send CK0←KDF(DHA1)
IKA,EKA1,...−−−−−−−−−−−−−−→

DHA1=DH(EKA1,prev)
KDF(DHA1)→CK0 rec

↓ ↓
rec CK0←KDF(DHB1)

EKB1,msg←−−−−−−−−−−−−−−
DHB1=DH(EKA1,EKB1)

KDF(DHB1)→CK0 send

↓ ↓
send CK0←KDF(DHA2)

EKA2,msg−−−−−−−−−−−−−−→
DHA2=DH(EKA2,EKB1)

KDF(DHA2)→CK0 rec

↓ ↓
rec CK0←KDF(DHB2)

EKB2,msg←−−−−−−−−−−−−−−
DHB2=DH(EKA2,EKB2)

KDF(DHB2)→CK0 send

↓ ↓
...

SV 2024–25 Case Studies CryptoSec 1004 / 1098



Symmetric-Key Ratchet

given CK0, derive chain keys CKi , message keys MKi

(MKi ,CKi+1) = KDF CK(CKi)

the message i is encrypted using MKi with AD (AEAD)

CK0

MK1

CK1

MK2

CK2 · · ·
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Double Ratchet

given SK, derive root keys RKi , chain keys CKi , message keys MKi

RKinitial = SK (from X3DH)

(RKnew,CK0) = KDF RK(RKold,DHnew)

(MKi ,CKi+1) = KDF CK(CKi)

the message i is encrypted using MKi with AD (AEAD)

(X3DH) RK DH

CK0

MK1

CK1

MK2

CK2 · · ·
DH′

CK0

MK1

CK1

MK2

CK2 · · ·...

RK′
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Involved Cryptography

ECDH on Curve25519
HMAC-SHA256
AES256 CBC
HKDF
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Out-of-Band Authentication

safety number H(IKA‖IKB‖ · · · )
can be viewed numerically (60 decimal digits!) or with QR code
can cross-check numbers or cross scan QR codes
used to manually authenticate identity keys and more
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Contact Discovery
To determine if some of the contacts in the phone are Signal users,
the app sends the hash of every phone number in the contact list to
the central server...

Inversion attack is easy

What is needed: private set intersection:

Smartphone Server
(small) set: contacts (big) set: users

-
�

-
�

-
�

output: contacts ∩ users
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back to chapter
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Typical Requirements in Secure Browsing

unidirectional authentication
confidentiality of communication
integrity of communication
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History

SSLv1 by Netscape in 1994
Microsoft version PCT in 1995
SSLv3 by Netscape in 1995
TLS/1.0 in 1999 [RFC2246]
TLS/1.1 in 2006 [RFC4346]
TLS/1.2 in 2008 [RFC5246]
TLS/1.3 in 2018 [RFC8446]

Goal: secure any communication (e.g. HTTP) based on TCP/IP
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Session State

Session identifier
Peer certificate (if any)
Cipher suite choice

Algorithm for authentication and key exchange during handshake
Cipher Spec: symmetric algorithms (encryption and MAC)

Master secret (a 48-byte symmetric key)
nonces (from the client and the server)
sequence numbers (one for each communication direction)
compression algorithm (if any)
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Cipher Suites (from 1.0 to 1.2)

cipher: RC4 or DES/3DES in CBC mode
(key could be limited to 40 bits for “export”)

RC4 has biases
CBC mode has padding oracles

added in 1.2: AES GCM, AES CCM, CAMELLIA, ARIA
hash: MD5 or SHA1

both have collisions
maybe less a problem with HMAC

added in 1.2: SHA2
key exchange: RSA or DH (in several variants)
DH anon: ephemeral DH
DH sig: static DH with a certificate
DHE sig: ephemeral DH with a signed ephemeral public key
added in 1.2: ECDSA, PSK

SV 2024–25 Case Studies CryptoSec 1015 / 1098



RSA Key Exchange (Old TLS)

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS RSA cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

RSA encryption is PKCS#1v1.5
the RSA public key must be authenticated (with a certificate)
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TLS 1.3

new: better handshake protocol (less round-trips)

cipher suite in the form

TLS KEA AUTH WITH CIPHER HASH

key exchange (KEA) and authentication (AUTH) are separate
KEA is ephemeral Diffie-Hellman only: DHE or ECDHE or PSK
(for Diffie-Hellman: forward secrecy)
keys are derived using HKDF
AUTH is the way to authenticate peers, it can be with a certificate
(RSA or ECDSA) or PSK
CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY1305
(AEAD: Authenticated Encryption with Associated Data)
HASH: SHA2
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TLS 1.3 Cipher Suites
TLS DHE RSA WITH AES 128 GCM SHA256
TLS DHE RSA WITH AES 256 GCM SHA384
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE ECDSA WITH AES 256 GCM SHA384 (recommended)
TLS ECDHE RSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE RSA WITH AES 256 GCM SHA384 (recommended)
TLS DHE RSA WITH AES 128 CCM
TLS DHE RSA WITH AES 256 CCM
TLS DHE RSA WITH AES 128 CCM 8
TLS DHE RSA WITH AES 256 CCM 8
TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS DHE RSA WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH AES 128 GCM SHA256
TLS DHE PSK WITH AES 256 GCM SHA384
TLS DHE PSK WITH AES 128 CCM
TLS DHE PSK WITH AES 256 CCM
TLS PSK DHE WITH AES 128 CCM
TLS PSK DHE WITH AES 256 CCM
TLS ECDHE PSK WITH AES 128 GCM SHA256
TLS ECDHE PSK WITH AES 256 GCM SHA384
TLS ECDHE PSK WITH AES 128 CCM 8 SHA256
TLS ECDHE PSK WITH AES 128 CCM SHA256
TLS ECDHE PSK WITH AES 256 CCM SHA384
TLS ECDHE PSK WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH CHACHA20 POLY1305 SHA256

mandatory curve: secp256r1 (NIST P-256)
recommended curve: X25519 [RFC7748]
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TLS 1.3 Handshake

Client Server

ClientHello,accepted cipher suites,start KEA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello,cipher suite,certificate,end KEA←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

secret secret
finish−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[
NewSessionTicket←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]

ClientHello includes supported groups, a first KEA message for
some of those groups, supported signatures (to verify certificates), a
list of identifiers for PSK known keys and the PSK mode to be used

if the server selects a supported group with no first KEA message, it
requests an extra round trip
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TLS 1.3 Resumption
0RTT Handshake (0 round-trip time)

a client can re-establish (resume) a previous connection
client sends a ClientHello with PSK and a SessionTicket

resume + send encrypted messages at the same time
SessionTicket includes a validity
SessionTicket includes a way to recover ResumptionSecret
continue normal handshake + define next ResumptionSecret

session cache

server stores ResumptionSecret

SessionTicket has lookup key

delete ResumptionSecret after

drawback: memory on server

forward secure

immune against replay attacks

session ticket

SessionTicket =
EncSTEK(ResumptionSecret)

STEK: session ticket encryption
key

drawback: no forward secrecy

drawback: replay attack
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back to chapter

SV 2024–25 Case Studies CryptoSec 1021 / 1098



9 Case Studies
WiFI: WEP/WPA/WPA2
Block Chains
Mobile Telephony
Signal
TLS
NFC Creditcard Payment
Bluetooth
The Biometric Passport

SV 2024–25 Case Studies CryptoSec 1022 / 1098



(Simplified) EMV PayPass Protocol (NFC)

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL
verify

� UN, amount, info
pick UNinc. ATC

-ATC,SDAD
compute verify

KM

?

PAN
AC

amount
ATC
info

PAN: serial number of the card

SSAD: info about the card including PAN

CDOL: description of what is needed in info

ATC: number of the transaction

AC = MACEncKM
(ATC)(amount,ATC, info)

SDAD = SignPrivC(AC,UN, amount,ATC, info)
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From Paper to Bits...

holder is not aware a payment is happening
holder is not aware of the payment amount
no access control of the payment terminal (no PIN)
payee is not authenticated (info could be anyone)
privacy issue (SSAD leaks)
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Skimming

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL

get name on card, credit card number, expiration date, etc
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Relay Attacks

honest
prover

honest
verifier

adversary

-a -a -a

�b � b �b

-c -c -c
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Relay Attacks in Real

opening cars and ignition (key with no button)
RFID access to buildings or hotel rooms
toll payment system
NFC credit card (for payment with no PIN)
access to public transport
...
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Playing against two Chess Grandmasters

�

-
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back to chapter
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The Bluetooth Project
short-range wireless technology
designed to transmit voice and data
for a variety of mobile devices (computing, communicating, ...)
bring together various markets

1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
robustness, low complexity, low power, low cost
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Bluetooth History

10th Century: Viking King Harald Blåtand (Harold Bluetooth)
tried to unify Denmark, Norway, and Sweden
1994: Ericsson initiated a study to investigate the feasibility
May 20, 1998: Bluetooth announced, controled by the Special
Interest Group (SIG) formed by

Ericsson, IBM, Intel, Nokia, and Toshiba
1999: Bluetooth 1.0 Specification Release
2004: Bluetooth 2.0 Specification Release
2007: Bluetooth 2.1 Specification Release (add SSP)
2009: Bluetooth 3.0 Specification Release (add 802.11)
2010: Bluetooth 4.0 Specification Release (add LE)
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Bluetooth Security Basics (Link Level)

can switch device to
non connectable (Bluetooth is off)
connectable but not discoverable (invisible without knowing the
MAC address)
discoverable (introduce itself upon any broadcast request)

pairing to set up link keys between devices
typically based on a random PIN
(dummy device) using a built-in PIN

can manage a database of paired devices
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Cycles in Bluetooth

set discoverable mode

?
pairing protocol

?
set non-discoverable mode

?
peer authentication

?
encrypted communication

?
go to sleep

�

6

?

user monitored
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Device Pairing

Device 1 Device 2

Operator

PIN

� request, . . . -

PIN

U
�

protocol
-

Klink Klink
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Legacy Pairing Protocol

? ?

PIN

rnd

? IN RAND ?
E22 E22

User

Kinit Kinit

?

? ?

?
LK RandA

?

-⊕ -CA ⊕

?

⊕
LK RandB

?

�⊕� CB

?? ? ? ?
AddrA AddrB AddrB AddrA

E21 E21 E21 E21

- � - �⊕ ⊕

? ?
Klink KlinkRadio
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Pairing with a Dummy Device

Device Dummy

Operator Factory

PIN

?

PIN�

Kunit

PIN

� request, . . . -�
protocol

-

Kunit
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Legacy Pairing with a Dummy Device

? ?

PIN

rnd

? IN RAND ?
E22 E22

User

Kinit Kinit

? ?
⊕

Kunit

?

�⊕� CB

?
K K

Radio
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Dummy Devices: Unit Key is Shared with Many
Devices

link key is forced to be the unit key

Device 2

Dummy

Device 1

Kunit

y

Kunit9

scenario: user A paired his headset (Dummy) with his telephone
(Device 1) then user B took the headset for a few seconds to pair it
with his computer (Device 2)...
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Peer Authentication

Master A Slave B

pick AU RANDB
AU RANDB−−−−−−−−−−−−−−−−−−−→

check SRESB
SRESB←−−−−−−−−−−−−−−−−−−− compute SRESB

AU RANDA←−−−−−−−−−−−−−−−−−−− pick AU RANDA

compute SRESA
SRESA−−−−−−−−−−−−−−−−−−−→ check SRESA

SRESd = E1(K ,AU RANDd ,BD ADDRd )
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Insecurity Summary

dummy devices use the same key with many devices
suspicious security of cryptographic primitives
academic attacks on E0 encryption
integrity protection is void
messages can be maliciously erased in the radio channel
privacy protection is weak (low entropy BD ADDR)
pairing protocol weak against passive attacks (next slides)
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Key Establishment (In)security

Theorem
The pairing protocol is secure if either PIN has large entropy or the
protocol is run through a private channel (under some “reasonable
assumptions” about the cryptographic algorithms).

, a cheap pragmatic security/ pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)
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Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not
confidential) and guessable PIN (lazzy operator)

1 sniff the pairing protocol, get IN RAND,CA,CB

2 −→ can compute Klink from PIN
3 sniff a peer-authentication protocol, get rand,F (rand,Klink)

4 −→ can check a guess on Klink

5 run an offline exhaustive search on PIN
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Online Impersonation Attack

Adversary Slave

receive PIN
IN RAND−−−−−−−−−−−−−→

CA−−−−−−−−−−−−−→
CB←−−−−−−−−−−−−− compute Klink

AU RandB−−−−−−−−−−−−−→
RESB←−−−−−−−−−−−−− RESB = E1(Klink,AU RandB)

exhaustive search on PIN s.t.
RESB = E1(f (PIN, IN RAND,CA,CB),AU RandB)
compute Klink = f (PIN, IN RAND,CA,CB)

AU RandA←−−−−−−−−−−−−−
RESA = E1(Klink,AU RandB)

RESA−−−−−−−−−−−−−→
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Bluetooth v2.0 Summary

light weight cryptography

initial authenticated channel by human interaction with devices
key exchanged based on a PIN and E21, E22 (pairing)
derivation of a single 128-bit long term link key
secure channel based on E0, E1, E3

several missing security properties: packet authentication,
detection of packet loss, privacy, ...
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Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

confidentiality , (attacks still academic so far)
message integrity /
message authentication / (auth. by encryption without integrity)
frame freshness , (based on clock value)
key establishment v2.0 / (pragmatic repairing possible)
frame sequentiality / (message loss)
privacy /
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Moral

PIN has low entropy
(humans cannot generate ephemeral PINs with high entropy)

offline passive key recovery:
key agreement is based on conventional cryptography (so cannot
resist to passive adversaries)
online impersonation attack:
assuming the adversary is second to authenticate itself, the
password-based key agreement does not even resist
impersonation
next generation needs

be user friendly
be device friendly (no expensive crypto)
resist passive and active adversaries
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Bluetooth v2.1: Secure Simple Pairing

4 variants
numeric comparison (assumes secure comparison by humans)
passkey entry (assumes a secure PIN input by human)
just works (assumes no active attack)
out-of-band (assumes a secure channel, e.g. cable or near field
communication)

resist active adversary
resist passive adversary only (out-of-band resists to active
adversaries if no attack is possible on the secure channel)
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Common Protocol

Device A Device B

ECDH
DHKey DHKey

authentication stage 1
(protocol dependent)

NA,NB, rA, rB NA,NB, rA, rB

EA = f3(· · · ) EA−−−−−−−−−−−−−→ check

check
EB←−−−−−−−−−−−−− EB = f3(· · · )

LK = f2(· · · ) LK = f2(· · · )
secure channel
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Common Protocol
step 1: public key exchange
exchange ECDH public keys using standard parameters (may be
ephemeral or static) leading to a key DHKey
steps 2–8: authentication stage 1 (protocol dependent)
this stage authenticates the ECDH public keys and exchange
some values NA, NB, rA, rB

steps 9–11: authentication stage 2
mutual authentication after ECDH protocol using NA, NB, rA, rB:
A resp. B produces EA resp. EB and checks EB resp. EA

EA = f3(DHKey,NA,NB, rB, IOcapA,BD ADDRA,BD ADDRB)

EB = f3(DHKey,NB,NA, rA, IOcapB,BD ADDRB,BD ADDRA)

step 12: link key calculation
key derivation from DHKey, Na, Nb, and the addresses

LK = f2(DHKey,Nmaster,Nslave, btlk,BD ADDRmaster,BD ADDRslave)

step 13: encryption (business as usual)
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ECDH Common Protocol
domain parameters:
use secp192r1 = P192, the elliptic curve of order r over the Zp

field defined by y2 = x3 + ax + b which is generated by G:

p = 2192 − 264 − 1

a = −3 mod p

b = 2455155546008943817740293915197451784769108058161191238065

r = 6277101735386680763835789423176059013767194773182842284081

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 602046282375688656758213480587526111916698976636884684818

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

= 174050332293622031404857552280219410364023488927386650641

note that 2192 − 295 < r < 2192 and r is prime
key agreement function: given an integer u and a point V ,
P192(u,V ) is the x-coordinate of the point uV

DHKey = P192(SKA,PKB) = P192(SKB,PKA)
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The New Bluetooth Menagery

f1(U,V ,X ,Z ) = trunc128 (HMACX (U‖V‖Z ))
g(U,V ,X ,Y ) = SHA256(U‖V‖X‖Y ) mod 232

f2(W ,N1,N2, keyID,A1,A2) = trunc128 (HMACW (N1‖N2‖keyID‖A1‖A2))
f3(W ,N1,N2,R, IOcap,A1,A2) = trunc128 (HMACW (N1‖N2‖R‖IOcap‖A1‖A2))

variable Ai Ni U V W X Y Z keyID IOcap
# bits 48 128 192 192 192 128 128 8 32 48

HMAC is HMAC-SHA256

the value of keyID for “btlk” is 0x62746c6b
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Bluetooth Simple Secure Pairing Variants — i
Numeric Comparison

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−−−−−−−−−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B, 0)

NB←−−−−−−−−−−−−−
VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)

display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB
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Numeric Comparison Analysis

Device A Adversary Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
ĉB←−−−??

cB←−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−→??

N̂A−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B, 0)

N̂B←−−−??
NB←−−−

VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)
display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB

if (PKA, P̂KB) 6= (P̂KA,PKB), due to commitment cB and ĉB:
Adversary does not know VB before he receives NB
Adversary cannot influence VA after sending ĉB
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Note on Numerical Comparison

presumably, not many human users will carefully compare the
32-bit strings VA and VB

“just works” is a variant where no check is made
(vulnerable to active attacks)
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Bluetooth Simple Secure Pairing Variants — ii
Passkey Entry

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

type r1 · · · rk

FOR i = 1 to k
pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

cA ← f1(PKA, P̂KB,NA, ri)
cA−−−−−−−−−−−−−→
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, ri)
NA−−−−−−−−−−−−−→ ĉA

?
= f1(P̂KA,PKB, N̂A, ri)

ĉB
?
= f1(P̂KB,PKA, N̂B, ri)

NB←−−−−−−−−−−−−−
ENDFOR

keep the last NA and NB

output: NA, N̂B, r , r output: N̂A,NB, r , r
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Collision Attack on Passkey Entry
find ĉB,N0,N1 s.t. f1(P̂KB,PKA,N0, 0) = f1(P̂KB,PKA,N1, 1) = ĉB (collision)

(264 complexity)
Device A Device B

input: PKA, P̂KB input: P̂KA,PKB

(type r1 · · · rk )
FOR i = 1 to k

pick NA ∈U {0, 1}128 pick N̂A pick NB ∈U {0, 1}128

cA ← f1(PKA, P̂KB,NA, ri)
cA−→ cB ← f1(PKB, P̂KA,NB, ri)
ĉB←−
NA−→ deduce

ĉA−→

ĉB
?
= f1(P̂KB,PKA, N̂B, ri)

Nri←− cB←−
N̂A−→ ĉA

?
= f1(P̂KA,PKB, N̂A, ri)

NB←−
ENDFOR

deduce:
deduce bit ri s.t. cA = f1(PKA, P̂KB,NA, ri)

set ĉA = f1(P̂KA,PKB, N̂A, ri)
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Pass Entry Analysis

If (PKA, P̂KB) 6= (P̂KA,PKB) and f is collision-resistant:
Adversary cannot forge ĉA and ĉB with a probability higher than 1

2
in each iteration (by trying to guess ri )
So, he cannot pass with probability higher than 2−k
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Bluetooth Simple Secure Pairing Variants — iii
Out-of-Band

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick rA ∈U {0, 1}128 pick rB ∈U {0, 1}128

cA ← f1(PKA,PKA, rA, 0) cB ← f1(PKB,PKB, rB, 0)
authenticateA(rA,cA)−−−−−−−−−−−−−→
authenticateB(rB ,cB)←−−−−−−−−−−−−−

cB
?
= f1(P̂KB, P̂KB, rB, 0) cA

?
= f1(P̂KA, P̂KA, rA, 0)

pick NA ∈U {0, 1}128 NA−−−−−−−−−−−−−→
NB←−−−−−−−−−−−−− pick NB ∈U {0, 1}128

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB
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Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)
similar association models, but no public-key crypto anymore
some ill-designed association model
a strange key hierarchy with not so much entropy in session key
derivation
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back to chapter
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9 Case Studies
WiFI: WEP/WPA/WPA2
Block Chains
Mobile Telephony
Signal
TLS
NFC Creditcard Payment
Bluetooth
The Biometric Passport
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ICAO-MRTD Objectives

(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control
→ biometrics
→ contactless IC chip
→ digital signature + PKI

maintained by UN/ICAO (International Civil Aviation Organization)
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MRTD History

1968: ICAO starts working on MRTD
1980: first standard (OCR-B Machine Readable Zone (MRZ))
1997: ICAO-NTWG (New Tech. WG) starts working on
biometrics
2001 9/11: US want to speed up the process
2002 resolution: ICAO adopts facial recognition
(+ optional fingerprint and iris recognition)
2003 resolution: ICAO adopts MRTD with contactless IC media
(instead of e.g. 2D barcode)
2004: version 1.1 of standard with ICC
2005: deployment of epassports in several countries
2006: extended access control under development in the EU
2007: deployment of extended access control (+ more
biometrics)
now part of Doc9303
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MRZ Example

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC
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MRTD in a Nutshell

MRTD

MRZ LDS

? ?????
optical access radio access
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ISO 14443 (RFID)

Who’s there? -
08 2c 71 e6�

frequency: 13.56MHz
typical range: 2cm
reported range (with legal equipment): 12m
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ICAO (MRTD): BAC and Passive Authentication

Who’s there? -
08 2c 71 e6�

proof(X337 · · · 814)-
DG1, DG2, SOD�

?

PMCHEDUPONT<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<<<
X337803X<6CHE7208066M1308147<<<<<<<<<<<<<<<4

DG1: official name, citizenship, X337 · · · 814, gender
DG2: facial picture
SOD: signature by authorities of the hash of DG’s
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Identity Example
DG1 PMCHEDUPONT<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<<<

X337803X<6CHE7208066M1308147<<<<<<<<<<<<<<<4

DG2

,
SOD

Hashes:
DG1: 4e1249fb72c8e70ba72f488dc1f91394e57f9f83
DG2: a3853c3c7261c2788fc2c4b9db372c5875f5c91d

Signature:
54a4 a626 4ee1 c0ab e022 3f1d e673 75d4

7c89 7e7f d8fb acd6 abbf d568 b178 7171

652d e730 43c2 9495 6134 680c 7070 9028

1caa 2364 17e8 ffa0 9ee7 c8be 4c32 908c

Certificate:
MIIECTCCA5GgAwIBAgIBFDAJBgcqhkjOPQQBMHExCzAJBgNVBAYTAkNIMQ4wDAYD

VQQKEwVBZG1pbjERMA8GA1UECxMIU2VydmljZXMxIjAgBgNVBAsTGUNlcnRpZmlj

YXRpb24gQXV0aG9yaXRpZXMxGzAZBgNVBAMTEmNzY2Etc3dpdHplcmxhbmQtMTAe

Fw0wODA1MTkwODA4NDVaFw0xNDA2MjEwODA4NDVaMG0xCzAJBgNVBAYTAkNIMQ4w

DAYDVQQKEwVBZG1pbjERMA8GA1UECxMIU2VydmljZXMxGTAXBgNVBAsTEFNpZ25h

dHVyZS1TZXJ2ZXIxDzANBgNVBAsTBlBhc3MwNjEPMA0GA1UEAxMGZHMtMDAxMIIB

MzCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEA/////wAAAAEAAAAAAAAA

AAAAAAD///////////////8wRAQg/////wAAAAEAAAAAAAAAAAAAAAD/////////

//////wEIFrGNdiqOpPns+u9VXaYhrxlHQawzFOw9jvOPD4n0mBLBEEEaxfR8uEs

Qkf4vOblY6RA8ncDfYEt6zOg9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sx

Xs7LtkBoN79R9QIhAP////8AAAAA//////////+85vqtpxeehPO5ysL8YyVRAgEB

A0IABO8J8UthgahfN1JQKIq9a1ll/L3er54mUd1SZMnKQ2pQTbX5JwHc9ByEgw3G

5kucfGw1k2uAts+Ck+WSovy7k7GjggFBMIIBPTArBgNVHRAEJDAigA8yMDA4MDUx

OTA4MDg0NVqBDzIwMDgwODIwMDgwODQ1WjBgBgNVHSAEWTBXMFUGCGCFdAERAzQB

MEkwRwYIKwYBBQUHAgEWO2h0dHA6Ly93d3cucGtpLmFkbWluLmNoL3BvbGljeS9D

UFNfMl8xNl83NTZfMV8xN18zXzUyXzEucGRmMIGbBgNVHSMEgZMwgZCAFE7InZjJ

tOCQ9StbhZdQVr/oJOt2oXWkczBxMQswCQYDVQQGEwJDSDEOMAwGA1UEChMFQWRt

aW4xETAPBgNVBAsTCFNlcnZpY2VzMSIwIAYDVQQLExlDZXJ0aWZpY2F0aW9uIEF1

dGhvcml0aWVzMRswGQYDVQQDExJjc2NhLXN3aXR6ZXJsYW5kLTGCAQEwDgYDVR0P

AQH/BAQDAgeAMAkGByqGSM49BAEDZwAwZAIwGYMbTqjlYQnJ1DSpb//5WtQthjoy

pGrbBZW1Rqa7TXffzQX818OjQCdQ0n9tZEDlAjBPtMdS9OymxywZpXZj9Os2qO6M

6htXJKXpdKSWq75ZhQRet/or3pT2MQ56n69hqGw=
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MRTD

Advantages

impossible to forge an identity
protect against non-organized
illegal immigration

Problems

encourage identity theaft
facial recognition is weakly
reliable
passeport cloning
tracking people
leakage of evidence

proof of official name
proof of age
proof of gender

anonymity loss
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EAC: Access Control and Active Authentication

Who’s there? -
08 2c 71 e6�
X337 · · · 814 -

DG1, DG2, SOD�
EAC -�

DG3, DG4, ...�

?

PMCHEDUPONT<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<<<
X337803X<6CHE7208066M1308147<<<<<<<<<<<<<<<4

EAC: chip authentication
EAC: terminal authentication
DG3...: fingerprint, other data
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EAC

Advantages

anti-cloning
better access control
better identification

Problems

only where EAC is available
still evidence leakages
a new PKI
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LDS Example

- PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

DG1: same as MRZ
DG2: encoded face
DG3: encoded finger
SOD

6
,

?

-
[h(DG1), h(DG2), h(DG3)]
signature
certificate CDS
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LDS Structure

KENC, KMAC, KPrAA

COM: present data groups

DG1: same as MRZ

DG2: encoded face

DG3: encoded finger(s)

DG4: encoded eye(s)

DG5: displayed portrait

DG6: (reserved)

DG7: displayed signature

DG8: data feature(s)

DG9: structure feature(s)

DG10: substance feature(s)

DG11: add. personal detail(s)

DG12: add. document detail(s)

DG13: optional detail(s)

DG14: security options

DG15: KPuAA

DG16: person(s) to notify

SOD
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SOD Structure

list of hash for data groups DG1–DG15
formatted signature by DS (include: information about DS)
(optional) CDS

SV 2024–25 Case Studies CryptoSec 1076 / 1098



(Country-wise) PKI

DG1 DG2

h(DG2)

LDS21 LDS22

SOD

DS1 DS2

CDS

CSCA - visited country
CCSCA

+ revocation protocol

one CSCA (Country Signing Certificate Authority)
several DS (Document Signer) per country
SOD: signature of LDS
fingerprint of a DG
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Some MRTD Security Notions

Passive authentication: authentication of the DG by means of a
digital signature and a PKI
Basic access control: access control to the chip based on a
(printed) MRZ info
Secure messaging: secure communication between chip and
terminal
Active authentication: interactive authentication of the chip
using a public key
Terminal authentication: authentication of the terminal by
means of a PKI
Chip authentication: replacement of active authentication
Extended access control: use of teminal authentication, chip
authentication, and PACE
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Passport: From Paper to Bits

paper passport

invisible if not shown
hard to copy
photocopies are non-binding
needs human check
access control by the holder

MRTD

detectable, recognizable
easy to copy with no AA
SOD is a digital evidence
readable automatically
needs specific access control
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MRZ info

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC
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Basic Access Control
Authenticated Key Exchange Based on MRZ info

IFD ICC

(derive KENC and KMAC from MRZ info)

GET CHALLENGE−−−−−−−−−−−−−−→
pick RND.IFD, K.IFD

RND.ICC←−−−−−−−−−−−−−− pick RND.ICC, K.ICC

S ← RND.IFD‖RND.ICC‖K.IFD
[S]KENC,KMAC−−−−−−−−−−−−−−→ check RND.ICC

check RND.IFD
[R]KENC,KMAC←−−−−−−−−−−−−−− R ← RND.ICC‖RND.IFD‖K.ICC

(derive KSENC and KSMAC from Kseed = K.ICC⊕ K.IFD)
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Active Authentication Protocol

IFD ICC

pick RND.IFD RND.IFD−−−−−−−−−−−−−−−−−−−→ F ← nonce‖RND.IFD
check Σ←−−−−−−−−−−−−−−−−−−− Σ← SignKPrAA

(F )
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RFID Private Collision Avoidance Protocol
(ISO 14443)

for each new singulation protocol
ICC introduces himself with a pseudo (32-bit number)
singulation to establish a communication link between reader
and ICC of given pseudo
pseudo is either a constant or a random number starting with 08
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Security and Privacy Issues

collision avoidance discrepancies
→ deviating from standard induce leakages
MRZ info entropy
→ online attack or offline decryption from skimming
underestimated wireless range limits
→ claimed to be possible at a distance of 25m
identity theft (by stealing/cloning MRTD)
→ facial recognition is weak
remote passport detection
→ nice to find passports to steal
relay attacks
denial of services
...
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Identity Theft

? ?

biometry picture

-
6

steal identity

a few 100 customers are enough
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Extended Access Control (EAC)

PACE > BAC
Chip Authentication > AA
Terminal Authentication to access non-mandatory data
more biometrics (finger) for more secure identification

using state-of-the-art cryptography
(public-key crypto, PAKE, elliptic curves)
secure access control but requires a heavy PKI for readers

in-process standard: protocols with different versions, variants,
described in different documents, with different notations...
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Sequence of Steps for Inspection

Advanced Inspection

run PACE (or BAC)
start secure messaging

↓
(if not in PACE) run Chip Auth.

restart secure messaging
↓

passive auth. of SOD

↓
(optional) run AA

↓
run Terminal Authentication v1

↓
read and verify data

Basic Inspection

run PACE (or BAC)
start secure messaging

↓
passive auth. of SOD

↓
(optional) run AA

↓
read and verify basic data
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PACE (GM v2)
better protocol (than BAC) based on π = MRZinfo
can play the role of Chip Authentication

PCD IC
password: π password: π

secret key: SKIC

(g ∈ DICC) pub key: PKIC = gSKIC ,DIC

pick s at random
PKIC,DIC←−−−−−−−−−−

z = ENCKπ (s)
z−−−−−−−−−−→ s = DECKπ (z)

pick SKMAP,PCD, PKMAP,PCD = gSKMAP,PCD
PKMAP,PCD−−−−−−−−−−→ pick SKMAP,IC, PKMAP,IC = gSKMAP,IC

ĝ = gsPK
SKMAP,PCD
MAP,IC

PKMAP,IC←−−−−−−−−−− ĝ = gsPK
SKMAP,IC
MAP,PCD

pick SKDH,PCD, PKDH,PCD = ĝSKDH,PCD
PKDH,PCD−−−−−−−−−−→ pick SKDH,IC, PKDH,IC = ĝSKDH,IC

K = PK
SKDH,PCD
DH,IC

PKDH,IC←−−−−−−−−−− K = PK
SKDH,IC
DH,PCD

derive KSENC,KSMAC from K derive KSENC,KSMAC from K

TPCD = MACKSMAC(PKDH,PCD)
TPCD−−−−−−−−−−→ check TPCD

check TIC
TIC←−−−−−−−−−− TIC = MACKSMAC(PKDH,IC)

CAIC = DECKSENC(AIC), check CAIC
AIC←−−−−−−−−−− CAIC =

SKMAP,IC
SKIC

, AIC = ENCKSENC(CAIC)

output: KSENC,KSMAC,X = PKDH,PCD output: KSENC,KSMAC,X = PKDH,PCD

check CAIC: PK
CAIC
IC

?
=PKMAP,IC
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Chip Authentication (if not in PACE)

chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
semi-static ECDH with domain parameters DICC

replace the secure messaging keys

→ resists passive attacks

IFD ICC
secret key: SKICC

(g ∈ DICC) pub key: PKICC = gSKICC , DICC

pick x at random
PKICC,DICC←−−−−−−−−−−−−−−−

X = gx X−−−−−−−−−−−−−−−→
K = KDF(PKx

ICC) K = KDF(X SKICC )
derive KENC, KMAC from K derive KENC, KMAC from K

output: K , KENC, KMAC, X output: K , KENC, KMAC, X
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Terminal Authentication

terminal sends a certificate to chip (ECDSA)
terminal signs a challenge + ephemeral key X from Chip
Authentication
IDICC set to serial number (for BAC) or to ephemeral key of ICC
(for PACE)

→ strong access control

IFD ICC

certificate(PKIFD)−−−−−−−−−−−−→ check
F ← IDICC‖ricc‖H(X )

ricc←−−−−−−−−−−−− pick ricc

sIFD ← SignSKIFD
(F )

sIFD−−−−−−−−−−−−→ check

SV 2024–25 Case Studies CryptoSec 1090 / 1098



Terminal Authentication Issues

Terminal revocation issue:
MRTDs are not online!
MRTDs have no reliable clock

−→ MRTD must trust readers to revoke themselves
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Information Leakage

SOD leaks the digest of protected DGs before passing EAC
could be used to recover missing parts from exhaustively search
could be used to get a proof if DG is known
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Conclusion on MRTD
LDS: contains too much private information
passive authentication: leaks evidence for LDS
BAC: does a poor job
secure messaging: OK
AA: leaks digital evidences, subject to MITM
EAC: much better, but still leaks + revocation issue
RFID: leaks
biometrics: leaks template

“Les passeports ne servent jamais qu’à gêner les
honnêtes gens et à favoriser la fuite des coquins.”

Jules Verne, 1872
Le tour du monde en 80 jours
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back to chapter
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Conclusion
Lightweight networks based on conventional cryptography only
(GSM, Bluetooth, ...)
Although limited, we can make many protocols with only
conventional cryptography
Assembling cryptographic primitives in a protocol is not trivial
access control based on

what you know (password)
what you have (a key in a secure token for challenge-response)
what you are (biometrics)

New notions: forward secrecy, plausible deniability, block chain,
proof-of-work
TLS: standard for e-commerce, suffer from PKI weaknesses
MRTD: secure data authentication, poor privacy
EMV PayPass: secure for payee, not payer, poor privacy

they all put together all cryptographic ingredients quite nicely
they are permanently improved to fix mistakes and use the
state-of-the-art cryptography
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Must Be Known

GSM security infrastructure
mobile telephony security
Bluetooth pairing
foward secrecy
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Train Yourself

biometric passport: final exam 2015–16 ex3
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